Trends
ANOMALY Maps¶
Maps
FIGURE: Anomaly maps of the annual 99th percentile of daily precipitation in Jordan between the first and second half of the time period given in mm/d. Three different gridded data products are used (UERRA, ERA5, CHIRPS).
Code¶
Importing¶
import matplotlib
matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab!
import matplotlib.pyplot as plt
import matplotlib.pyplot as P
from mpl_toolkits.basemap import Basemap,shiftgrid,maskoceans
from matplotlib.path import Path
from matplotlib.patches import PathPatch
import shapefile
import numpy as N
from netCDF4 import Dataset, num2date,date2num
import datetime
from scipy import signal,stats
import matplotlib.colors as colors
from matplotlib.offsetbox import AnchoredText
import matplotlib as mpl
from scipy import stats as S
plt.style.use('seaborn-talk')
params = { 'legend.fontsize': 8,\
'font.family': 'serif',\
}
plt.rcParams.update(params)
Reading¶
city = {
'Amman':[35.930359,31.963158],
'Aqaba':[35.00778,29.52667],
'WadiMusa':[35.480125,30.321635],
}
datas = ['UERRA','ERA5','CHIRPS']
#modes = ['THRESHOLD','RECORD']
for data in datas:
if(data=='UERRA'): file = '../../data/ClimateExplorer/tp_daily_uerra_19810101-20181231.cdf'
if(data=='CHIRPS'): file = '../../data/ClimateExplorer/v2p0chirps_25_34-40E_29-34N.cdf'
if(data=='ERA5'): file = '../../data/ClimateExplorer/era5_tp_daily_af_34-40E_29-34N_su.cdf'
nc = Dataset(file,'r')
lon = N.array(nc.variables['longitude'][:])
lat = N.array(nc.variables['latitude'][:])
dat = N.array(nc.variables['tp'][:])
tim = nc.variables['time']
print (dat.shape,N.max(dat),N.min(dat))
dat[dat>1000] = N.nan
tim = num2date(tim[:],units=tim.units,calendar=tim.calendar)
jj = []
mm = []
dd = []
for it in tim:
jj.append(it.year)
mm.append(it.month)
dd.append(it.day)
jj = N.array(jj)
mm = N.array(mm)
dd = N.array(dd)
#id = N.where((jj>=1981)&(jj<=2018))[0]
#jj = jj[id]
nc.close()
#dat = dat[id,:,:]
nd = dat.shape[0]
ny = dat.shape[1]
nx = dat.shape[2]
jo = N.arange(jj.min(),jj.max(),1)
nj = len(jo)
#xnew = N.linspace(jj.min(),jj.max(),40)
tmp = N.zeros((nj,ny,nx),float)
#tmp[:,:,:] = N.nan
for y in range(ny):
print (y)
for x in range(nx):
for j in range(nj):
id = N.where(jj==jo[j])[0]
tmp[j,y,x] = N.percentile(dat[id,y,x],99)
#id = N.where((jj>=1981)&(jj<=2010))[0]
#rx = N.percentile(dat[id,y,x],95)
#xx = []
#for d in range(nd):
# if((dat[d,y,x]>rx)&(dat[d,y,x]<1000.)):
# xx.append(jj[d])
#xx = N.array(xx)
#if(len(xx)>0):
# density = S.kde.gaussian_kde(xx)
# tmp[:,y,x] = density(xnew)
Z2 = N.nanmean(tmp[20:,:,:],0)-N.nanmean(tmp[:20,:,:],0)
#id = N.where((jj>=1981)&(jj<=2010))[0]
#Z2 = N.percentile(dat[id,:,:],98,axis=0)
#print (N.nanmax(Z2))
fig = P.figure(figsize=(8,4))
ax = P.subplot(111)
m = Basemap(projection='cyl',llcrnrlat=29,urcrnrlat=33.5,llcrnrlon=34.5,urcrnrlon=39.5,resolution='h')
#m.drawcountries()
#m.drawcoastlines()
xx,yy = m(lon,lat)
lev = N.linspace(-30,30,9)
cl = m.contourf(xx,yy,10.*Z2,levels=lev,cmap=P.get_cmap('PuOr_r'),extend='both',zorder=4)
cs = m.contour(xx,yy,10.*Z2,levels=lev,colors='k',linestyles='solid',zorder=5,linewidths=0.5)
#P.clabel(cs,cs.levels,inline=True,fmt='%2.1f', fontsize=8)
jmin = N.min(jj)
jmax = N.max(jj)
at = AnchoredText('%s %i-%i: %s'%(data,jmin,jmax,'ANOMALY 99th'),prop=dict(size=8,weight='bold'),frameon=True,loc='upper left')
at.patch.set_boxstyle("round,pad=0.,rounding_size=0.1")
ax.add_artist(at)
#at = AnchoredText('99th = %.1f mm/d'%(rx),prop=dict(size=6,weight='bold'),frameon=True,loc='lower left')
#at.patch.set_boxstyle("round,pad=0.,rounding_size=0.1")
#ax.add_artist(at)
for c in city:
x,y = m(city[c][0],city[c][1])
m.scatter(x,y,s=30,c='r',ec='k',lw=0.5,zorder=9)
plt.text(x,y,c,fontsize=8,weight='bold',zorder=10)
#m.readshapefile('../../data/shp/geo/gw-basins_wgs84','comarques',zorder=6,color='gray')#,drawbounds = False)
sf = shapefile.Reader("../../data/shp/JOR_adm0")
for shape_rec in sf.shapeRecords():
if shape_rec.record[1] == 'JOR':
vertices = []
codes = []
pts = shape_rec.shape.points
prt = list(shape_rec.shape.parts) + [len(pts)]
for i in range(len(prt) - 1):
for j in range(prt[i], prt[i+1]):
vertices.append(m(pts[j][0], pts[j][1]))
codes += [Path.MOVETO]
codes += [Path.LINETO] * (prt[i+1] - prt[i] -2)
codes += [Path.CLOSEPOLY]
clip = Path(vertices, codes)
clip = PathPatch(clip, transform=ax.transData,fill=False,lw=0.5)
for contour in cs.collections:
contour.set_clip_path(clip)
ax.add_patch(clip)
for contour in cl.collections:
contour.set_clip_path(clip)
ax.add_patch(clip)
#ax.axis('off')
#ax1 = fig.add_axes([0.64, 0.15, 0.02, 0.35])
#cb = mpl.colorbar.ColorbarBase(ax1,cmap=plt.get_cmap('terrain'),spacing='uniform',orientation='vertical',boundaries=lev,extend='both')
#cb.set_label('Prob.',labelpad=-30,y=1.2,rotation=0,fontsize=10,weight='bold')
#cb.ax.tick_params(labelsize=10)
#cb.solids.set_rasterized(True)
#cb.solids.set_edgecolor("k")
plt.savefig('./img/%s_TRENDS.png'%(data),dpi=240,transparent=False,bbox_inches='tight',pad_inches=0.0)