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Abstract

In this paper, we present a new approach to model coupling
that probably forms the methodological basis of a new generation
of Integrated Assessment models.  This approach respects the
knowledge and expertise that is embodied in existing models and
encourages their gradual evolution.  Modularity is the guiding
principle. Our approach is distinguished by the way modules are
coupled which is based on an interplay of a job control module, a
numerical coupling module, and a couple of stand-alone functional
modules. The numerical coupling module - the core component -
serves to treat the feedbacks between the functional modules. A
first implemented example that couples an economic and a climate
module by means of a two-phase meta-optimization is presented here.
The algorithm and mathematical structure behind are discussed as

well as important features such as convergence behavior and reliability.

keywords: integrated assessment, modularity, model coupling, cli-

mate change

1 Introduction

This paper is about modularization. We focus on modularization as a
method of Integrated Assessment (IA) modeling applied to global and cli-

mate change problems. Our approach of modularization differs from the
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traditional one which for instance is known from ecosystem modeling [1].
Above all, it differs from the current state of the art in IA modeling [2].

IA models combine knowledge from very different disciplines and try to
describe the cause-effect relationships between phenomenons from a synoptic
perspective [3, 4, 5]. Reduced-form models are used, in general, for each of
the components of an IA model. Nevertheless, the range of complexity
covered in TA models is rather broad. On the one hand, there are compact
models that have only a few pages of code, on the other hand, there are
detailed process-oriented models that comprise almost 100 person-years of
research and development. Prominent examples are the DICE model [6] and
the IMAGE model [7], respectively.

IA studies, applied to global and climate change problems, are driven by
varying stakeholder questions. In order to answer these questions, a level of
flexibility is needed that can hardly be provided by traditional IA models.
The typical IA model is a more or less monolithic model, in which different
components, programmed in the same programming language, are strongly
interlinked with each other. The software development is tightly managed
within a single institution. A counterexample is presented by Messner and
Schrattenholzer [8].

Referring to other authors, Janssen [2] summarized some general limita-
tions and drawbacks of IA models. Among other things he identified a lack
of attention for methodological issues, which is due to the ad hoc policy-
oriented focus of the modelers. Janssen mainly criticized the application of
simplified, often linearized optimization models which are limited in repre-
senting a number of relevant processes. He mostly argued that advances
in TA modeling will result from applying a new type of model (evolutionary
models or adaptive complex system models) and new algorithms. We pursue
another way of advancing the methodology of IA modeling. We accept that
different research groups develop and use different model types. Since we
recognize, simultaneously, that attempts to integrate different models are
rare [9], we intend to provide a new method of model coupling to ease the
exchange of modules.

Based on the concept outlined in [10], a modular approach to IA mod-
eling is presented. Our vision is a set of modules, distributed over different

places, that can be combined in a flexible manner in order to construct
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answers on different stakeholder questions .

We start with a description of the general architecture of the modular
approach (section 2) and a brief discussion about decomposition and cou-
pling methods (section 3). For a particular configuration, we present the
mathematical structure of the composing modules (section 4) and consider
the numerical coupling algorithm in more detail (section 5). Before results
of model runs are presented (section 7), we discuss some characteristics of
the implementation (section 6). We conclude by adding some remarks on

how the tools presented can further be applied.

2 General architecture

We first want to put attention to the distinction between modules and mod-
els. Traditionally, functional modules represent parts of models that are not
designed to run as self-contained tools. In our approach, however, functional
modules are distinguished by their ability to run as stand-alone models. Nev-
ertheless, we call them modules in order to emphasize the modularity of our
approach. In this section, the term 'model’ is applied only to the integrated
framework of modules. We conceptualized a modular approach with the

following types of modules being distinguished:

e knowledge domain modules (subdivided into functional modules and

data modules),
e job control module,

e numerical coupling modules.

