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A Design Space of Visualization Tasks

Hans-Jörg Schulz, Thomas Nocke, Magnus Heitzler, and Heidrun Schumann

Abstract—Knowledge about visualization tasks plays an important role in choosing or building suitable visual representations to
pursue them. Yet, tasks are a multi-faceted concept and it is thus not surprising that the many existing task taxonomies and models
all describe different aspects of tasks, depending on what these task descriptions aim to capture. This results in a clear need to bring
these different aspects together under the common hood of a general design space of visualization tasks, which we propose in this
paper. Our design space consists of five design dimensions that characterize the main aspects of tasks and that have so far been
distributed across different task descriptions. We exemplify its concrete use by applying our design space in the domain of climate
impact research. To this end, we propose interfaces to our design space for different user roles (developers, authors, and end users)
that allow users of different levels of expertise to work with it.

Index Terms—Task taxonomy, design space, climate impact research, visualization recommendation

1 INTRODUCTION

As the field of information visualization matures, a phase of consoli-
dation sets in that aims to pull together multiple individual works of
research under a common conceptual hood. This hood can take on
different shapes and forms, one of which is the design space. Such a
design space realizes a descriptive generalization that permits to spec-
ify a concrete instance – be it a layout [8], a visualization [46], or a
combination of visualizations [28] – by making design choices along
a number of independent design dimensions. Even last year’s InfoVis
conference recognized the increasing importance of design spaces by
dedicating an entire session to them.

Yet, information visualization is more than the visual representation
alone. It also takes into account the tasks the user wishes to pursue
with the visual representation. The literature contains a wealth of clas-
sifications, taxonomies, and frameworks that describe these tasks: lists
of verbal task descriptions, mathematical task models, domain-specific
task collections, and procedural task combinations into workflows. All
of these serve the respective purpose well for which they have been de-
veloped. However, the research question of how to consolidate them
under the hood of one common design space is still open, even though
it has been shown on a smaller scale that such a combination into a
common framework can be a useful endeavor [9, 21].

In this paper, we aim to give a first answer to this research ques-
tion by contributing such a design space for visualization tasks. This
contribution is twofold. First, it derives an abstract design space that
brings together the different aspects of the existing task taxonomies
and models. It serves to clarify the somewhat fuzzy notion of visual-
ization tasks and by that it permits judging the suitability and compat-
ibility of individual task taxonomies for a given case at hand. Second,
this abstract design space can also be instantiated in its own right for
its utilization in concrete use cases. The latter is achieved by providing
role-dependent interfaces to the design space that allow developers to
derive application-dependent design subspaces for authors to compose
compound tasks and workflows in them, so that end users can select
them to customize their visualization outcome. We exemplify this by

• Hans-Jörg Schulz is with the University of Rostock. E-mail:
hjschulz@informatik.uni-rostock.de.

• Thomas Nocke is with the Potsdam Institute for Climate Impact Research.
E-mail: nocke@pik-potsdam.de.

• Magnus Heitzler is with the Potsdam Institute for Climate Impact
Research. E-mail: heitzler@pik-potsdam.de.

• Heidrun Schumann is with the University of Rostock. E-mail:
schumann@informatik.uni-rostock.de.

Manuscript received 31 March 2013; accepted 1 August 2013; posted online
13 October 2013; mailed on 4 October 2013.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

a visualization task design space for climate impact research based on
structured interviews with eight domain experts and two visualization
developers. This design space is then utilized to recommend visual-
izations that are suitable to pursue a given task in that field.

The remainder of this paper is organized as follows: The related
work is summarized in Section 2 and from its discussion, we derive
our task design space in Section 3. We then debate its properties, lim-
itations, and applications in Section 4. This also includes examples of
how some of the existing task taxonomies can be expressed as parts
of our design space. After this conceptual part, Section 5 details the
use case example of how to apply the general design space to the ap-
plication domain of climate impact research and how to draw concrete
benefits from it. With this example, we aim to show a feasible way
for the adaptation of the design space that can be transferred to other
application domains as well. We conclude this paper by briefly shar-
ing our personal experience from working with the design space and
pointing out directions for future work in Section 6.

2 RELATED WORK

The concept of tasks exhibits numerous facets that are also reflected in
the existing body of research on that topic. Commonly, visualization
tasks are understood as activities to be carried out interactively on a
visual data representation for a particular reason. The investigation of
visualization tasks has the aim to establish recurring tasks in order
to use the knowledge about them for improving the design and evalu-
ation of visualizations. Existing research for both of these aspects is
briefly summarized in the following.

2.1 Establishing Recurring Visualization Tasks
The literature describes a number of different ways of how to obtain
recurring visualization tasks. The most prevalent methods are to sim-
ply survey a large enough number of visualization-savvy individuals
to list their tasks [4], to conduct a full-fledged task analysis by ob-
serving visualization users [25], or to infer from various existing vi-
sualization systems which tasks they facilitate [2]. Regardless of the
chosen method, the end result is a set of frequent tasks or appropriate
generalizations thereof. The scope of this set depends on the concrete
notion of “visualization task” that is employed. In the literature, one
finds a spectrum ranging from rather strict interpretations that only
permit perceptual tasks [16, 26] to broader interpretations that even
include non-visual analytical tasks [49].

Once collected, there exist various ways to describe visualization
tasks. Most task descriptions are verbal, dedicating a paragraph or
two to each task’s explanation – e.g., [5, 24, 49]. Others are functional
with tasks being either functions [12] or queries about functions [7].
Further ways to describe tasks are in a logical [16] or a faceted man-
ner [10, 40]. The latter breaks down the description into various el-
ementary facets that together specify a concrete task. Most of these
descriptions are in addition also hierarchical, which means that they



allow for representing larger tasks as a sequence of smaller subtasks,
as it is common in task modeling [22, 50, 51].

With so many different task taxonomies in existence, the question
of their consolidation arises. If at all, this question is answered in
two fundamental ways in the literature: either top-down by putting
the taxonomies in the context of a larger meta-taxonomy [13, 14, 42],
or bottom-up by grounding them in the concrete necessities of a
particular type of data [31] or a particular application domain [37].
Most top-down approaches rely on the Task-by-Data-Type Taxonomy
(TTT) [47], whereas the bottom-up approaches are either based on ex-
tensions of the taxonomy by Wehrend and Lewis (TWL) [60] or they
explicitly mention a striking similarity to it [31]. Both choices make
sense and do not pose a contradiction, as the TTT is known to be more
high-level and system-centric, while the TWL is rather low-level and
user-centric. Their complementary use is further underlined by the re-
search described in [9] and [21], which independently try to combine
both into a common task taxonomy.

