Werner  von Bloh
Long-term predictability of mean daily temperature data  


Werner von Bloh

Projects involved

Teaching

Publications

Curriculum Vitae

Parallel programming

My intranet pages

Animations

External links

 


Werner von Bloha, M. Carmen Romanob and Marco Thielb

Nonlinear Processes in Geophysics 12, 471-479 (2005)

aPotsdam Institute for Climate Impact Research (PIK), Telegrafenberg, P.O. Box 60 12 03, 14412 Potsdam, Germany.

bUniversity of Potsdam, Nonlinear Dynamics, Am Neuen Palais 10, 14469 Potsdam, Germany.

Abstract

We quantify the long-term predictability of global mean daily temperature data by means of the Rényi entropy of second order K2. We are interested in the yearly amplitude fluctuations of the temperature. Hence, the data are low-pass filtered. The obtained oscillatory signal has a more or less constant frequency, depending on the geographical coordinates, but its amplitude fluctuates irregularly. Our estimate of K2 quantifies the complexity of these amplitude fluctuations. We compare the results obtained for the CRU data set (interpolated measured temperature in the years 1901-2003 with 0.5° resolution, Mitchell et al., 2005) with the ones obtained for the temperature data from a coupled ocean-atmosphere global circulation model (AOGCM, calculated at DKRZ). Furthermore, we compare the results obtained by means of K2 with the linear variance of the temperature data.

 


   
       
 
  Impressum  © PIK 2006