!Starting with discussions at PTK and the European Climate Forum [10], followed
by similar thinking [11] at the Tyndall Centre (UK), at CIRED (Paris), and other
institutions, an initiative called CIAM"™ (Community Integrated Assessment Modules)
has been set up to carry out modular IA modeling. CIAM™ is a framework within
which various configurations of model experiments can be performed with modules
produced and implemented on different machines and in different software environ-
ments. In particular, modules can be combined across different institutions - a key
requirement for further progress in integrated modeling. CIAM"™ builds on a range
of advanced software tools for coupling heterogeneous modules (see www.european-
climate-forum.net/documents.html/,  www.pik-potsdam.de/~linstead/, ~www.centre-
cired.fr/docs/rapportsynth.pdf, www.cs.man.ac.uk/cncsoftiam.pl/). This paper presents
results attained with the PIK software system. This includes the first cross-institutional

CIAM"™ modeling result, since a Tyndall Centre module has been included.
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The job control module governs and maintains the communication be-
tween the modules. It manages the data transfer between modules and calls
them to run. Data are transferred via interface data files and via sock-
ets. This allows not only the coupling of modules programmed in different
languages, but also offers platform independence and bears the potential
of module coupling via internet. Data modules represent the data bases of
several functional modules. They differ from the interface data files. Knowl-
edge domain modules are linked with each other and with the numerical
coupling modules by means of interface data files. These files do not repre-
sent modules because of their temporary nature. However, once an interface
is defined for a module by specifying what the module gets from and puts
into the data files, one can replace the current module, which represents an
instance of the respective generic module, by another module as long as it
meets the requirements of this interface. This provides the key to enhance
expansibility and transparency of IA models as discussed by Jaeger et al.
[10].

Another key feature of the modular architecture is the autonomy of
knowledge domain modules, which therefore can completely be developed,
tested and run in a separate way. New challenges, however, arise when we
try to couple these modules. In particular, the task is: (1) to cross different
programming languages, hardware platforms and remote networks and (2)
to capture feedbacks between modules. The focus here is on the latter. We
will make a major contribution to tackle this task.

The treatment of feedbacks is fundamental in explaining the differences
of the modular and the traditional approach to Integrated Assessment.
Whereas in traditional integrated models functional modules interact be-
tween or within each time step, the modular approach runs each module
separately for the entire time horizon. In order to capture the major feed-
back effects that still exist within each time step, the single modules have
to be run iteratively with some information being exchanged between them.

The numerical coupling module forms the core of the modular approach.
It serves to capture feedbacks and balance interactions between the knowl-
edge domain modules. For different kinds of modules to be linked and dif-
ferent kinds of feedbacks to be treated, different numerical coupling modules
are required. Nevertheless, there are at least classes of configurations (i.e.

problem-specific compositions of modules) that demand for similar numer-
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ical coupling modules. We shall put more emphasis on this generalization
later on. The first instance of the numerical coupling module was devel-
oped to handle normative feedbacks between a simulation module and an
intertemporal optimization module.

The implemented examples of the modular approach represent applica-
tions that can also be carried out by the traditional approach. We use the
optimal solution of the original model (traditionally integrated) as a bench-
mark. The task is to show that the modular approach will come up with

the same result as the original integrated model.

3 Decomposition and coupling methods

Recent attempts to enhance the methodological basis of IA modeling depart
from advanced optimization algorithms that simultaneously solve the actual
optimization task (e.g. welfare maximization within the economic subsys-
tem) as well as the coupling task (e.g. integration of a climate system).
Janssen [2, 12] discussed the following methods: Sequential Reduced-System
Programming, Penalty Method [13], Quadratic Programming, and Genetic
Algorithms. The issue of efficient algorithms is quite important. However,
in contrast to the idea pursued by Janssen, the idea of the modular approach
is to handle the external linkages between modules strictly separated from
the internal linkages within each module.

The technique of the modular approach to couple modules can be linked
to methods known from Mathematical Programming. When dealing with
large scale systems or with multiobjective systems [14], decomposition meth-
ods were applied. On a higher level, a control entity coordinates the local
optimal solutions in an iterative fashion in order to achieve the overall op-
timum. From the decomposition procedure, a master program [15] or a
coordination problem [16] result that bears a resemblance with the numer-
ical coupling module specified below. Similar approaches are also known
from hierarchical control and optimization [17]. The Goal Coordination
Approach presented by Singh [17] is representative for a broad range of de-
composition methods. It splits the original joint optimization problem into
single optimization problems based on the duality theorems (i.e. the equiv-
alence of the optimal solutions of the primal and dual problem). While the

decentralized systems optimize with given values for the Lagrange multipli-
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ers, the coordination system is confronted with the task to determine new
values for the Lagrange multipliers based on the solution of the decentral-
ized systems. Singh demonstrated that this Goal Coordination Approach
will lead to the optimal solution if there is no duality gap. Similar to the
Goal Coordination approach, the approach here represents a gradient-based
method, but dissimilar to that, it is not an infeasible method, i.e. the first
feasible solution found is not the optimum one.