This observation that the TTT and the TWL form quasi-standards
in the field has to be taken with a grain of salt, though, as they may
owe their status simply to the fact that they have been around for some
time. Recently, more modern task taxonomies appear to supersede
them – e.g., the more formal task description by [7] as a low-level tax-
onomy and the broader list of tasks by [43] as a high-level taxonomy.
Both exceed a pure visualization task taxonomy by embracing analyt-
ical tasks and become increasingly popular as starting points for task
research in the context of Visual Analytics.

2.2 Utilizing Tasks for Visualization Design and Evaluation
Tasks stand in relation to the input data they are concerned with and
to the visual representation they are performed on. In the same spirit
as for task taxonomies, there also exists literature on taxonomical re-
search for data [45, 64] and for visualizations; the latter being split
into characterizations of visual representations [15, 17, 20, 38] and of
the interaction with them [18, 30, 59, 62]. It is thus only natural, that
these concepts have been combined in two ways:

• Data + Task = Visualization? This combination asks which
visualization is best suited to pursue a given task on given input
data. It caters directly to the visualization design.

• Data + Visualization = Task? This combination asks which
tasks can be pursued (how well) on a given visualization for a
given dataset. It caters directly to the visualization evaluation.

As for the visualization design, there are a number of different
aspects of a visualization that can be chosen or parametrized with
the help of task knowledge. This ranges from informal guidance on
the overall visualization design [53, 55] to very concrete suggestions
for individual aspects, such as appropriate mappings [64] or color
scales [3, ch.4.2.2]. Some works, such as [29], even provide a look-
up for all possible data/task combinations to recommend visualiza-
tion techniques to the user. Despite the research in this area, such
automated visualization design recommendations have never been
achieved to fullest extent and are an open research question until today.

The evaluation of visualizations is the second important use
of tasks. By evaluating visualizations with respect to an agreed
upon set of tasks, they become comparable. Such an evaluation
is usually not a binary one of whether a visualization supports a
particular task or not, but rather how well it supports it as measured
through completion times and error rates. The most common way
of employing this approach is to use it on a per-technique basis,
as facilitated by [6, 37, 57]. Yet, the literature also presents more
holistic approaches, such as using the tasks to “sketch the space of the
possible” [56] to observe which parts of this space are already covered
and which parts still need further research or design efforts [2].

We follow this idea of the space of the possible by establishing our
design space of visualization tasks in the following section. For its
specification, we use a faceted task description (cp. Sec. 2.1) that
combines the most important aspects of visualization tasks from vari-
ous different task taxonomies in one integrated task concept.

3 CONSTRUCTION OF OUR DESIGN SPACE

The existing taxonomies have been established with different goals
in mind. For example, the quasi-standard taxonomies TTT and TWL
both tie-in with certain aspects of the data and they both aim to capture
the user’s action – with the TWL being more on the intentional, user’s
side and the TTT being more on the technical, system’s side. On top
of that, the TTT even provides a process-centric view by defining a
particular sequence of tasks as a mantra to codify it as a common
recurring workflow in visualization. Each of these aspects captures
an important part of what a visualization task is and it is our aim to
identify these different aspects and bring them together as dimensions
of an integrated visualization task design space.

3.1 Preliminaries
Design spaces are hypothetical constructs that follow the mechanistic
belief that the whole is the sum of a number of independent parts. The
identification of these parts and their interplay is challenging, as the
mechanistic world view rarely fully matches reality. Yet once they are
established, the parts can be put together in any possible way. By this,
they do not only describe the existing, but also the (so far) not existing
through novel combinations of the parts. In this aspect, design spaces
inherently differ from taxonomies, which are by definition classifica-
tions of what actually exists.

A design space consists of a finite number of design dimensions,
which each capture one particular design decision that has to be made
to fully specify the whole. For each such design dimension, a possibly
infinite number of design choices are available to choose from. Design
spaces have been applied in visualization research for:

• consolidating existing research under one common hood, where
they form individual designs or design subspaces,

• identifying blank areas as potential research opportunities – i.e.,
design combinations that have not yet been investigated, and

• externalizing the often implicit design decisions for improving
communication – with students (teaching), with clients (require-
ments analysis), and with software (API specification).

A design space of visualization tasks provides all of the above, but
it is also useful at a fundamental level for working with tasks, as its de-
sign dimensions are customizable and thus inclusive. This means that
while the design space as a whole is fixed, individual design choices
can be added or further subdivided on any design dimension, as it may
be needed to achieve a necessary level of granularity for a particular
application (cp. Sec. 4.1.2). As a result, the design space captures all
tasks – whether they are abstract, specific, or downright unusual.

3.2 The Design Space Dimensions
The dimensions of our design space basically relate to the “5 W’s” of
WHY, WHAT, WHERE, WHO, and WHEN, as well as to the often ap-
pended HOW. These aspects are frequently used to describe a matter
from its most relevant angles in technical documentation and commu-
nication, and they have been used in visualization [63], as well as for
task analysis [23] and for grasping user intentions [1]. For describing
tasks, they call for answers to the following questions:

• WHY is a task pursued? This specifies the task’s goal.
• HOW is a task carried out? This specifies the task’s means.
• WHAT does a task seek? This specifies the data characteristics.
• WHERE in the data does a task operate? This specifies the target,

as well as the cardinality of data entities within that target.
• WHEN is a task performed? This specifies the order of tasks.
• WHO is executing a task? This specifies the (type of) user.

The latter two aspects are clearly not inherent fundamental properties
of an individual task itself, but aim to relate a task to its context. For
the WHEN, this is the context of preceding and succeeding tasks in
a task sequence, and for the WHO, this is the context of capabilities
and responsibilities to perform tasks in a collaborative environment.
That is why we discuss these two aspects in later sections that con-
sider workflow (Sec. 3.3.3) and user context (Sec. 4.1.3) in their own



right. This leaves the five dimensions of goal, means, characteristics,
target, and cardinality, which are introduced in the following, before
combining them into our design space in Sec. 3.3.

