Composite
Circulation |
Rainfall |
|
|
Code
Importing
import sys
import os
import matplotlib
matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab!
import matplotlib.pyplot as P
from mpl_toolkits.basemap import Basemap,shiftgrid
from netCDF4 import Dataset
import numpy as N
from netCDF4 import Dataset, num2date,date2num
from datetime import datetime
from matplotlib.offsetbox import AnchoredText
from skimage.metrics import structural_similarity as ssim
from matplotlib.colors import LightSource
from matplotlib import cm
import shapefile
from matplotlib.path import Path
from matplotlib.patches import PathPatch
Setting
P.style.use('seaborn-talk')
params = { 'legend.fontsize': 8,\
'font.family': 'serif',\
}
P.rcParams.update(params)
Reading
file = '../../data/ncep/z500_day_ncep_19810101-20211231_eu_rm3.cdf'
nc = Dataset(file,'r')
lon = N.array(nc.variables['lon'][:]);nx = len(lon)
lat = N.array(nc.variables['lat'][:]);ny = len(lat)
dat = N.array(nc.variables['phi'][:])
tim = nc.variables['T']
tim = num2date(tim[:], units=tim.units,calendar=tim.calendar)
dates = []
for it in tim:
dates.append('%04i-%02i-%02i'%(it.year,it.month,it.day))
dates = N.array(dates)
nc.close()
x0 = N.min(lon)
x1 = N.max(lon)
y0 = N.min(lat)
y1 = N.max(lat)
print (dat.shape)
Processing
liste = [
'2004-11-22',
'2002-12-20',
'2013-01-08',
'2019-02-28',
'2012-03-01',
'2006-04-02',
'2010-01-18',
'2019-12-26',
'2018-01-05',
'2014-11-26',
'2009-02-21',
'2002-01-09',
'2013-12-11',
'2016-12-14',
'2000-01-27',
'2005-12-24',
'2018-12-27',
'2013-01-09',
'2004-11-26',
'2016-01-01'
]
nl = len(liste)
tmp = N.zeros((nl,ny,nx),float)
i = -1
for l in liste:
i = i+1
id = N.where(l==dates)[0]
id = id[0]
dum = (dat[id,0,:,:]-N.min(dat[id,0,:,:]))/N.ptp(dat[id,0,:,:])
tmp[i,:,:] = dum
avg = N.mean(tmp,0)
std = N.std(tmp,0)
Mapping
P.figure(figsize=(8,5))
ax = P.subplot(111)
m = Basemap(projection='merc',llcrnrlat=y0,urcrnrlat=y1,llcrnrlon=x0,urcrnrlon=x1,lat_ts=50,resolution='h')
m.shadedrelief()
m.drawcoastlines(color='k',linewidth=0.5)
xx,yy = m(*N.meshgrid(lon,lat))
#ls = LightSource(270,0)# 45)
#rgb = ls.shade(avg, cmap=cm.terrain, vert_exag=0.1, blend_mode='overlay',vmin=0.2,vmax=1.1)
#m.imshow(rgb,interpolation='nearest')
m.contour(xx,yy,avg,levels=N.linspace(0.2,0.9,15),colors='k',linewidths=2.5,zorder=7)
m.contour(xx,yy,avg,levels=N.linspace(0.2,0.9,15),cmap=P.get_cmap('terrain'),linewidths=1.0,zorder=8)
at = AnchoredText('Z500 Composite: Amman (TOP%i)'%nl,prop=dict(size=10),frameon=True,loc='lower left')
at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2")
at.zorder = 20
ax.add_artist(at)
x = 35.930359
y = 31.963158
x,y = m(x,y)
P.scatter(x,y,s=30,fc='r',ec='k',lw=1.0,zorder=20)
P.text(x,y, 'Amman',color='k',ha='center',va='top',weight='bold',fontsize=8,wrap=True,bbox=dict(facecolor='lightgray', edgecolor='k', boxstyle='round'),zorder=19)
P.tight_layout()
P.savefig('./img/composite.png',dpi=240,transparent=False,bbox_inches='tight',pad_inches=0.0)
Rainfall
city = {
'Amman':[35.930359,31.963158],
'Aqaba':[35.00778,29.52667],
'WadiMusa':[35.480125,30.321635],
}
file = '../../data/ClimateExplorer/pr_W5E5v2.0_19810101-20191231.cdf'
nc = Dataset(file,'r')
lon = N.array(nc.variables['lon'][:]);nx = len(lon)
lat = N.array(nc.variables['lat'][:]);ny = len(lat)