Most approaches that handle decomposed systems numeri-
cally/mathematically modify the objective functions of the subsystems (i.e.
knowledge domain modules). We, in contrast, will present an approach
based on adding bounds. An equivalence between both is most likely, which
has, however, not been tested. Our approach resulted from the intuitional
attempt to leave the objective functions of the subsystems, and hence the
decision (control) characteristics and the intrinsic dynamics intact.

The application of a numerical coupling algorithm as an autonomous
module represents an innovative feature in IA modeling. Bahn et al. [18, 19]
reported about such approach within an application close to the IA domain.
Bahn et al. were dealing with a multi-region problem where the regions are
interconnected by a global target to curb greenhouse gas emissions. While
they used the Analytic Center Cutting Plane Method - an interior point
method - for numerical solution, the decomposition approach is similar to
that of Singh described above. This approach is different from the joint
maximization approach [20] which otherwise is used in multi-region model-
ing. Our numerical coupling module does not serve to coordinate different
regions, but to link the dynamics of an economic module and a climate
module. While this link is due to a climate guard-rail which is similar to
the global emissions reduction target with Bahn et al., the coupling task is
different because the delayed reaction of the climate system on the emis-
sions has to be taken into account. This coupling of an optimization and a

simulation model is novel.

4 Specification of modules

The problem setting as well as single modules are adopted from the ICLIPS
framework (see Toth et al. [21]). There is an economic module (control sys-

tem) that maximizes intertemporal welfare and a climate module (dynamic
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system) that transforms a greenhouse gas emission trajectory, coming from
the economic module, into a trajectory of global mean temperature (GMT).
Within the business-as-usual evolution, the economic module produces emis-
sions that would lead to a rise of the GMT by more than 4°C above the
preindustrial level in the long run. A normative guard-rail is introduced
that shall prevent the GMT change to exceed 2°C within the considered
time horizon.

According to the traditional approach, the economic system and the cli-
mate system would be coupled by representing the dynamics of the climate
system as constraints of the intertemporal optimizing framework. Conse-
quently, the guard-rail would be treated as an additional constraint to the
dynamics of a joint economy-climate system (cf. [9, 22]). This is quite dif-
ferent within the modular approach. The question arises how the economic
module gets the necessary information in order to reduce emissions when
both modules are running separately. It is by no means sufficient to just
reduce the emissions, since the economic efficiency has to be maintained,
while the climate system is kept below the threshold.

The newly developed numerical coupling module, called Meta-Optimizer,
will give an answer on the above question. In order to capture feedbacks be-
tween the climate and the economic module, that are caused by the climate
guard-rail, both domain modules and the Meta-Optimizer are processed it-
eratively in a sequential manner. Within each iteration, the Meta-Optimizer
either activates the phase A or the phase B algorithm. While phase A aims
at finding an emission trajectory that keeps the climate guard-rail, phase B
allows an expansion of emissions in order to improve welfare. The iterative
adjustment process is carried out by means of a barrier, representing an
upper bound, on the actual interface variable - the COy emissions.

Before we are going to present the mathematical model of the Meta-
Optimizer, we summarize the generic mathematical structure of the eco-
nomic and climate module. The decision horizon consists of a finite number
of periods. Splitting them into increasingly shorter sub-periods approxi-
mates continuous time with a finite decision horizon. Thus, although the
modules are discrete in nature, we use the continuous form of represent-
ing time. Symbols for time derivatives are to be understood in terms of
difference equations.

Throughout the model presentation, we use the following indices:
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Indices/sets:
t, 7, T, X indices, sets time periods
i, I index, set regions

r, Q index, set iterations.

4.1 Economy module

The major component of the economic module is an economic growth model

that includes a welfare (U) maximizing objective function:

Maz U" =35 F1C7(0)] - e 1)

i=1t=1
This welfare function adds up the utilities of the regions’ representative
households. Utility is a function f of the consumption path C(t) subject to
discounting by discount rate p. For f holds

f'IC]>0; flC])" <o.

A production function g with capital K as production factor generates
the gross product. We assume

J[K]>0; ¢"[K]<0; g[0]=0.

