Kontakt
14412 Potsdam
ORCID
-
W. Thiery,
S. Lange,
J. Rogelj,
C. Schleussner,
L. Gudmundsson,
S.I. Seneviratne,
M. Andrijevic,
K. Frieler,
K. Emanuel,
T. Geiger,
D.N. Bresch,
F. Zhao,
S.N. Willner,
M. Büchner,
J. Volkholz,
N. Bauer,
J. Chang,
P. Ciais,
M. Dury,
L. François,
M. Grillakis,
S.N. Gosling,
N. Hanasaki,
T. Hickler,
V. Huber,
A. Ito,
J. Jägermeyr,
N. Khabarov,
A. Koutroulis,
W. Liu,
W. Lutz,
M. Mengel,
C. Müller,
S. Ostberg,
C.P.O. Reyer,
T. Stacke,
Y. Wada.
Intergenerational inequities in exposure to climate extremes.
Science, (2021).
https://doi.org/10.1126/science.abi7339
-
L. Quante,
S.N. Willner,
R. Middelanis,
A. Levermann.
Regions of intensification of extreme snowfall under future
warming.
Scientific Reports
11(1), (2021).
https://doi.org/10.1038/s41598-021-95979-4
-
B. Mester,
S.N. Willner,
K. Frieler,
J. Schewe.
Evaluation of river flood extent simulated with multiple global
hydrological models and climate forcings.
Environmental Research Letters
16(9), 094010 (2021).
https://doi.org/10.1088/1748-9326/ac188d
-
N. Wunderling,
J. Krönke,
V. Wohlfarth,
J. Kohler,
J. Heitzig,
A. Staal,
S. Willner,
R. Winkelmann,
J.F. Donges.
Modelling nonlinear dynamics of interacting tipping elements on complex
networks: the {PyCascades} package.
The European Physical Journal Special Topics, (2021).
https://doi.org/10.1140/epjs/s11734-021-00155-4
-
K. Kuhla,
S.N. Willner,
C. Otto,
L. Wenz,
A. Levermann.
Future heat stress to reduce people's purchasing power.
PLOS ONE
16(6), e0251210 (2021).
https://doi.org/10.1371/journal.pone.0251210
-
S.N. Willner,
N. Glanemann,
A. Levermann.
Investment incentive reduced by climate damages can be restored by
optimal policy.
Nature Communications
12(3245), (2021).
https://doi.org/10.1038/s41467-021-23547-5
-
H. Krichene,
T. Geiger,
K. Frieler,
S. Willner,
I. Sauer,
C. Otto.
Long-term impacts of tropical cyclones and fluvial floods on economic
growth – Empirical evidence on transmission channels at different levels
of development.
World Development
144, 105475 (2021).
https://doi.org/10.1016/j.worlddev.2021.105475
-
I. Sauer,
R. Reese,
C. Otto,
T. Geiger,
S.N. Willner,
B. Guillod,
D. Bresch,
K. Frieler.
Climate signals in river flood damages emerge under sound regional
disaggregation.
Nature Communications
12(1), (2021).
https://doi.org/10.1038/s41467-021-22153-9
-
P.M. Kam,
G. Aznar-Siguan,
J. Schewe,
L. Milano,
J. Ginnetti,
S. Willner,
J.W. McCaughey,
D.N. Bresch.
Global warming and population change both heighten future risk of human
displacement due to river floods.
Environmental Research Letters
16(4), 044026 (2021).
https://doi.org/10.1088/1748-9326/abd26c
-
S. Lange,
J. Volkholz,
T. Geiger,
F. Zhao,
I. Vega,
T. Veldkamp,
C.P.O. Reyer,
L. Warszawski,
V. Huber,
J. Jägermeyr,
J. Schewe,
D.N. Bresch,
M. Büchner,
J. Chang,
P. Ciais,
M. Dury,
K. Emanuel,
C. Folberth,
D. Gerten,
S.N. Gosling,
M. Grillakis,
N. Hanasaki,
A. Henrot,
T. Hickler,
Y. Honda,
A. Ito,
N. Khabarov,
A. Koutroulis,
W. Liu,
C. Müller,
K. Nishina,
S. Ostberg,
H. Müller-Schmied,
S.I. Seneviratne,
T. Stacke,
J. Steinkamp,
W. Thiery,
Y. Wada,
S. Willner,
H. Yang,
M. Yoshikawa,
C. Yue,
K. Frieler.
Projecting Exposure to Extreme Climate Impact Events Across Six Event
Categories and Three Spatial Scales.
Earth's Future
8(12), (2020).
https://doi.org/10.1029/2020ef001616
-
N. Glanemann*,
S.N. Willner*,
A. Levermann.
Paris Climate Agreement passes the cost-benefit test.