dat = N.array(nc.variables['tp'][:])
tim = nc.variables['time']
print (dat.shape)
dat[dat>1000] = N.nan
tim = num2date(tim[:],units=tim.units,calendar=tim.calendar)
dd = []
for it in tim:
dd.append('%04i-%02i-%02i'%(it.year,it.month,it.day))
dd = N.array(dd)
nc.close()
print (dd)
tmp = N.zeros((nl,ny,nx),float)
i = -1
for l in liste:
i = i+1
id = N.where(l==dd)[0]
id = id[0]
dum = dat[id,:,:]
tmp[i,:,:] = dum
avg = N.nanmean(tmp,0)
print (avg)
fig = P.figure(figsize=(8,4))
ax = P.subplot(111)
m = Basemap(projection='cyl',llcrnrlat=29,urcrnrlat=33.5,llcrnrlon=34.5,urcrnrlon=39.5,resolution='h')
xx,yy = m(*N.meshgrid(lon,lat))
lev = [5,10,15,20,25,30,35,40]
cl = m.contourf(xx,yy,avg,levels=lev,cmap=P.get_cmap('cool'),extend='max',zorder=4)
cs = m.contour(xx,yy,avg,levels=lev,colors='k',linestyles='solid',zorder=5,linewidths=0.5)
cb = fig.colorbar(cl,location='right',shrink=0.5,pad=-0.15,anchor=(0.1, 0.1))
cb.set_label('mm/d',labelpad=-20,y=1.2,rotation=0,fontsize=10,weight='bold')
at = AnchoredText('W5E5: TOP%i'%nl,prop=dict(size=8,weight='bold'),frameon=True,loc='upper left')
at.patch.set_boxstyle("round,pad=0.,rounding_size=0.1")
ax.add_artist(at)
for c in city:
x,y = m(city[c][0],city[c][1])
m.scatter(x,y,s=30,c='r',ec='k',lw=0.5,zorder=9)
P.text(x,y,c,fontsize=8,weight='bold',zorder=10)
sf = shapefile.Reader("../../data/shp/JOR_adm0")
for shape_rec in sf.shapeRecords():
if shape_rec.record[1] == 'JOR':
vertices = []
codes = []
pts = shape_rec.shape.points
prt = list(shape_rec.shape.parts) + [len(pts)]
for i in range(len(prt) - 1):
for j in range(prt[i], prt[i+1]):
vertices.append(m(pts[j][0], pts[j][1]))
codes += [Path.MOVETO]
codes += [Path.LINETO] * (prt[i+1] - prt[i] -2)
codes += [Path.CLOSEPOLY]
clip = Path(vertices, codes)
clip = PathPatch(clip, transform=ax.transData,fill=False,lw=0.5)
for contour in cl.collections:
contour.set_clip_path(clip)
ax.add_patch(clip)
for contour in cs.collections:
contour.set_clip_path(clip)
ax.add_patch(clip)
ax.axis('off')
P.savefig('./img/composite0.png',dpi=240,transparent=True,bbox_inches='tight',pad_inches=0.0)
3D
avg = avg[::-1,:]
lat = lat[::-1]
print (N.min(avg),N.max(avg))
xx,yy = N.meshgrid(lon,lat)
from matplotlib.colors import LightSource
from matplotlib import cm
fig, ax = P.subplots(figsize=(8,5))#subplot_kw=dict(projection='3d'))
ls = LightSource(270,0)# 45)
rgb = ls.shade(avg, cmap=cm.terrain, vert_exag=0.1, blend_mode='overlay',vmin=0.2,vmax=1.1)
#rgb = ls.hillshade(avg, vert_exag=0.1, dx=1, dy=1)
ax.imshow(rgb)
ax.set_xticks(N.arange(nx)[::10])
ax.set_xticklabels(N.array(lon,str)[::10])
ax.set_yticks(N.arange(ny)[::5])
ax.set_yticklabels(N.array(lat,str)[::5])
#ax.grid(lw=0.5,ls=':',color='k')
#ls = LightSource(270, 45)
#rgb = ls.shade(avg,cmap=cm.terrain, vert_exag=0.1, blend_mode='soft')
#ax.plot_surface(xx,yy,avg, rstride=1, cstride=1, facecolors=rgb,linewidth=1, antialiased=True, shade=False)
x = 35.930359
y = 31.963158
distance = (xx-x)**2 + (yy-y)**2
iy,ix = N.where(distance==distance.min())
ax.scatter(ix,iy,ec='k',fc='r',s=50,zorder=10)
x = 13.404954
y = 52.520008
distance = (xx-x)**2 + (yy-y)**2
iy,ix = N.where(distance==distance.min())
ax.scatter(ix,iy,ec='k',fc='r',s=50,zorder=10)
fig.savefig('./img/3D.png',dpi=480,transparent=True)