Ozeane in Atemnot

09.02.2009 - Die Versauerung der Ozeane, verursacht durch die Kohlendioxid-Emissionen der Menschheit, verändert den Kohlenstoffhaushalt der Meere und lässt ausgedehnte Sauerstofflöcher in mittleren Wassertiefen entstehen. Der Sauerstoffmangel bedroht Meereslebensräume und ihre Nutzbarkeit durch den Menschen.
Ozeane in Atemnot

„Überraschenderweise wirkt die Versauerung der Ozeane dem Klimawandel entgegen, aber sie hat dramatische ökologische Auswirkungen“, sagt Hans Joachim Schellnhuber, Direktor des Potsdam-Instituts für Klimafolgenforschung (PIK). Gemeinsam mit Matthias Hofmann vom PIK hat Schellnhuber untersucht, wie ein unverminderter Ausstoß von Kohlendioxid (CO2) die Stoffkreisläufe im Meer in diesem Jahrtausend verändern könnte.

In der aktuellen Ausgabe des Magazins „Proceedings of the National Academy of Sciences“ beschreiben die beiden Autoren nun drei Haupteffekte der Versauerung: Das Wachstum kalkbildender Organismen nimmt ab, was der Zunahme der CO2-Konzentration in der Atmosphäre – und damit dem Klimawandel – als negative Rückkopplung entgegenwirkt. Das heißt der dämpfende Effekt wird umso stärker, je höher die CO2-Konzentration steigt. Der zweite Haupteffekt ist eine positive Rückkopplung, die den Konzentrationsanstieg verstärkt: Da weniger Kalk gebildet wird, sinkt mangels Ballast weniger Kohlenstoff zum Meeresgrund. Dieser Effekt ist jedoch schwächer als die negative Rückkopplung. Der dritte und deutlichste Effekt ist die Aufzehrung des Sauerstoffs in mittleren Wassertiefen, da dort mehr organisches Material biologisch zersetzt wird.

„Wir haben erstmals die komplexen Auswirkungen der Versauerung auf die Ozeane mit einem komplexen biogeochemischen Modell berechnet“, sagt der Autor Matthias Hofmann. Die Forscher gingen vom so genannten Business-as-usual-Szenario A1FI des Weltklimarates IPCC aus. Danach steigen die CO2-Emissionen bis zum Jahr 2100 stark an. Für die Modellierung verlängerten sie das Szenario: Die Emissionen sinken bis zum Jahr 2200 auf Null und bleiben konstant Null bis zum Ende des Jahrtausends. Insgesamt werden danach rund 15 Milliarden Tonnen CO2 in die Atmosphäre entlassen. Die Konzentration des Treibhausgases in der Luft stiege bis zum Jahr 2200 von heute rund 380 ppm (parts per million, entspricht Kubikzentimeter pro Kubikmeter) auf 1750 ppm und würde anschließend bis zum Ende des Jahrtausends wieder auf 1400 ppm sinken.

Das Meerwasser nimmt unter diesen Annahmen mehr CO2 auf, zeigen die Berechnungen. Mit Wassermolekülen bildet CO2 Kohlensäure und das Milieu des Wassers wird dadurch saurer bzw. weniger basisch. Der global durchschnittliche pH-Wert der Ozeane von heute 8,15 würde nach diesem Szenario bis zum Jahr 2200 auf 7,45 sinken und bis zum Jahr 3000 wieder auf 7,6 steigen. Der pH-Wert bliebe im basischen Bereich, er würde aber zu saurem Milieu hin verschoben. Dadurch nimmt die Verfügbarkeit von Baumaterial für die Kalkskelette von Organismen wie Korallen und einzelligen Kammerlingen oder Kalkflagellaten ab. Und da beim Skelettaufbau dieser Organismen CO2 abgespalten und freigesetzt wird, entweicht insgesamt weniger davon in die Atmosphäre, wenn insgesamt weniger Kalkskelette gebildet werden. Die verminderte Kalkbildung führt dazu, dass die Ozeane der Atmosphäre effektiv mehr CO2 entziehen.

Die Kalkskelette abgestorbener Organismen sorgen jedoch als Ballast auch dafür, dass der in den Zellen enthaltene organische Kohlenstoff zum Meeresgrund sinkt. Weniger Kalkbildung bedeutet daher auch weniger Kohlenstofftransport in die Tiefe, die Leistung dieser so genannten Kohlenstoffpumpe nimmt ab. Daher bleibt mehr organisches Material im oberen Wasserkörper und wird dort unter Sauerstoffverbrauch biologisch zersetzt. In mittleren Tiefen von 200 bis 800 Metern und auch in der Tiefsee kann der Sauerstoff dadurch fast vollständig aufgezehrt werden. Für viele Organismen wie etwa Fische bedeutet Sauerstoffmangel Stress und könnte ihre Sterblichkeit erhöhen. Hofmann und Schellnhuber folgern aus ihren Modellierungsversuchen, dass sich solche Sauerstofflöcher erheblich ausdehnen werden, wenn die Versauerung fortschreitet. Die Bedingungen für viele Lebensgemeinschaften in den Ozeanen würden sich dadurch deutlich verschlechtern.

Artikel: M. Hofmann, H.J. Schellnhuber: Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes. Proceedings of the National Academy of Sciences


Weiterführende Links:

Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen: Versauerung der Meere


Für weitere Informationen wenden Sie sich bitte an die PIK-Pressestelle:

Tel.: 0331/288 2507
E-Mail: presse@pik-potsdam.de

Das Potsdam-Institut für Klimafolgenforschung gehört der Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (WGL) an. Zur Leibniz-Gemeinschaft gehören zurzeit 82 Forschungsinstitute und Serviceeinrichtungen für die Forschung sowie sechs assoziierte Mitglieder. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Leibniz-Institute arbeiten strategisch und themenorientiert an Fragestellungen von gesamtgesellschaftlicher Bedeutung. Bund und Länder fördern die Institute der Leibniz-Gemeinschaft daher gemeinsam. Die Leibniz-Institute beschäftigen etwa 14.200 Mitarbeiterinnen und Mitarbeiter, davon sind ca. 6500 Wissenschaftler, davon wiederum etwa 2500 Nachwuchswissenschaftler.

Näheres unter http://www.leibniz-gemeinschaft.de