3.2.1 Goal
The goal of a visualization task (often also objective or aim) defines
the intent with which the task is pursued. We differentiate between the
following three high-level goals:

• Exploratory analysis is concerned with deriving hypotheses
from an unknown dataset. It is often equated with an undirected
search.

• Confirmatory analysis aims to test found or assumed hypothe-
ses about a dataset. In analogy to an undirected search, it is
sometimes described as a directed search.

• Presentation deals with describing and exhibiting confirmed
analysis results.

It is important to note that these goals specify the motive of a task’s
action and not an action itself, which is defined by the “means” in the
following section. These aspects are independent, as the same motive
can be pursued through different actions and the same action can be
performed for different motives.

3.2.2 Means
The means by which a visualization task is carried out (often also ac-
tion or task) determines the method for reaching the goal. It is chal-
lenging to present a definite list of such means to achieve a task. We
have extracted the following list of means from the literature and while
it may not cover each and every possible way of conducting a task, it
serves well as an initial set that can be extended if needed:

• Navigation subsumes all means that change the extent or the
granularity of the shown data, but that do not reorganize the data
itself. For the extent this is done, for example, by browsing or
searching the data, whereas for the granularity this is done by
elaborating or summarizing the data.

• (Re-)organization includes all means that actually adjust the
data to be shown by either reducing or enriching it. Common
means of data reduction are extraction (e.g., filtering or sam-
pling) and abstraction (e.g., aggregation or generalization) [33],
while often used means of enrichment are gathering additional
data from external sources and deriving additional metadata.

• Relation encompasses all means that put data in context. This
is done by seeking similarities through comparison, by seeking
differences when looking for variations or discrepancies, or by
their inverse query known as relation-seeking [7].

We have purposefully chosen a more abstract terminology for our
means, so that they are independent of their concrete technical real-
ization in a visualization system. For example, an “elaborate” can be
realized through a zoom-in, a magic lens, a drill-down, or any other
available interactive feature that has the desired effect.

3.2.3 Characteristics
The characteristics of a visualization task (often also feature or pat-
tern) capture the facets of the data that the task aims to reveal. While
these depend highly on the type of data that is being visualized, we
can distinguish between two general kinds of characteristics:

• Low-level data characteristics are simple observations about
the data, such as data values of a particular data object (look-up,
identification) or the data objects corresponding to a particular
data value (inverse look-up, localization). These can be com-
monly obtained by looking at legends, labels, or coordinate axes.

• High-level data characteristics are more complex patterns in
the data, such as trends, outliers, clusters, frequency, distribu-
tion, correlation, etc. Obtaining such characteristics takes usu-
ally more effort to acquire the necessary “big picture” of the data.

Thus the low-level data characteristics are what can simply be “read”
from the visualization (cp. visual literacy), while the high-level data
characteristics must be “deduced” from it (cp. visual analysis).

3.2.4 Target
The target of a visualization task (often also data facet or data entity)
determines on which part of the data it is carried out. In order to ac-
commodate a broad range of data types, we build on the ideas of [7]
and take a generic relational perspective on data to describe its differ-
ent aspects that may be referred to by a task. This way, it is compatible
with a variety of data models on the technical level, ranging from tradi-
tional relational databases to more contemporary triple-based storages.
The different aspects of data can be any of the following relations:

• Attribute relations link data objects with their attributes. These
include in particular:

– Temporal relations linking data objects to attributes that
are time points or time intervals, and

– Spatial relations linking data objects to attributes that are
points, paths, or areas in (geographical) space.

• Structural relations link data objects with each other, which
can have various reasons, such as causal relations, topological
relations, order relations, equivalence relations, etc.

This relational view on data puts a particular emphasis on the rela-
tional means discussed in Sec. 3.2.2. No longer are these only con-
cerned with deriving relations, but also with querying the relations
given in the data. For example in a social network, it is an interesting
task in itself to investigate which kinds of relationships among persons
(friendship, kinship, partnership, etc.) are already inherent in the data.

3.2.5 Cardinality
The cardinality of a visualization task (often also scope or range) spec-
ifies how many instances of the chosen target are considered by a task.
This distinction is important, as it makes a difference whether only an
individual instance is investigated or all of them. It is notable that
a number of existing taxonomies deem the cardinality of a task to
be an important aspect as well. Its notion can be found, for exam-
ple, in Bertin’s Levels of Reading [11], in Robertson’s distinction be-
tween point, local, and global [44], in Yi et al.’s individual, subgroup,
group [61], and in Andrienkos’ elementary vs. synoptic tasks that even
form the topmost classes in their task categorization [7]. Hence, we
singled out this aspect of the WHERE to form its own design dimen-
sion, differentiating between the following options:

• Single instance, e.g., for highlighting details.
• Multiple instances, e.g., for putting data in context.
• All instances, e.g., for getting a complete overview.

The descriptions of these choices already hint at numerous common
visual analysis patterns, such as Overview and Detail or Shneider-
man’s Information Seeking Mantra [47] (cp. Sec. 3.3.3) that are
closely related to a task’s cardinality.

3.3 The Design Space as a Whole
The design dimensions do not stand for themselves, but are used in
conjunction forming the design space. An individual task can be rep-
resented as a point in this design space by specifying a design choice
in each of the five design dimensions. In the spirit of hierarchical task
descriptions, these individual tasks form the building blocks of more
high-level compound tasks. Individual tasks and compound tasks can
then in turn be strung together to form workflows. These three levels of
describing tasks with our design space are introduced in the following.

3.3.1 Individual Tasks as Points in the Design Space
An individual task is constructed from five design choices – one for
each of the design dimensions that span the design space. It can be
represented as a 5-tuple (goal, means, characteristics, target, cardi-
nality) and be interpreted as a singular point in the design space. A
simplistic example (see Sec. 5 for more realistic examples) would be
to subsume research in climatology by the following individual task:

(exploratory, search, trend, attrib(temperature), all)



It means that the user is searching for a trend among all available
temperature attribute values. This task is exploratory, as the user does
not yet know if he is looking for an upward trend, a downward trend,
or whether a trend exists at all. Only with these five aspects given,
the task is fully specified. For instance, omitting the cardinality in
the example would leave it open, whether to perform the task on all
values or maybe only on those of the last week. So, this seemingly
small information determines whether the task is a climatological or a
meteorological one, each of these fields implying their very own set of
terminology, conventions, and visual representations.

3.3.2 Compound Tasks as Subspaces in the Design Space
A compound task is constructed from a number of individual tasks.
It can be represented as a non-empty set of tasks and be interpreted
as a subspace in the design space. There are two ways of defining
compound tasks: as an enumeration of individual tasks (bottom-up) or
as a cut through the design space (top-down).

An example for an enumeration would be a compound task
that does not merely look for a trend in the temperature, but also
investigates outliers that might be used to refute a trend:

{(exploratory, search, trend, attrib(temperature), all),
(exploratory, search, outliers, attrib(temperature), all)}

As a shorthand, we can also write the following:

(exploratory, search, trend|outliers, attrib(temperature), all)

Such an enumeration is useful when combining only a few different
task options into a compound task. Yet, if the task definition shall be
extended even further to comprise more or less any data feature that
meets the eye, we can use a cut through the design space:

(exploratory, search, ∗∗∗ , attrib(temperature), all)

This example would be a 4-dimensional cut (four design dimensions
are specified) through the 5-dimensional design space. This is thought
of as a top-down definition, which starts with the complete design
space (*,*,*,*,*) and specifies one design decision after the other
until everything that is known about a task has been described. The
remaining unspecified dimensions then form the subspace that gives
a compound task its flexibility. Note, that both types of definition can
also be mixed to be as specific as needed on some design decisions
and as flexible as possible on others:

(confirmatory, compare,∗∗∗ , attrib(temperature)|attrib(precipitation), all)

This compound task describes a possible confirmatory step after a pat-
tern has been found in the temperature data by carrying out the above
exploratory task. Since it is known that patterns in temperature data are
reflected in precipitation data [34, 54], a pattern in one should reappear
in some form in the other. Hence, this task aims to confirm the find-
ing in the temperature data by comparing it to the precipitation data.
This example also shows the limits of compound tasks, which can only
capture individual steps of a visual analysis, but not their order or de-
pendencies on one another, as they are described by workflows.

3.3.3 Workflows as Paths/DAGs in the Design Space
A workflow is constructed from a number of points (individual tasks)
and/or subspaces (compound tasks). The dependencies between the
tasks can be represented as a directed acyclic graph (DAG). This
means if one task precedes another task, a directed edge connects
them. If the workflow does not contain any branches or alternatives,
it degenerates into a (possibly self-intersecting) path in the design
space. Picking up the example from the previous section, the order of
the two tasks can be expressed by the following two-step workflow:

(exploratory, search, ∗ , attrib(temperature), all) ⇒
(confirmatory, compare,∗ , attrib(temperature)|attrib(precipitation), all)

By this, we model that the user has to search for a feature in the
temperature data first, before it can be confirmed by comparing it
with the precipitation data. Yet, workflows go well beyond capturing
domain-dependent step-by-step instructions for how to use particular
aspects of data. With a bit of notation from the existing literature
on process modeling and more flexibly defined compound tasks,
workflows can even express general guidelines and fundamental
visualization principles, such as the Information Seeking Mantra [47]:

(exploratory, summarize, ∗ , ∗ , all) ⇒
(exploratory, elaborate|filter, ∗ , ∗ , multiple)+ ⇒
(exploratory|confirmatory, gather, look-up, ∗ , single)

The first step performs an overview (summarization of all data) on any
particular data relation of interest and without a concrete data char-
acteristic to look for, yet. The second step describes the zoom+filter,
which cuts down on the cardinality of the shown data by using
navigational means (elaborate) or means of reorganizing the data
(filter). This task is performed iteratively (as denoted by the +) until
additional details on demand can be gathered on a single data object
in the third step. This last step can be an exploratory one, if nothing is
known about the data object’s details, or it can be a confirmatory one,
if the details were already encoded in position/size/color and thus the
user already has a vague idea of their concrete values.

Note that in the same spirit as compound tasks combine individual
tasks, and workflows combine compound tasks, further combinations
can be derived in a similar manner. For example, it is easily imag-
inable to hierarchically combine workflows to express even more ad-
vanced concepts from task modeling, such as ConcurTaskTrees [41].
Yet, instead of building ever more complex constructs on top of our
task definition, the following section proceeds to take a look at the ca-
pabilities and limitations of our fundamental design space that forms
the basis of these derived concepts.

4 DISCUSSION OF OUR DESIGN SPACE

The need for a model that clearly charts visualization tasks and puts
them in perspective of each other is underlined by the many task tax-
onomies that have already been put forth in the past. In constructing
such a model, a balance between its completeness and consistency
has to be found: The more aspects are included in the model, the more
potential inconsistencies in the form of invalid design combinations
are introduced. Yet, the fewer aspects are included in the model, the
fewer of the existing tasks can be described with it. With our five-
dimensional design space, we have struck a particular balance between
these two aspects, which we will discuss in the following.

4.1 Completeness of our Design Space
When surveying the existing task taxonomies, one will find three types
of tasks:

• those that can be captured by our design space as it is, because
these tasks are defined on the same high level of abstraction as
our design space,

• those that can be captured by adapting our design space to
their level of specificity, targeting it towards a particular applica-
tion domain or software system, and

• those that lie outside of our design space, as they concern exter-
nal aspects that we have not included in our design space – e.g.,
tasks that do not concern data, but other tasks.

In the following, we will go through each of these cases, in order to
provide a better grasp of how far our design space reaches.

4.1.1 Tasks captured by our Design Space
Many existing tasks can be expressed in a straightforward manner, as
it was exemplified in Sec. 3.3.3 with the “overview”, “zoom+filter”,
and “details-on-demand” tasks from the TTT. In other cases, express-
ing existing tasks is not always as straightforward, as the following
examples show.



A common challenge is that existing taxonomies often mix as-
pects that we have carefully separated into different design dimen-
sions, most notably means and characteristics. An example are the
operation classes of the TWL, which on the one hand contain tasks
such as “cluster” (∗,∗,clusters,∗,all|multiple) and “identify” (∗,∗,data
value,∗,single). Even though these have been expressed as verbs, they
do not specify a concrete means of how to go about finding these char-
acteristics – they just say “do something (whatever it is) to obtain that
clustering/value”. On the other hand, it also lists tasks such as “com-
pare” (∗,compare,∗,∗,all|multiple), which is clearly a means in our ter-
minology, as it does not specify which characteristics (e.g., clusters or
values) to compare. Note that the cardinality in the tuple notation was
not explicitly stated by the TWL, but since it was certainly implied,
we took the liberty of filling it in.

Another challenge is posed by taxonomies, which have a somewhat
different idea of what tasks are. For example, Ahn et al. [2] propose
a task taxonomy tailored to dynamic network visualizations. Funda-
mentally, they describe a design space consisting of the dimensions en-
tities, properties, and temporal features. In doing so, their approach is
quite close to our faceted task definition along five independent design
dimensions. In our terminology, entities and properties are subsumed
under the target dimension as structural relation and attribute relation,
respectively, and temporal features are data characteristics specialized
to this application domain. What turns their design space into a taxon-
omy (cp. Sec. 3.1) is that they consider the means to be a dependent
dimension, while we consider it to be independent: Their taxonomy
gathers from publications and software packages which means are ac-
tually used in practice for which combinations of entities, properties,
and temporal features [2, Fig.3]. It thus focuses on surveying the tasks
that actually exist (taxonomy) and not so much the tasks that could
possibly exist (design space). Nevertheless, our design space is able to
express this notion of a task in the form of a subspace that combines
targets and characteristics with appropriate means to pursue them:

(∗, find|identify|compare, peak|valley, attrib(∗time)|attrib(∗struct ), ∗)
In this example, their taxonomy determines the means “find”, “iden-
tify”, and “compare” as being used in publications and/or as being
supported by software systems for the combination of the character-
istics “peak” and “valley” with the targets “activity” and “structural
metrics”, which map to our temporal and structural attribute relations.

4.1.2 Tasks captured by adapting our Design Space
Other tasks are not necessarily incompatible with our design space,
but they are defined on a much more specialized lower level than our
rather abstract, high-level task definition. This is mainly the case for
two types of tasks: system-dependent tasks that are tailored towards
concrete interaction features and domain-dependent tasks that are pro-
posed to fit the needs of a particular application domain. As we have
found it impossible to exhaustively include all system-dependent and
domain-dependent design choices that were ever published, we chose
to give high-level instances of possible design choices for each indi-
vidual design dimension. At the same time, we emphasized that these
design choices are not to be treated in a dogmatic way, but rather as
starting points for one’s own adaptation of our customizable and thus
inclusive design space. Such an adaptation leaves the overall struc-
ture of the design space with its five dimensions untouched and only
changes the design choices in any of the following ways:

• a simple renaming of design choices to be better understood by
end users of a particular system or from a certain domain,

• a refinement of the abstract high-level design choices by subdi-
viding them into a number of more concrete low-level choices to
more precisely capture particular aspects of a software system or
of a domain,

• an extension of the set of available design choices by incorpo-
rating additional unforeseen choices if these are necessary to de-
scribe tasks in a particular system or domain,

• a complete substitution of all design choices on a selected di-
mension to switch to an entirely different categorization that bet-
ter fits the system or domain.

System-dependent tasks are usually used when referring to concrete
interaction handles in a software, i.e., “zoom-out” instead of “summa-
rize”. This technical level of defining tasks is useful if one wants to
automatically link a user’s task with a concrete way of performing it in
a software system. Knowledge about such a connection is beneficial
in both ways: when performing a task, the user can be guided towards
particular interactions that will help him to achieve it, but also when
interacting with the visualization software, the system can attempt to
determine which task the user is currently pursuing. The latter is help-
ful for keeping a record of the visualization session in a “history”.
System-dependent tasks are generally realized by simply concretizing
the abstract means defined in our design space by refining and substi-
tuting them with the concrete interaction to be performed.

Domain-dependent tasks are very similar in this respect, only that
they tailor the tasks towards a particular application domain. Note that
both can go hand in hand if an application domain uses a rather fixed
set of software systems. The most commonly used adaptation to a par-
ticular domain is the renaming of tasks and compound tasks to match
the domain’s terminology. On top of that, specific conventions of a
domain can be modeled in our design space either as compound tasks
(means A always involves target B) or as workflows (task X always
precedes task Y). Often, a particular domain also implies a particular
type of data that comes with it and that is not adequately described by
our simplistic target dimension. This is a prime example for the case
where a complete substitution of choices on a design dimension is the
most convenient approach to cope with it. Data types for which this
would be a reasonable choice are, for example, document collections
or imaging data.

4.1.3 Tasks that lie outside of our Design Space
To keep our design space concise, we decided for a rather narrow un-
derstanding of tasks that treats some aspects as external influences and
not as integral parts, as which they appear in other task taxonomies.
Besides the aforementioned aspect of WHO performs a task in a col-
laborative environment [27], there are various other aspects that de-
scribe tasks in the much broader scope of visual analysis and visual
data mining [40]. It is noteworthy, that these aspects designate in most
cases entire research directions in their own right, which interact with
our design space on various levels. This forbids their oversimplifica-
tion as additional linear dimensions and thus, these aspects cannot be
expressed within our design space. For example, an established model
for contexts, such as a user’s domain context, has itself already 12
different dimensions [32].

One of these aspects deserves to be mentioned individually, as it
appears throughout the existing literature on tasks, yet is rarely recog-
nized as being special: the self-referential aspect of tasks, which leads
to the definition of meta-tasks. These are tasks to manage other tasks,
such as “undo/redo”, “revisit”, or “task division”. As they do not re-
fer to data, but to tasks themselves, they stand outside of our design
space. Interestingly, many task taxonomies, such as the TTT, list them
in the same breath with regular tasks on data. Note that meta-tasks are
of particular importance in collaborative scenarios, in which a large
part of working with a visualization actually consists of dividing and
managing tasks among the multiple users [27]. An especially useful
meta-task is the “annotate” task that is not only of particular use in
such collaborative scenarios [35], but also permits for renaming tasks
to adapt them to particular domains and systems (cp. Sec. 4.1.2).

4.2 Consistency of our Design Space
In principal, our design space is consistent, as each design dimension
answers to a different question of the “5 W’s” and thus addresses a dif-
ferent aspect of a task. While this ensures that the design dimensions
do not overlap, this cannot be claimed for all possible design choice
combinations on these dimensions. For example, the means “com-
pare” is connected with the cardinality, which must be either “multi-
ple” or “all” for this design choice to make sense. If these inherent
connections are not observed, inconsistencies can arise – for example,
in the above case by choosing “compare” as a means together with
the cardinality “single”. Fortunately, our 5-tuples allow us to directly



encode these dependencies so that they can be observed. Usually, a
means like “elaborate” that does not have any dependencies on other
dimensions would be encoded as (∗,elaborate,∗,∗,∗). Whereas “com-
pare” would additionally mark down the constraint it poses on the car-
dinality dimension and be written as (∗,compare,∗,∗,many|all). This
interesting use of compound tasks works of course also for other de-
sign dimensions and gives us a general way to encode constraining
semantics of design choices within the design space itself. By adher-
ing to the encoded constraints, inconsistencies can be ruled out.

Note that many constraints that one may discover are actually not
constraints at all. It is the nature of a design space to extend the mean-
ing of design choices that were formerly only used in very confined
settings also to other scenarios, simply by allowing for novel and so
far unexplored combinations. Thus, what looks like an inconsistency
in the design space may actually be just a very creative and unusual
combination of design choices. An example would be the combina-
tion of “presentation” as a goal with the full spectrum of navigational
means. This may look like an invalid combination to anybody who
equates “presentation” with a printed picture or a linearly structured
slideshow at most. Yet in the light of interactive storytelling and seri-
ous gaming, “presentation” takes on a much broader meaning, which
actually fits well with an extended set of means to pursue it.

Another way in which constraints are falsely imposed is simply
by wording. For example, the characteristic “trend” is usually
associated with a temporal target. If one was to find a “trend” in
a spatial target, one would rather call it “distribution”. Yet, this
connection between the characteristic and the target is only imposed
by the used terminology. If one chooses a term like “tendency” to
express the characteristic one is looking for, there would be no such
strong implied connection with a particular target and the perceived
constraint would be resolved. For such issues in wording, one could
make use of visualization ontologies [19, 48, 58] to retrieve more
suitable synonyms or generalizations of terms.

Even more than these general remarks, the next section will illus-
trate how to make use of our design space in the very concrete setting
of climate impact research.

5 USE CASE: CLIMATE IMPACT RESEARCH

In its generality and abstractness, the proposed design space is appli-
cable by a limited number of visualization experts only. To make it
accessible and useful to users from an application domain, it has to
be concretized by instantiating it for such a domain. In our case, this
domain is climate impact research. As a first step towards understand-
ing the tasks and the task terminology of users from this domain, we
conducted a survey with eight end users from the field of climate im-
pact research and with two experts developing visualization solutions
in this field. This survey captures the most common tasks in the do-
main and frames them in terms of our design space (Sec. 5.1). Once
established, they can be utilized for choosing visualization frameworks
(Sec. 5.2) that are suitable to pursue a given set of tasks. In a similar
way, they can also be used to suggest suitable visualizations for a task
at hand to an end user (Sec. 5.3), if visualization developer and author
have annotated the individual visualization techniques with the task
subspace for which they are applicable.

5.1 A Domain-Specific Instance of our Design Space

From our experience, we observe a general gap between existing vi-
sualization techniques and systems, and the mental maps and practical
demands of domain users. For many practical tasks, this gap results
from hampered intuitive access to the required visualization function-
ality. Thus, to support complex visualization tasks and to establish
sophisticated visualization techniques in application domains such as
climate impact research, a translation of wording, visual metaphors,
and interaction techniques is required, which considers the existing
visualization and domain knowledge of the users. This knowledge has
to be incorporated into the design of visualizations to smoothly inte-
grate them into the scientists’ ongoing, genuine research workflows.

Table 1. Collected Tasks from Domain Users based on Survey Answers

task complexity
terminology compound tasks general workflow tasks
visualization explore the data, present data,

find similarities/differences, visu-
alize parameter distributions, vi-
sualize parameter variations, visu-
alize outliers, gain overview over
dataset, find correlations, create
high-quality presentations, search
for characteristic features, find rela-
tions/phenomenona/effects

present data for professional
audiences, present data in a
popular scientific way

intermediate generate Fourier spectrum, visual-
ize network bundles, visualize at-
tributes aggregated by sector/region

verify theories using obser-
vation data, assess quality of
model output in comparison
to observation data, evalu-
ate methods using test exam-
ples, validate experiment en-
vironments

application find climatological means, find
strong deviations of climatological
means, visualize surface tempera-
ture, visualize wind patterns, find
extreme wind field patterns, show
water levels for area

perform planetary wave
analysis and find resonance
events, visualize the atmo-
sphere, give information
about water

In particular in the context of climate impact research, visualiza-
tion design and visualization software must be adaptable to heteroge-
neous user groups, including users with different skills and qualifica-
tion grades (from students to senior scientists), with different objec-
tives (from scientific analyses to communication and policy making),
and from different disciplines (e.g., meteorology, hydrology, socioeco-
nomics, ecology, physics) that each come with different terminologies.

To concretize their often vaguely formulated domain-specific vi-
sualization tasks, we conducted a survey in which we first asked the
domain users for a plain listing of tasks for which they are using vi-
sualization in their daily work. The outcome of this survey is summa-
rized in Table 1, which classifies the gathered tasks into their level of
complexity (i.e., compound vs. workflow tasks) and the kind of termi-
nology used (close to the visualization context, close to the application
domain, and intermediate being neither too visualization-specific nor
too application-specific).

In a second part of the survey, we provided a list of seven predefined
visualization tasks to our users, which are based on a previous study
that we conducted in the field of climate data visualization [39]. They
reflect the current perspective of visualization authors on which tasks
are relevant in this context. To validate these tasks with the users and to
define a task design subspace for this domain, we asked them to assess
their importance and usefulness, as well as to list important tasks that
were missing. The list of tasks presented to them was:

T1. compare variable distributions
T2. find model input/output relations
T3. gain overview of whole dataset
T4. present temporal trends
T5. visual (climate) model validation
T6. visual data cleansing / find data inconsistencies
T7. visualize periodicities

The result of this second study was that the importance and helpful-
ness of certain tasks were often directly linked to the scientific back-
ground of the interviewed user. While some tasks (T1, T3, T6) were
considered useful by the majority of users, other tasks, such as T2
and T5, were only considered relevant by users with a modeling back-
ground. T4 was considered useful, but many users criticized that the
task is too narrowly focused on temporal and presentation aspects. T7
was also considered useful, but being too constricted on visualization
and it was asked for a more general variant of this task for periodicity
analysis. Due to this feedback on T7, we renamed “visualize period-
icities” to the more general “analyze periodicities”, which seems to



Table 2. Resulting Design Sub-space for Climate Impact Research Tasks

task notation
compare variable distributions (confirmatory, search|compare|navigate, distributions, attrib(attribute1)|attrib(attribute2), all)
find model input/output relations (exploratory|confirmatory, search|relate|enrich, trends|correlations, attrib(∗input )|attrib(∗out put ), all)
gain overview of whole dataset (exploratory, summarize, ∗ , ∗ , all)
analyze trends (exploratory|confirmatory, ∗ , trends, attrib(∗)|attrib(∗time), all)
visual (climate) model validation (confirmatory, search|enrich|query|relate, ∗, attrib(∗)|attrib(∗space)|attrib(∗time)|struct(∗), all)
visual data cleansing / find data inconsistencies (exploratory, search|filter|extract, outliers|discrepancies, attrib(∗), all)
analyze periodicities (exploratory|confirmatory, ∗ , frequencies, attrib(∗)|attrib(∗time), all)
analyze outliers (exploratory, search|filter|query, outliers, attrib(∗), all)
compare measurements with simulation data (exploratory|confirmatory, compare|enrich, ∗ , attrib(∗measurement )|attrib(∗simulation)

|attrib(∗space)|attrib(∗time), all)
present data for general audiences (presentation, summarize, high-level data characteristics, attrib(∗), multiple)

better capture the range of what the users want to do.
While almost all interviewed users gave suggestions for further

tasks, most of them were too specific to be included – e.g., “present ac-
cumulated CO2-emissions using integration”. However, three missing
tasks have been mentioned frequently and have therefore been added
to the list: “analyze outliers”, “compare measurements with simula-
tion data”, and “present data for general audiences”. Based on the
resulting extended list of tasks, we further concretized them by instan-
tiating each task as a concrete 5-tuple in our general design space. The
result of this process can be seen in Table 2.

The resulting list contains general purpose tasks (e.g., “gain
overview of whole dataset” and “analyze trends”), as well as
application-specific tasks (e.g., “visual (climate) model validation”
and “compare measurements with simulation data”). Together they
form a set of typical tasks for climate impact scientists from differ-
ent disciplines. Note that some tasks that were named by the domain
experts are very general and vague (e.g., “visual (climate) model val-
idation” or “present data for general audiences”). This is due to the
lack of standardized visual analysis workflows in these cases, which
leaves it open to the researcher how to perform these tasks. Yet it is
of course always possible to further concretize such tasks for smaller
user groups that have a more homogeneous way of pursuing them.

From this list and the process of generating it, we learned a num-
ber of domain-specific requirements for the visualization. First, it ap-
peared that comparison tasks (“relate”, “compare”, “trends”) are usu-
ally very important to the users as they permit for relating certain time
periods with a reference period, which is a very common analysis
approach in climatology. Second, data aggregation (“summarize” or
“enrich”) is very typical within this field for deriving climatological
information from meteorological data – e.g., by calculating seasonal
and/or decadal data aggregations. Third, domain experts tend to think
of analysis tasks from the presentation point-of-view, in the sense that
they strongly prefer to pursue tasks with visualization techniques that
they can directly share with their colleagues and use in publications.
As a result of this observation, we removed the presentation aspects
from the tasks in Table 2, as for climate impact researchers these are
intrinsic up to a certain point. Instead, we added a general presenta-
tion task (“present data for general audiences”) to capture the notion
of communicating data to the general public, which is a separate no-
tion from the intrinsic presentation. A last observation was again the
heterogeneity of domain backgrounds that mix in the field of climate
impact research. One result that stems from this observation is the dif-
ferentiation of the tasks “analyze trends” and “analyze periodicities”,
even though they are in a design space sense structurally very similar
(cp. Table 2). Yet, depending on the user groups, they are used in very
different time scales: While trends are usually analyzed in decades or
centuries close to the present, periodicities are commonly related to
questions about much longer time scales – typically paleo data, which
are climatological measurements from field data, i.e., drilling cores.

With the list of tasks provided in Table 2, we have concretized and
instantiated our formal design space for the concrete scientific objec-
tives in the field of climate impact research. As the most common
uses of task taxonomies are to evaluate existing visualization tech-

niques/systems and to recommend visualization techniques to users
(cp. Sec. 2.2), we aim to exemplify the established task subspace along
the same lines. Thus, the following section deals with evaluating vi-
sualization systems by asking which of the identified domain-specific
tasks are supported by a particular software.

5.2 Choosing Suitable Visualization Frameworks
While the tasks in Table 2 describe what a domain expert may want to
do, we can similarly describe what a specific visualization framework
allows him to do. Table 3 illustrates two such feature-based task sub-
spaces for the visualization frameworks GGobi [52] and ComVis [36],
which are being used for climate impacts analyses.

Table 3. Supported Tasks in GGobi and ComVis

supported subspace of visualization tasks
GGobi (exploratory|confirmatory, relate|enrich|query|browse|extract|

summarize|filter, frequencies|outliers|discrepancies, attrib(∗),
multiple|all)

ComVis (exploratory|confirmatory, relate|enrich|query|extract|
summarize|filter, frequencies|trends|outliers|discrepancies,
attrib(∗), multiple|all)

These feature subspaces are based on our knowledge of the most re-
cent versions of the two frameworks. They are the result of us analyz-
ing their support for all individual tasks, in which the domain-specific
compound tasks of Table 2 break down. It is obvious from the result-
ing list of tasks, that both frameworks cater to a very similar spectrum
of use, as they both have their strengths in analyzing multivariate data
(“attrib(∗)”). They provide a high level of interactivity with brushing
and linking (“query”, “filter”) in multiple views. In addition, both are
strong in deriving data (“enrich”) and extraction of filtered datasets
for new analyses (“extract”), thus allowing for both “exploratory” and
“confirmatory” analyses. By providing scatterplot matrices (GGobi)
and parallel coordinates (GGobi, ComVis), overview tasks (“summa-
rize”) are supported as well. However, both have their weaknesses
in (geo-)spatial data representation (“attrib(∗space)”). Their differences
lie in their ability for analyzing temporal relations (“attrib(∗time)”), as
GGobi provides very restricted support to identify “trends”, while
ComVis does not provide support for “browsing” the data in the same
way as GGobi’s Grand Tour mechanism does.

