climate.eventseries_climatenetwork¶
Provides class for the analysis of dynamical systems and time series based on event synchronization and event coincidence analysis
- class pyunicorn.climate.eventseries_climatenetwork.EventSeriesClimateNetwork(data, method='ES', p_value=None, **kwargs)[source]¶
Bases:
EventSeries
,ClimateNetwork
Class EventSeriesClimateNetwork for generating and quantitatively analyzing event synchronisation and event coincidence analysis networks
References: [Boers2014].
- static SmallTestData()[source]¶
Return test data set of 6 time series with 10 sampling points each.
Example:
>>> r(Data.SmallTestData().observable()) array([[ 0. , 1. , 0. , -1. , -0. , 1. ], [ 0.309 , 0.9511, -0.309 , -0.9511, 0.309 , 0.9511], [ 0.5878, 0.809 , -0.5878, -0.809 , 0.5878, 0.809 ], [ 0.809 , 0.5878, -0.809 , -0.5878, 0.809 , 0.5878], [ 0.9511, 0.309 , -0.9511, -0.309 , 0.9511, 0.309 ], [ 1. , 0. , -1. , -0. , 1. , 0. ], [ 0.9511, -0.309 , -0.9511, 0.309 , 0.9511, -0.309 ], [ 0.809 , -0.5878, -0.809 , 0.5878, 0.809 , -0.5878], [ 0.5878, -0.809 , -0.5878, 0.809 , 0.5878, -0.809 ], [ 0.309 , -0.9511, -0.309 , 0.9511, 0.309 , -0.9511]])
- Return type:
ClimateData instance
- Returns:
a ClimateData instance for testing purposes.
- __init__(data, method='ES', p_value=None, **kwargs)[source]¶
Initialize an instance of EventSeriesClimateNetwork.
For other applications of event series networks please use the EventSeries class together with the Network class.
- Parameters:
data (
climate.ClimateData
) – The climate data used for network construction.method (
str {'ES', 'ECA', 'ES_pval', 'ECA_pval'}
) – determines if ES, ECA, or the p-values of one of the methods should be used for network reconstruction.p_value (
float in [0,1]
) – determines the p-value threshold for network reconstruction. ES/ECA scores of event time series pairs with p-value higher than threshold are set to zero leading to missing link in climate network. Default: None. No p-value thresholding.**kwargs – optional keyword arguments to specify parent classes’ behavior, see below for all options.
- Keyword Arguments:
taumax (
float
) – maximum time difference between two events to be considered synchronous. Caution: For ES, the default is np.inf because of the intrinsic dynamic coincidence interval in ES. For ECA, taumax is a parameter of the method that needs to be defined.lag (
float
) – extra time lag between the event series.symmetrization (
str {'directed', 'symmetric', 'antisym', 'mean', 'max', 'min'}
for ES, str {‘directed’, ‘mean’, ‘max’, ‘min’}`` for ECA ) – determines if and if true, which symmetrization should be used for the ES/ECA score matrix.window_type (
str {'retarded', 'advanced', 'symmetric'}
) – Only for ECA. Determines if precursor coincidence rate (‘advanced’), trigger coincidence rate (‘retarded’) or a general coincidence rate with the symmetric interval [-taumax, taumax] are computed (‘symmetric’). Default: ‘symmetric’.threshold_method (
str 'quantile' or 'value' or 1D numpy array of 'quantile' or 'value'
) – specifies the method for generating a binary event matrix from an array of continuous time series. Default: None.threshold_values (
1D Numpy array or float
) – quantile or real number determining threshold for each variable. Default: None.threshold_types (
str 'above' or 'below' or 1D list of strings of 'above' or 'below'
) – determines for each variable if event is below or above threshold.non_local (
bool
) – determines whether links between spatially close nodes should be suppressed.node_weight_type (
str
) – The type of geographical node weight to be used.arg silence_level (
int
) – The inverse level of verbosity of the object.
- __str__()[source]¶
Return a string representation of EventSeriesClimateNetwork.
Example:
>>> data = EventSeriesClimateNetwork.SmallTestData() >>> print(EventSeriesClimateNetwork(data, taumax=16.0, >>> threshold_method='quantile', threshold_value=0.8, >>> threshold_types='above')) Extracting network adjacency matrix by thresholding... Setting area weights according to type surface ... Setting area weights according to type surface ... EventSeriesClimateNetwork: EventSeries: 6 variables, 10 timesteps, __taumax: 16.0, lag: 0.0 ClimateNetwork: GeoNetwork: Network: directed, 6 nodes, 0 links, link density 0.000. Geographical boundaries: time lat lon min 0.0 0.00 2.50 max 9.0 25.00 15.00 Threshold: 0 Local connections filtered out: False Type of event series measure to construct the network: directedES