In each period, the regions have to decide which share of gross product
to consume or to invest (control variable I):

glET (1)) = LT (t) + Cf (t) + h[E] (¢)). (2)

Moreover, some part of the gross product might be spent for climate
protection. This expenditure is represented by the mitigation cost h as
a function of COy emission change E (negative for emission reduction).
Emission reduction (representing an additional control variable) is measured
as the deviation from a given business-as-usual emission baseline v. For h

we assuime
W[E] <0, W'[E]>0 for E<0

h[E] =0 for E(t) > 0.
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Capital accumulation follows the standard capital stock equation of mo-
tion:
K7 (t) = I} (t) — 6K (1). (3)

with the depreciation rate §. The associated initial condition assigns the
initial value k; to the capital stock of the first period:

KI(0) = k;. (4)

Total CO2 emission is added up from regional emissions:
n
B(t) = E(1) (5)
i=1
and is restricted by the emission barrier E:

0< E"(t) < E"(t). (6)

The emission barrier for the first iteration is assumed to be initialized
by the business-as-usual emission baseline:

E'(t) = v(t). (7)

The last two conditions are supplements that serve to support the cou-
pling procedure. For (1)-(7) it holds

teTiel,req.

4.2 Climate module

The climate module shall be described by equations for the dynamics of the
representative climate state vector W and of the atmospheric greenhouse
gas concentration B:

=T

W (t) = o[W'(t), B" ()] (8)

B (t) = 0[B"(t), E"(t), F"(1)]. (9)

The concentration variable is driven by COs emission F, provided by

the economic module, and other greenhouse gas emissions F. The following

initial conditions (with initial climate system vector w and initial greenhouse

gas concentration b) hold:



Modular approach to IA modeling 10

W (0) = w (10)

B"(0) =b. (11)
Furthermore, we assume that the dynamics of the other greenhouse gases
are given by exogenous scenarios a(t):
F"(t) = a(t). (12)
For (8)-(12) it holds
teT,req.
4.3 Meta-Optimizer

In this subsection, we present only the mathematical structure of the Meta-
Optimizer. A detailed discussion follows in the next section.

Additional indices/sets:

Q1, Q2 sets phase A and phase B iterations
q index last iteration of phase A before switching to phase B
p index last iteration of phase B

Parameters (all positive):

real small number
n real convergence criterion
I} real adjustment parameter
vy real adjustment parameter
w real climate guard-rail
1 real lower bound of emission barrier
Variables:
E(t) real upper boundary of CO5 emissions (emission barrier)
W(t) real GMT change related to preindustrial level
P real degree of environmental goal (i.e. guard-rail) violation
R(t) real percentage retreat of emission barrier
G real goal of phase B (potential welfare increase)
Z(t) real increase of emission barrier in phase B
D(t) real retreat of emission barrier
u(t) real welfare sensitivity (dual variable) of emission constraint
Functions:

10) function measurement of environmental goal attainment
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4.3.1 Phase A

P =S [WT(t) — o]

teX
R'(t) = [1/(1+¢"(P")] + [L — 1/(1 + ¢"(P"))]z T}
E™(t) = max[l, E"(t) - R"(t)]
Dr(t) = B'+i(t) — E7 (1)
For (11)-(16) it holds:

teT,re@,@Q1 CQ,XCT, X ={t|jW"(t) >w}.

4.3.2 Phase B

Max G" = in(t) (" (t) —€)
t=1

s.t.

S 70 <630 D)

t=1 t=1

127(0)] < - max[DY(r)

E™TYt) = E"(t)+ Z"(t)
Z7(t) > 0

Terminal Condition
m
Y IEPFN () — EP(t)] < n
t=1

For (17)-(22) it holds:

teTlT,TeT,r € @Qa,Q2 C Q.

11

(17)

(22)
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IEEEEN

4{ r=j+k }_>1 SOLVE (1) - (7) \

‘ SOLVE (8) - (12) ‘

max W'(t) > w ?
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< j=j+1 |—{ SOLVE(13)-(16) |
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Figure 1: Meta-optimizing algorithm

12
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5 Iteration algorithm

Based on the indexation and numeration of the previous section, Figure 1

illustrates the iteration algorithm. It can be summarized as follows:

1. set initial emission barrier

2. retreat emission barrier as long as climate guard-rail is violated
3. relax emission barrier in order to improve welfare

4. if climate guard-rail is violated again, go back to 2

5. test convergence and stop.

The newly introduced emission barrier E(t) that constraints emission
dynamics within the economic module (eq. 6), and its shadow prices pu(t)
represent the most essential elements of the coupling procedure. Within
each iteration, the Meta-Optimizer determines a new emission barrier (eq.
15 and eq. 20, respectively) by either activating the phase A algorithm or
the phase B algorithm.

Phase A (retreat phase) aims at finding an emission trajectory that
keeps the climate goal. The emission barrier is gradually lowered, assuming
that OWay/OF > 0 holds (with Wy, representing the maximum of GMT
change). The functional form of the applied retreat function (eq. 14) serves
to determine an appropriate decline of the emission barrier which in turn
depends on the deviation of the actual temperature change trajectory from
the climate guard-rail (eq. 13). Since the GMT change in each point of time
does not only depend on the emission in this time period but to a greater
extent on the entire historical emission path, it is not appropriate to adjust
the emission barrier synchronously in time with the deviation measure. In-
stead, deviations are accumulated in variable P. Over different domains of P
and different co-domains of ¢, respectively, the process of barrier adjustment
can be carried out flexibly (see Figure 2).

We devised the retreat function heuristically. Its functional form is not
decisive for finding the optimal solution (see below), but it contributes to
reduce the number of iterations to find this optimum. In this application,

we further specify:
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0 : P>25
300 — 10P : P <25,

that means

and
15w < ¢ < 300 + 15w.

15

R(Y)

Figure 2: Retreat function

Assuming w=2, ¢ is between 30 and 330. Figure 3 shows the impact of
these ¢-values on the retreat of a baseline barrier (with At=5). In general, if
the level of climate goal violation P is rather big (and ¢ is close to its lower
boundary), the emission barrier is lowered significantly. This specification,
however, excludes small values for ¢ which actually cause significant retreats
already in the short term (see Figure 3 for ¢=1), and which therefore might
be more effective in order to meet the climate goal. The rationale here is
that the economy is less constrained when emissions are more restricted in
the long term. This specification leads to less iterations in phase B as well
as in total. Consequently, within each iteration, the barrier retreat in later
model periods is higher than in initial periods. And if P decreases, retreats

will decrease too.
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Figure 3: Retreat of emission barrier

Phase A ends when an emission trajectory is generated by the economic
module which corresponds with a GMT trajectory that fulfills the climate
constraint. Due to the rather non-linear interaction of the GMT trajectory
and the evolution of emissions, a multitude of emission trajectories can meet
the climate constraint. This gives some space for improving welfare. Phase
B (relaxation phase) aims at finding the emission trajectory that keeps the
climate constraint with highest economic welfare (the original objective of
the economic module). Therefore, the algorithm relaxes the emission barrier
in periods with high welfare sensitivities. The objective function in phase B
(eq. 17) maximizes the product of the barrier increase and the shadow prices
of the respective barrier points (as determined by the economic module)
cumulated over the entire time horizon. The change of the emission barrier
in each time period as well as the cumulated amount of barrier relaxations
is limited (eq. 18 and eq. 19) to a certain share of the single maximum
decrease and the cumulated decrease of the emission barrier, as determined
by the last iteration in phase A (eq. 16). Convergence is tested in equation
(22).

We now demonstrate that in the absence of multiple optima the pre-
sented iteration algorithm will yield an optimal solution which corresponds

to the solution of the analogous joint economy-climate model (the joint
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model treats the dynamics of the climate system as a constraint of the in-
tertemporal optimization). Let us introduce U* as the optimal solution
of the joint optimization problem, U as the optimal solution of the un-
constrained economic model (1)-(5), and U as the optimal solution of the
constrained economic system (1)-(7) with E being the result of (8)-(12) and
(13)-(22). The following relation holds:

U<U*<U.

First, the phase A algorithm serves to bring the system into the feasible
solution space (W (t) < w). Then, given the convex model structure of the
economic module, in phase B it holds (remember index p representing the

last iteration in phase B):

ET' ) >E )Vt = U >U",

and if
Jt(u"(t) >0) = U >U".
Hence, if
Ft(p"(t) > 0) V(r <p)
then for

(1) : Ur-U*
r—p = (2) : pt)=0Vt
(3) : FWV"(t) > w).

In case (1) the corresponding optimal solution is found. This also ap-
plies to case (2), because if all dual variables p equal to zero, than, due to
the Kuhn-Tucker conditions [25, 26], the emission boundary (eq. 6) is no
longer binding and the achieved optimal solution is equivalent to that of the
unconstrained economic model. Taking the above relationship between U*,

U, and U into account, we get

U=U = U="U*

In case (3) the algorithm switches back to phase A to search for a new

feasible solution. If it can be guaranteed that each re-entry into phase B
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comes along with a higher welfare, U* will be reached iteratively 2. Assum-
ing infinitesimal changes of F(t), this is the case here. While each relaxation
step optimally increases welfare, each retreat step of the same magnitude
reduces the welfare, no matter what retreat function is applied, by a lower
amount or the same amount at maximum. Convergence is assured since the
latter can be excluded for 8 < 1 in constraint (18).
If the assumption
Ft(p"(t) > 0)

is not met, then again, since p cannot become negative, the conclusion of
case (2) will apply.

Infinitesimal changes of the emission barrier E(t) will result from 8 << 1.
In practice, however, 3 as well as v in constraints (18) and (19) will be chosen
in a way that changes F(t) to discrete amounts. This helps to converge to the
optimal solution in reasonable time. But if constraint (18) is not met as an
equation, a positive value could be assigned to some Z"(7), although p(7)=0.
Such a relaxation in periods without sensitivity could prevent convergence.
With subtracting epsilon (¢ >0) from the shadow prices in equation (17),
this, however, cannot happen, since this would have a negative impact on
the objective function.

Several modifications of the algorithm have been tested:
e update D in phase B

e replace max[D4(t)] in (19) by D9(t)

e allow Z(t) to become negative.

With respect to the convergence behavior, all of them are dominated by
the specification presented in section 4. The algorithm is, however, still
not optimized with respect to the speed of convergence. A fine-tuning of
the parameters (and possibly an adjustment of function ¢) will become
necessary, if the climate guard-rail is varied and if different instances of the
generic domain modules are applied. Nevertheless, as we shall demonstrate

later, the same initialization of parameters works for different settings. The

2Note that convergence towards U* cannot be guaranteed, if SOz emissions become
an additional interface variable controlled by the economic actors. Due to the opposite
warming effect of CO2 and SOz, multiple optima may occur. This is especially critical, if

guard-rails in the form of temperature change rates are considered.
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characteristic feature of the convergence behavior of the algorithm is the
fact that a good approximation of the final solution can be achieved after
a few repeated phase A and phase B iterations. A more accurate solution
will result from reducing parameter 1. This, however, is at the cost of a

progressively increasing number of iterations and therefore computing time.

6 Implementation

The ICLIPS climate model (see [23]) and aggregated economic model - called
ICEMODE (see [24]) - represent the instances of the climate and economic
module 3. Changes of the original mathematical structure of both mod-
els are restricted to the insertion of an emission barrier into the economic
model. Figure 4 shows the ensemble of modules (here called CIAM™ con-
figuration?) and the respective interface data files. The three interface data
files include an emission barrier trajectory (contr.dat), an emission trajec-
tory (totemiss.dat), and a GMT change trajectory (temp.dat). The file
'totemiss.dat’ contains also the shadow price information of the emission
barrier constraint and the value of the welfare function. The instance of
the job control module, called CIAM™ driver, operates in the background.
The driver takes care that the modules start when input data have changed.
The Meta-Optimizer (for the GAMS program code see Appendix) checks
whether the solutions converge and terminal conditions are met. If so, then
the CIAM™ driver stops the computation. Otherwise, the Meta-Optimizer
determines a new emission barrier.

While the number of iterations mainly depends on the parameters 3
and v, and the tolerance criterion 7, the computation time depends on
the complexity of the knowledge domain modules, the numerical algorithms
and the hardware platform. The multiregional economic module is the most
time-consuming module in our setting due to its intertemporal optimization
approach. Within each CIAM" iteration, thousands of numerical iterations
are needed to solve the economic optimization module. All modules are

programmed in GAMS and use the incorporated algorithms for solving non-

3While the climate model runs until 2200 (in five-year time steps), ICEMODE deter-
mines the economic dynamics (investment, consumption) and the CO2 emissions until

2110 only. Emissions are kept constant thereafter.
4CIAM™ is the abbreviation for Community Integrated Assessment Modules.
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ICEMODE v totemiss dat » CLIMATE
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A
META- | GM temperature

OPTIMIZER

Figure 4: CIAM" structure

linear programming problems [27, 28] (see also www.gams.com), besides
the CIAM™ driver which is coded in PYTHON. Running all modules on a
workstation (IBM RS6000), each CIAM" iteration takes around 12 minutes.
Computing time is reduced to less than 2 minutes for each iteration, when
running the economy module on a super parallel computer.

Before looking at some results, we make an additional step forward. We
made use of the modular architecture which allows the replacement of a
domain module without interfering with the code of the other modules. We
replaced the ICLIPS climate module by the MAGICC model [29, 30, 31].
We integrated a version of MAGICC which was applied for studies of the
IPCC as documented in the Third Assessment Report on Climate Change
[32]. MAGICC is programmed in FORTRAN. It is not our intention to
discuss the differences of model results caused by different climate modules
in detail. We just want to demonstrate the practicability of the underlying

key feature of modularity.

7 Results

Analyzing the results, our major focus is on convergence and reliability.
As to the latter, we consider results from the original ICLIPS model which
hard-wires the economic and climate module, as benchmark. This, of course,
only applies to CIAM" runs with the ICLIPS climate module being included.
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Furthermore, the comparison of the two instances of this CIAM"™ configu-
ration, which are distinguished by the climate module employed, will allow
for drawing some conclusions with respect to reliability. We ran the model

within the given settings for two different normative climate guard-rails:

Figure 5 and 6 demonstrate convergence for all model runs after a dif-
ferent number of iterations. Convergence is measured in terms of welfare
and in terms of the maximum of the temperature change time series which
actually should be constrained to the normatively given guard-rail. There
is a similar convergence pattern for both CIAM" variants. Not surpris-
ingly, convergence takes the more time the more significant the divergence
between the climate guard-rail and the business-as-usual evolution of the
climate system is. With a guard-rail of 2.0°C, it needs around 9 and 12
CIAM™ iterations, respectively, to bring the economic system into a state
where it, for the first time, produces emissions that allow the climate sys-
tem to stay below the temperature threshold over the entire time horizon. A
few CIAM" iterations follow that, due to relaxation of the emission barrier,
result in higher welfare, but again drive the climate system out of the per-
mitted space. The zigzag pattern indicates frequent switches between phase
A and phase B. However, it takes always just one CIAM" iteration to bring
the system back into the feasible space. But increasing the welfare becomes
harder and harder. This is best documented in Figure 6 where it can be
seen that between the 13th and 30th iteration, the welfare increments are
most significant.

With a guard-rail of 3°C, the feasible climate space is reached already af-
ter less than 10 iterations. Convergence can be documented after almost 35
iterations and few switches between phase A and phase B. We prolonged the
iteration cycle by narrowing the tolerance criterion 1. The relaxation phases
become longer, the differences between the temperature change maximums
become smaller (see Figure 5). Moreover, there is hardly any increment of
welfare at the end of the consecutive phases B (see Figure 6). In addition
to the long relaxation phases, the variant with the least strict climate goal

is distinguished by the deep fall back of the maximum of the temperature
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Figure 5: Convergence of GMT change maximum (ICM: CIAM" run with
the ICLIPS climate module; MAG: CIAM" run with the MAGICC module)
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Figure 6: Convergence of welfare measure (ICM: CIAM™ run with the
ICLIPS climate module; MAG: CIAM"” run with the MAGICC module)
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change trajectory when switching from phase A to phase B. This is due to
the generally higher level of the emission barrier which, subject to a similar
percentage retreat factor, yields a more substantial decline. Nevertheless,
the results demonstrate that the coupling algorithm can be applied to dif-
ferent guard-rails. Further experiments have shown that this even applies

to settings with guard-rails that vary over time.

25 T T T
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CIAM(ICM): 0= 2.0°C s
20 CIAM(ICM): w=3.0°C :
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CIAM(MAG): w=3.0°C
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O 1 1 1 1 1

2000 2020 2040 2060 2080 2100

Figure 7: Global C O3 emissions

The results that we obtained from the CIAM" runs with the ICLIPS cli-
mate module are remarkably close to those of the original coupled climate-
economy model run. The welfare values are 12.7055 and 12.7002, respec-
tively, for the ICLIPS model and 12.7058 and 12.6996, respectively, for the
CIAM™ model. Moreover, Figure 7 demonstrates a correspondence in the
resulting emission trajectories. Such a correspondence cannot be expected
from CTAM" runs with the MAGICC climate module. Due to differences
in the internal dynamics of the climate modules (resulting in a higher cli-
mate sensitivity of MAGICC), the respective optimal emission trajectories
deviate from each other. Nevertheless, the same convergence pattern (as
documented in Figure 5 and Figure 6) indicates the robustness of the cou-

pling algorithm for different instances of the climate domain module.
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8 Conclusions and perspectives

We presented a new approach to model coupling that consequently pursued
the idea of modularity. To our knowledge, the first application of this pio-
neering concept for the coupled climate-economy system is presented in this
paper. Together with the conceptional outline in [10], this approach opens
a new and more efficient way of international division of labor in carrying
out Integrated Assessment studies.