These two feature subspaces can now be matched with the task de-
sign space of the domain to aid in a decision for or against a particular
framework. Both frameworks support the majority of tasks (for small
and medium sized datasets) from Table 2. For “analyzing trends”,
ComVis fits somewhat better due to its flexible time series visualiza-
tion techniques that directly support this task. Yet, tasks that are more
specific to climatological questions (“visual (climate) model valida-
tion”, “compare measurement with simulation data”) are not well sup-
ported by either of the two frameworks for their lack of geospatial vi-
sualization functionality. Furthermore, since both focus on exploratory
and confirmatory analyses, they are very restricted in “presenting data
for general audiences”.



The result of such an analysis may not only be a decision for or
against a particular visualization framework, but also the identification
of necessary plugins or extensions to broaden the scope of a framework
in just the direction that is necessary for a particular application. In the
case of pursuing climatological research with ComVis and GGobi, a
geospatial visualization technique and a package to produce high-end
presentation images have been identified as necessary extensions.

This example shows that our design space allows for a systematic
assessment of required functionalities of visualization tools with re-
spect to a domain-specific task subspace, i.e., the set of identified
domain-specific tasks. It thus provides a conceptual basis for further
visualization development and investment decisions in order to meet
the feature requirements. Such a systematic evaluation of which tasks
can be performed with which visualization tools is only one use of the
concretized domain-specific task subspace. Its other common practi-
cal use is to recommend visualization techniques that are suitable for
a given task. This is covered in the following section.

5.3 Choosing Suitable Visualization Techniques
Our design space, even in its domain-specific form, is not directly us-
able by visualization end users. To achieve this, it has to pass through
two additional stages: an initial encoding in a machine-readable for-
mat by the visualization developer and a subsequent fine-tuning and
concretization to match the requirements of a particular visualization
session by the visualization author. Towards this end, we provide three
different views on the abstract design space, each featuring a decreas-
ing amount of flexibility to match the particular role.

For the visualization developer, we provide a basic XML notation
to encode the 5-tuples of our tasks. This notation is a straightforward
realization of our design dimensions and an example is given in Fig. 1.
From the feedback provided by the two (geo-)visualization developers
that we interviewed as well, we gather that this is an appropriate rep-
resentation for developers, who are willing to work on such a lower
technical level to maintain the full flexibility.

Fig. 1. XML notation of three example tasks taken from Table 2.

This stands in contrast to the visualization author, who expects to
be handed a tool or customized editor to conduct his adaptations of
the predefined bare design space coded by the developer. The author
must translate the concrete specifications of planned or recurring anal-
ysis sessions/workflows to the design space. For this, we provide an
interface that permits him to perform and test his adaptation, but only
giving access to the design subspace that was created by the devel-
oper. Instances of this interface can be seen in Fig. 2, exemplified for
the task “compare variable distributions”. In a similar way, the author
can describe the capabilities of concrete visualization techniques by
listing the design options for which they are suited and for which not.
Both descriptions, the task description and the technique description
can then be matched using a simple rule-based mechanism, which we

Fig. 2. An authoring tool permits for simple customizations of existing
compound tasks. It gives access to the design dimensions and the de-
sign choices can be refined and altered to adapt a given compound task
(top). The compound task can also be renamed to be meaningful to the
domain users. Detailed descriptions are stored for each of the individ-
ual design choices, so that a description of a compound task can be
auto-generated from them and shown to the user (bottom).

have introduced in an earlier publication [39] and which has been con-
stantly used and improved in tight interplay with the users from the
climatology domain for more than five years.

The end result of this authoring step is presented to the user to aid
him in choosing a visualization technique based on his task. After
loading the data and choosing his desired visualization task, which is
now appropriately named and described so that the user can relate to
it, a simple list of suitable visualization techniques is presented for
him to choose from. This list is ordered by a suitability score that
is derived by the rule-based matching mechanism. Fig. 3 shows an
example for selecting appropriate 2D/2.5D visualization techniques
for climate model output data. The available six techniques are
provided to the user as a list that is ordered with respect to the
user-specified compound task “analyze outliers”. The “contribution”
column at the right provides further feedback on how well the aspects
of the chosen task match with the individual visualization techniques.
This provides a small degree of transparency on how the visualization
recommendation came about and thus improves the understanding of
the visualization techniques and the defined compound tasks.



Fig. 3. Visualization recommendations given in the end user interface
for the selection of 2D/2.5D visualization techniques based on the user-
specified compound task “analyze outliers”. It orders the available visu-
alizations according to their computed suitability score that is given in
the middle column. The right-most column shows the four most influen-
tial design requirements, ordered by the degree of their contribution to
the final score. This column is usually hidden for end users, but it helps
visualization authors and expert users to debug and further refine the
set of compound tasks that form the domain-specific task subspace.

Even if this short section of how we apply the design space to the
use case of climate impact research can only give a first glimpse of
the many possibilities that arise from it, it certainly demonstrates the
utility of our design space. While the recommendation of visualization
techniques remains a complex problem, we take our results as a first
indication that it is possible to derive recommendations if the task is
concretely specified and narrowed down to the context of a particular
application domain. Currently, we are still in the process of consoli-
dating and evaluating the derived task design space for climate impact
research, as over time feedback from more users is integrated and the
list of tasks is further concretized and extended. Yet already at this
stage, we can conclude that the promising results we have achieved
so far would not have been possible without having the general de-
sign space of visualization tasks as a conceptual foundation in which
to ground our approaches and software tools.

6 CONCLUSION AND FUTURE WORK

With our design space of visualization tasks, we have contributed a
first step towards concretizing the “colorful terminology swirl in this
domain” [47]. At least from the discussions among ourselves and with
the users from the application case, we can state that for us the con-
cept of tasks and the many different notions surrounding it have be-
come much clearer through this systematization. We have noticed that
having the design space as a structure to orient on and the different
design decisions as an agreed upon terminology enabled us to com-
municate about tasks more precisely and with less misunderstanding.
In addition, it gave us a firm handle on the otherwise overwhelming
amount of related work in this area. While they may need to be instan-

tiated differently for other applications or technical realizations, we
are confident that the five identified design dimensions will prove to
be a useful fragmentation of the otherwise somewhat blurry and over-
loaded notion of tasks. In future work, we plan to put our optimism in
this regard to a further test by applying our design space in the con-
text of other domains. Only then the design space will form a solid and
thoroughly tested basis for further extensions. One such extension that
we are eager to explore is an interaction design space for visualization
to be defined on top of it, which would provide a similar treatment for
the currently existing interaction taxonomies.
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