Nature Communications
11(1), (2020).
https://doi.org/10.1038/s41467-019-13961-1
-
L. Wenz,
A. Levermann,
S.N. Willner,
C. Otto,
K. Kuhla.
Post-Brexit no-trade-deal scenario: Short-term consumer benefit at the
expense of long-term economic development.
PLOS ONE
15(9), 1-14 (2020).
https://doi.org/10.1371/journal.pone.0237500
- S.N. Willner, C. Otto, A. Levermann. Global economic response to river floods. Nature Climate Change 8(7), 594-598 (2018). https://doi.org/10.1038/s41558-018-0173-2
- S.N. Willner, A. Levermann, F. Zhao, K. Frieler. Adaptation required to preserve future high-end river flood risk at present levels. Science Advances 4(1), eaao1914 (2018). https://doi.org/10.1126/sciadv.aao1914
- R. Gieseke, S.N. Willner, M. Mengel. Pymagicc: A Python wrapper for the simple climate model MAGICC. The Journal of Open Source Software 3(22), 516 (2018). https://doi.org/10.21105/joss.00516
- C. Otto*, S.N. Willner*, L. Wenz, K. Frieler, A. Levermann. Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate. Journal of Economic Dynamics and Control 83, 232-269 (2017). https://doi.org/10.1016/j.jedc.2017.08.001
-
F. Zhao,
T.I.E. Veldkamp,
K. Frieler,
J. Schewe,
S. Ostberg,
S. Willner,
B. Schauberger,
S.N. Gosling,
H. Müller-Schmied,
F.T. Portmann,
G. Leng,
M. Huang,
X. Liu,
Q. Tang,
N. Hanasaki,
H. Biemans,
D. Gerten,
Y. Satoh,
Y. Pokhrel,
T. Stacke,
P. Ciais,
J. Chang,
A. Ducharne,
M. Guimberteau,
Y. Wada,
H. Kim,
D. Yamazaki.
The critical role of the routing scheme in simulating peak river
discharge in global hydrological models.
Environmental Research Letters
12(7), 075003 (2017).
https://doi.org/10.1088/1748-9326/aa7250
-
Asian Development Bank.
A Region at Risk: The Human Dimensions of Climate Change in Asia and
the Pacific. (2017).
https://doi.org/10.22617/TCS178839-2
- S.N. Willner, C. Hartin, R. Gieseke. pyhector: A Python interface for the simple climate model Hector. The Journal of Open Source Software 2(12), 248 (2017). https://doi.org/10.21105/joss.00248
- L. Wenz, S.N. Willner, A. Radebach, R. Bierkandt, J.C. Steckel, A. Levermann. Regional and Sectoral Disaggregation of Multi-Regional Input-Output Tables - a Flexible Algorithm. Economic Systems Research 27(2), 194-212 (2015). https://doi.org/10.1080/09535314.2014.987731
- L. Wenz, S.N. Willner, R. Bierkandt, A. Levermann. Acclimate - a model for economic damage propagation. Part II: a dynamic formulation of the backward effects of disaster-induced production failures in the global supply network. Environment Systems and Decisions 34, 525-539 (2014). https://doi.org/10.1007/s10669-014-9521-6
- R. Bierkandt, L. Wenz, S.N. Willner, A. Levermann. Acclimate - a model for economic damage propagation. Part 1: basic formulation of damage transfer within a global supply network and damage conserving dynamics. Environment Systems and Decisions 34, 507-524 (2014). https://doi.org/10.1007/s10669-014-9523-4
Acclimate model
Acclimate simulates the spreading of production losses induced by local demand, supply, or price shocks in the global supply network. It assumes an agent-based approach with representative firms (or regional sectors) and consumers as economic agents. These are the nodes in a complex network of trade and supply relations which is built-up from empirical input-output data providing the unperturbed baseline state. Its global economy is assumed to be demand-driven. By forming explicit expectations on the future demand of their purchasers and the supply capabilities of their suppliers, in each daily timestep, each economic agent individually decides upon its optimal production level and its distribution of demand among its suppliers by maximizing its future expected profit. In order to capture the spreading of supply failures resulting from local production disruptions (e.g. due to climate extremes) in the global supply network, the model accounts for the most important short-term economic flexibilities: transport and storage inventories buffering supply shocks and idle production capacities that can be activated in times of high demand. The model temporally resolves short-term disequilibrium situations arising in the shock aftermath due to supply and demand mismatches and describes the relaxation of these perturbations back to the baseline equilibrium over a time scale determined by the market.
Being based on local optimization principles, the model accounts for local price effects such as demand surge which are important for an comprehensive assessment of the total costs of disasters. Overall, Acclimate tries to strike a balance between the high flexibility of equilibrium models and the high rigidity of input- output models. Currently the model incorporates around 5,000 agents and is used to determine the direct and indirect losses due to unanticipated extreme weather events.
The current version was developed by Sven Willner and Christian Otto, early versions by Robert Bierkandt, Leonie Wenz and Sven Willner.
A detailed description is given in: