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Abstract: This Paper investigates the combination of numerical and visual exploration techniques focused on
cluster analysis of multi-dimensional data. We describe our new devel oped visualization approaches and selected
clustering techniques along with major concepts of the integration and parameterization of these methods. The
resulting frameworks and its major features will be discussed.

1 Introduction

The analysis of complex heterogenous data requires sophisticated exploration methods. Especially com-
plex data mining processes which apply many different analysis techniques can benefit from visual data
processing and new visualization paradigms. Additionally, visualization provides a natural method of
integrating multiple data sets and has been proven to be reliable and effective across a number of appli-
cation domains. Still visual methods can not replace analytic non visual mining algorithms. Rather it is
useful to combine multiple methods during data exploration processes (Westphal, Blaxton (1998)).

The new area of visual data mining focuses on this combination of visual and non-visual techniques
as well as on integrating the user in the exploration process. Ankerst (2001) classifies current visual
data mining approaches into three categories. Methods of the first group apply visualization techniques
independent of datamining algorithms. The second group uses visualization in order to represent patterns
and results from mining algorithms graphically. The third category tightly integrates both mining and
visualization algorithmsin such away that intermediate steps of the mining algorithms can be visualized.
Furthermore, this tight integration allows users to control and steer the mining process directly based on
the given visual feedback.

Thefocus of our research isto support each of these groups. In this context the goal isto create computer-
supported interactive visual representations of abstract raw datato amplify cognition (Card et a. (1999))
and to solve a variety of exploration tasks. In order to achieve this and to support the selection and
parameterization of suitable exploration techniques, new concepts for obtaining and handling meta-data
have to be introduced. These concepts have to be general and flexible in order to be appliable for all 3
groups of visua data mining approaches (cf. classification of visual data mining above). Furthermore it
is necessary to reduce the active size of large data volumes to processible levels without losing relevant
information.

Summarizing the discussion above, the combination of non-visual and visual exploration techniques
along with applying meta-data concepts to control the exploration process, seems to be an promising
approach to support complex exploration scenarios.

The research in our paper is focused on the integration of different clustering technigues with our new
developed visualization paradigms and meta-data concepts. We suggest a flexible framework which is
scal able with respect to the characteristics of the data, the exploration tasks and user profiles.

We describe selected clustering techniques and introduce our new visualization methods in (section 2).
Our framework which integrates the techniques and concepts mentioned above is discussed in (section
3). Section 3.1 covers the configuration and parameterization of the techniques in our scalable framework
based on influencing factors such as characteristics of the data and exploration tasks. Basic concepts to
specify and obtain meta-data are introduced in (section 3.2). Finally we discuss our future work regarding
the selection and parametrization of suitable techniques in section (4).
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2 Cluster and visualization techniques
2.1 Techniquesfor clustering data

Based on the literature referring to the classification of data (BOCK (1974), Backhaus et a. (1996)),
we identified 3 sub-processes for the application of clustering techniques in the field of visualization:
standardization(1), determining similarities, distances, heterogenities or homogenities(2) and grouping
of the data (3).

Standardization

Using proper standardization algorithms is crucial for the applicability of certain similarity measures and
for achieving valuable clustering results.

Standard methods for variables of metric scale type are used for data standardization. Basically we
apply data normalization (interval 0-1 normalization, mean value O - variance 1 - scaling), elimination of
outliers (based on proximity matrix we eliminate those data records which are very dissimilar compared
to the mgjority of the data records), treatment of identical data records and weighting or elimination of
variables.

Similarity and distance measures

We provide several different similarity measures in order to adapt the clustering process according to
analysis tasks and data characteristics. Basically standard measures are applied. These are the m-
coefficient for binary variables, the generalized m-coefficient for nominal data and L-distances, the
Mahalanobis distance and the correlation coefficient for metric data.

Furthermore hybrid measures have been integrated in order to handle data records with mixed scale
types. Therefore similarities are calculated separately for those variables that have the same scale type.
Then the single similarity values are composed for obtaining the similarity between two data records.

Cluster analysistechniques

Two methods for automatic clustering are utilized within our framework: hierarchical agglomerative
clustering with dynamic derivation of hierarchy trees and Self-organizing maps.
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Moreover we introduce cylinder icons for visualizing cluster properties, i.e. a small opague cylinder is
used for displaying the concrete value for each single variable of the map vectors. The height of the outer
transparent cylinder corresponds to the maximum data value of the related dimension. Color is used to
distinguish between the different dimensions. The different cylinders are composed into a single icon
that is mapped on top of selected cluster peaks within the graphical representation.

Thus SOMs are suitable for providing an overview of the entire data space by revealing clusters and
cluster properties.

Dynamic Hierar chies The dynamic hierarchy computation is one possible method to achieve predictable
representations of given data. If an abstraction is used to organize unstructured data, it is important to
remember that users may have different requirements when merging objects into groups. Thus we do
not compute a fixed number of static groups. Instead, a nested sequence of groups is determined and
organized into a hierarchy, whereby the requirements according to the homogeneity of those groups
increase asthe hierarchy is descended. In order to support the analysis of data at arbitrary levels of detail
the computation of the hierarchy can be controlled interactively. An overview is provided by calculating
hierarchies with only afew levels. These hierarchies can be refined for further investigations in order to
reveal more subtle patterns and to identify smaller subclusters in the data. The hierarchy computation is
carried out by adapted agglomerative hierarchical clustering algorithms, whereby objects are merged into
groups according to their similarities in the information space. We provide severa different similarity
measures in order to adapt the clustering process according to exploration tasks and data characteristics.
Furthermore it is our objective to generate dynamic hierarchies under different aspects from the same
data set. Therefore, we need a basis which can be used effectively for the dynamic refinement of the
hierarchy. Thisbasisis provided by abinary dendrogram (cf. Figure 2).
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based on the binary dendrogram fied interactively. In a second pass the hierarchy
is derived from the binary dendrogram according
to these parameters (algorithm at Kreuseler et al.(2000)).

2.2 Visualization techniques
Magic-Eye-View

Visualizing the computed cluster hierarchies becomes complicated as the number of levels and nodes
increases. Standard 2-D hierarchy browsers can typically display about 100 nodes (cf. Lamping et
al.(1995)). Exceeding this number makes perceiving details difficult. Zooming and panning do not
provide a satisfying solution to this drawback due to loss of context information.

In order to solve this drawback and to support navigation of large-scale information spaces, distortion
oriented techniques have been developed and used, particularly in graphical applications (cf. Leung,
Apperley (1994)). Typical examples of these are Focus+Context techniques such as Graphical Fisheye
Views (cf. Sarkar, Brown (1994)) or the Hyperbolic Browser (cf. Lamping et al.(1995)). These tech-
niques exploit distortion to allow the user to examine a local area in detail on a section of the screen,
and at the same time, to present a global view of the space to provide an overall context to facilitate
navigation (Leung, Apperley (1994)).

In order to integrate classical zooming and panning functionality and the capacity of Focus+Context
approaches, we implemented the new Focus+Context technique Magic-Eye-View. Our approach maps a
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hierarchy graph onto the surface of a hemisphere. Wethen apply aprojection in order to change the focus
area interactively by moving the center of projection. The objective of moving the center of projection
isto enlarge those parts of the graph which are in or near the focus region in order to show information
details while the rest of the graph remains visible with reduced size. Rendering and navigating the
projected hierarchy graph is possible in either 2D or 3D. The 2D display is realized by applying an
additional projection which maps the hemisphere to a circular plane. Further details about the graph
layout algorithm and the basics of the projection can be found in (Kreuseler et al. (2000)).
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Figure 3: Complex hierarchy graph without and with focused area (see rectangle) along with visualiza-
tion of cluster properties.

Figure 3 demonstrates change of focus. The left picture shows a complex hierarchy graph mapped onto
a hemisphere. The center of projection has been moved in the right picture in order to set the focus to
the marked sub-graph.

Since most Focus+Context displays introduce distortion (cf. above), we have to provided mechanisms to
reduce confusion and to avoid extra work for the users to interpret the visualization. In order to achieve
this, colored rings are introduced. These rings minimize the amount of confusion and help to maintain
users orientation after change of focus. Furthermore it remains recognizable at which level a certain
hierarchy node resides (cf. Figure 3).

Properties of the cluster hierarchy can be visualized in conjunction with the Magic-Eye-View as well.
First we use different colors to distinguish between cluster nodes and object nodes within the hierarchy
tree. Furthermore the size of a cluster, i.e. the number of objects is mapped to the cluster node's size
and color intensity. Additional cluster properties liket — values and F — val ues’ can be displayed using
the cylinder icons introduced in section 2.1. Figure 3 shows the t-values of selected clusters mapped
onto the nodes of the hierarchy tree. Summarizing the discussion above the Magic-Eye-View provides
an overview of the overall hierarchy structure in conjunction with the display of basic cluster properties.

The Magic-Eye-View has been presented at the IEEE Information Visualization Symposium 2000. Com-
ments after presentations (cf. Kreuseler et a. (2000)) as well as user feedback have shown that this
technique is intuitive. Users found that especially the colored rings help to reduce confusion and to
maintain users's orientation after change of focus. Furthermore the Magic-Eye-View has been compared
to the Hyperbolic Browser (cf. Lamping et a.(1995)). One of the results of this comparison has shown
that the combination of classical 3D navigation such as zooming, rotating with interactively focussing

1The t — value denotes the strength of a variable (feature) within the cluster whereby at — value > 0 means a strong
representation of the belonging variable.

2The F — val ue denotes the variation of a single variable within a cluster compared to the variation of the variable in the
overall data set.

3The technique has been applied in a project cooperation for visualizing ontologies in aWWW application named GETESS
(GErman Text Exploration and Search System).



arbitrary areas of the graph provides additional degrees of freedom for navigating hierarchies. How-
ever the Magic-Eye-View offers room for future work. Currently we are working on improvements in
terms of increasing the number of displayable nodes and supporting change of focus depending on the
underlaying data.

Visual Clustering based on an enhanced spring model (Visualization of Multi-dimensional Cluster
Properties)

Computing hierarchies or using SOMs is a valid method for structuring data and identifying groups of
similar data objects. However, for further analysis of those subsets e.g. revealing attribute values of the
data or determining object similarities within a cluster or at certain hierarchy levels we developed Shape-
Vis* for visualizing multi-dimensional data objects. Basically ShapeVis performs visual clustering by ar-
ranging similar objects close together in 3D visualization space.

ShapeVis exploits an enhanced spring model (cf.
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objects are described uniquely by location, size

and shape of their visual representations. More
detailed information about the shape creation can by found in Theisel, Kreuseler (1998). Figure 4 illus-
trates this principle. Our approach is applied to a data set which measures 6 demographic parameters
of 106 countries. The global clustering of the data can be obtained within the sphere. The objects in
the upper right, which have big values in the dimensions Baby mortality and Birthrate move towards the
corresponding dimension points D;. Furthermore we can verify the assumption that these objects have
big values in the dimensions Baby mortality and Birthrate by applying the deformation to the geometric
objects. The deformations (cylinders) which point towards the Baby mortality and Birthrate dimension
points are much longer than the deformation which point towards the remaining O (cf. Figure 4 mag-
nification of the upper cluster). In contrast to that the cluster lower left is characterized by countries
with much bigger values with respect to the dimensions Literacy and Gross Domestic Product while the
values of Baby mortality and Birthrate are rather small.

Use of SOM-based clustering for data record arrangement in a visualization technique

We propose an other visualization tool for displaying multivariate data sets which we named the Data-
Table-View. This method is very similar to the Table Lens introduced by (Rao, Card (1994)). The Table
Lens integrates a common table with graphical representations for depicting patterns and outliers in

4We use an adapted version of our technique introduced in Theisel, Kreuseler (1998) in our work.



multi-dimensional data sets. Therefore the Table Lens offers several graphical mapping schemes along
with afocus+context technique for exploring large tables effectively (cf. Rao, Card (1994)).

The Data-Table-View extends the Table Lens by introducing additional features for organizing cases
(data records) within the table. This principle of reordering data in order to reveal hidden patterns is
similar to Bertin's reorderable matrix (cf. Bertin (1981)). We provide severa mechanisms to rearrange
the data. Depending on data characteristics and exploration tasks, users can choose one of the following
ordering strategies:

e sort by row sum (i.e., sort table rows based on the sum of the data values of arow)

e permute rows and columns with respect to maximum (or minimum) data value (i.e., find the first
maximum data value v, in the datatabl e, determine the corresponding rows, and col umng,, permute
the data tabl e such that row, and col umn,, become the 1st. row/column, continue this process with
the remaining rows and columns of the data table)

e sort table rows with respect to a particular variable (column)

e rearrange rows based on row similarity (i.e., al data values of a row are used to determine the
similarity between rows)

The implementation of the reordering is designed flexible such that further ordering criterions can be
added easily.

Especialy considering all variables for similarity rearrangement of data records (cf. last bullet of the
enumeration above) requires mapping of multi-dimensional data to 1D. This mapping can be donein a
number of different ways.

One possible method for organizing unstructured multi-dimensional data provide Self-organizing maps
(SOM) (cf. Kohonen (1995) and section 2.1). A key feature of SOMsis to extract groups of similar data
records by projecting the n-dimensional input space onto two-dimensional visualization space. Thusthe
algorithm maps multi-dimensional data directly in an ordered fashion onto a2D grid. Sinceit is our goal
to arrange data records linearly for the data table view instead of organizing them on a two-dimensional
grid, we are using the one-dimensional case of SOMs, which is proven (cf. Kohonen (1995)) to provide
correct orderings as well. Thus we obtain a sequence of data records (table rows) depending on their
overal similarity ininformation space, i.e., smilar data records are placed in successive table rows.

In order to discover patterns in the data and relations between variables graphically, abar representation
is used where data values within table cells are mapped to the length of a small bar. This principle is
illustrated in figure 5. In our example, the table contains a car data set with 392 cars by 6 variables.
The left picture of figure 5 shows the data table without similarity arrangement of the data records. The
focusis set to a particular data object in order to reveal detailed data values. The similarity arrangement
is applied in the right picture. Trends and relations between variables (columns of the table) can be
obtained much better than in the unordered table. Thisis shown in figure 5 where the first five variables
are correlated.

3 Frameworks
3.1 TheFramework InfoVis3D

The clustering and visualization techniques introduced in this paper are integrated in the scalable vi-
sualization system InfoVis3D. Moreover our framework contains other traditional techniques such as
Scatter Plots, Histograms and Parallel Coordinates (cf. Inselberg and Dimsdale (1990)). In order to sup-
port flexible visualizations at arbitrary levels of detail, subsets of a hierarchy can be selected for further
exploration. Any desired part from the SOMs can be selected for detailed exploration as well.

e Sdlection of cluster nodes - Each cluster node of a hierarchy tree can be selected. All data records
of a selected cluster can be visualized with ShapeVis, Parallel Coordinates or one of the other
technigques in a separate display area.
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Figure 5: Table based exploration of multi-dimensional data with similarity arrangement in order to
reveal correlations.

e Sdection of hierarchy levels- A representative is determined for each cluster which resides at the
selected level by calculating mean values of the data of al cluster members. ShapeVis or any other
technique of our system can be used to visualize those representatives and all remaining objects at
the selected level.

e Sdlection of SOM areas- Arbitrary regions of the SOMs can be selected. Therefore the underlaying
data vectors of the selected grid area are determined and displayed with a suitable technigque of our
system.

In order to identify concrete data contents, i.e. real variable values, selected data records can be displayed
with the Data-Table-View. Along with that each subset of the data can be visualized with different
technigues at the same time (e.g. parallel display of selected clusters and their members with ShapeVis,
Parallel Coordinates, Scatter-Plot-Matrices etc.) Thus we provide different views of the same data set in
order to reveal deeper insights into the data. All active views are linked together via Brushing (Martin,
Ward (1995)), i.e. each single data object that is highlighted in a particular display will be marked in al
active views as well.

3.2 Framework for gathering meta data

The framework described above contains many analysis and visualization techniques which can be pa-
rameterized in many different ways. To support a tight integration of these techniques (cf. visual data
mining problems (Ankerst (2001))), new mechanisms for selecting, combining and parameterizing ap-
propriate techniques must be developed. One approach is using meta data to support, control and steer
complex exploration tasks.

Meta data are defined as data about data, and cover specia features of adata set. They are important for
the visualization process (e.g., for selecting suitable visual representations depending on the dimension-
aity of the data) aswell asfor the selection and parameterization of cluster analysis techniques (e.g., for
selecting suitable standardizations, measures or clustering methods).

We have designed general concepts for specifying and obtaining meta data. Based on these concepts, we
have developed a framework for gathering different types of meta data, for instance:

meta data for describing the whole data set:
- e.g. complete, incomplete, ...
meta data for describing the variables of a data set:
- e.g. scale type, ranges of values, minimal and maximal data values
- special meta data for independent variables:
- e.g. properties of space and time dimensions, so-called grid structures and regions of interest
- special meta data for dependent variables:
- e.g. the data type®

5The data type comprises the kind of values of a dependent variable. Usual data types in visualization context are scalar,
vector and tensor of n-th order.



meta data for describing the relations between the variables and between the data records of a data set:
- correlations, (joint) information content
- outliers

In this paper we may not listen all meta data used in our framework, and may not prove their relevance
for clustering and visualization techniques generally. Instead the relevance of selected meta data will be
shown on the basis of examples. The scale type for instance is especially important for the selection of
suitable measures and for the selection of suitable visual representation parameters. As another example
the appliance of self-organizing maps is only useful for metric variables. Furthermore there are special
visualization techniques and special numeric methods for special datatypes (e.g. flow visualization tech-
niques for flow data). Correlations, (joint) information content and the detected outliers can be utilized
especialy for standardization (cf. sec. 2.1) as a preprocess before applying cluster analysis techniques.
Furthermore correlations and (joint) information content can be used to extract sets of variables with
valuable common information for a detailed visual analysis. If outliers are of special interest they can be
visually emphasized.

The framework "Metadatum” has been developed for gathering and storing meta data. The process of
obtaining different types of meta data is divided into several steps, such that a special kind of meta data
isdetermined in each step. These steps are ordered in such away that already obtained meta data can be
used in following extraction steps. A flexible design of the framework allows meta data extractions with
different degrees of user interaction. For gathering of meta data both automatic analysis algorithm$ and
interactive user input’ are combined.

According to the degree of user interaction default values and standard routines can be applied.

For instance we implemented adialog for definition and interactive adaption of meta data for describing
the variables of adata set. In dependency of input format and of variable values for each variable default
values for scale type and for further semantic information are specified. These meta data can be adapted
using user knowledge, e.g., a variable with supposed nominal scale type can be interactively changed to
ordinal scale type. Then the user can order the data suitably.

To maintain an overview of current state of meta data gathering process alpha-numerical and visual
presentations are integrated. For instance a dialog for displaying special meta data for independent
variables has been implemented. Information about types and numbers of dimensions such as their kind
(space, time or abstract dimension), information about grid structure and a display of regions of interest
are provided.

Furthermore the framework "Metadatum" includes afile format for storing meta data, that allows flexible
loading and storing of meta data and their re-calculation at different steps.

4 Conclusions and Future Work

We developed aflexible visualization framework which provides a variety of clustering and new visual-
ization techniques. Our framework is configurable in order to adapt the analysis process with respect to
meta data.

However, there are still challenges for future work. First of all the introduced frameworks have to be eval-
uated to determine their effectiveness and to verify their applicability in different application domains.
Further work has to be done in order to enhance the functionality of our systems. In future research
we would like to investigate methods how to improve users' support during the analysis process. Thus
our work will be focused on algorithms how to configure and parameterize visual analysis frameworks
automatically depending on influencing factors of the exploration process. Automatic and general so-
lutions for these problems are still matters of research. Our actual research god is the specification of
concepts for an explicit attributions of both numerical and visualization techniques depending on meta
data, exploration tasks and user profiles.

8For instance we use a key analysis technique for the variables of a data set with unknown types of these variables. The
result is a set of minimal keys (Keys are combinations of variables which tuples allow an unequivocal mapping to each data
record). By taking the shortest key(s) the classification of dependent and independent variables can be achieved.

7e.g. selection of appropriate key using user knowledge about the data set
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