Besides of the technical details, the following core elements of the mod-

ular approach can be summarized:

e a job control module which governs the communication between dif-
ferent modules and guarantees independency from programming lan-

guages, operating systems and hardware platforms

e a numerical coupling module which is able to treat the feedbacks be-

tween autonomous functional modules.

Our first experiments show encouraging results for a particular config-
uration. The reliability of our approach was demonstrated by the close
correspondence of the results from alternative module settings and with
those of the traditional approach. Some more general conclusions can also
be drawn. The iterative algorithm of module coupling that we developed is
characterized by two features that can likely be applied to other problems
and configurations as well. First, this relates to the separation into two
different phases which help to reconcile different objectives (climate goal
and economic goal) that can be ordered lexically. Second, this applies to
the introduction of a barrier for the actual interface variable between the
functional modules. Adjusting this barrier seems to be a promising way of
capturing feedbacks. The mechanics of our algorithm is mainly based on
this adjustment process.

While at a first glance the modular approach seems to be restricted only
by the computational power, other limits exist and have to be kept in mind.
Non-convex module structures will challenge the robustness of the coupling
algorithm. Furthermore, each module represents a model which has its own
boundary conditions. Due to meta-optimization and data exchange, there is

a permanent change in the boundary conditions that defy the control of the
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modeler or model user. The change of boundary conditions may cause the
models to fail. The modular approach can therefore only be controlled, if
there is a limited number of interface variables between the modules. Highly
interconnected modules have to be treated as a single module, hence must
be developed and computed simultaneously.

While the combination and easy replacement of modules that will be
developed by different research groups autonomously is the objective of
the modular approach, one cannot expect an universal coupling algorithm
that is applicable to any kind of configuration. Future research has
to demonstrate the practicability of the modular approach for different
configurations. This demands for the investigation of module settings that
include combined feedbacks (the present approach only treats a normative
feedback), of module settings with multiple interface variables, and of
problems with single and multiple interface variables within configurations

of more than two knowledge domain modules.
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A  GAMS program

$TITLE Meta-Optimizer for economic-climate system

o
SETS
e
t time
/1990,1995,2000,2005,2010,2015,2020,2025,2030,2035,2040,2045,2050, 2055,
2060,2065,2070,2075,2080,2085,2090,2095,2100,2105,2110,2115,2120,2125,2130,
2135,2140,2145,2150,2155,2160,2165,2170,2175,2180,2185,2190,2195,2200/
jr atmospheric gases released by industrial processes /co2,s02/

R S Sy

* includefiles
*++++ttttt b+

$include d:\piam\control\temp.dat
$include d:\piam\control\baseline.dat
$include d:\piam\control\totemiss.dat
$include d:\piam\control\zf.dat
$include d:\piam\control\contr.dat

* temp.dat provides the temperature time series T2M(t)

* baseline.dat provides the global emission baseline EMT(t,jr) - only first iteration
* totemiss.dat provides the global emission EMT(t,jr) - all but the first iteration

* and the welfare gradients of emissions barrier grd(t)

* zf.dat provides the current welfare value zf

*x contr.dat provides the barrier values d(t), db(t), zb(t), the barrier change value
* dta(t), and the auxiliary parameter aux

o
SCALARS
e o
epsilon tolerance parameter /0.001/
eta convergence parameter /0.2/
elo minimum of total emission /0.1/
beta adjustment parameter /0.4/
gamma adjustment parameter /0.4/
tempmax normatively set temperature guard-rail /2.0/
:
R o S
PARAMETERS
o B
P environmental utility
Phi argument of retreat function
diff (t) distance between actual temperature and temperature guard-rail
R(t) reduction operator
emuplo (t) lower bound of emission barrier (ensure feasibility)
maxdta maximum recent barrier change
maxdiff maximum distance from guard-rail
maxtemp maximum of temperature trajectory
ZDA(t) emission barrier of previous iteration
ZD(t) current emission barrier
ZB(t) benchmark emission trajectory from previuos phase B
dev change of emission barrier
bin stop parameter

’

S n S SR
* Initialisation/Computing of P
R E N S
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* ¥ ¥ ¥ ¥

maxtemp=0;
P=0;
dev=0;

emuplo("1990")=7.0411;
emuplo ("1995")=7.8420;

the lower emission bound is derived from an annual emission reduction of 4
LOOP(t $(ord(t)>2), emuplo(t)=0.86*emuplo(t-1));

first "old" barrier is initialzed by the value of the emission baseline (second
part of the addend)
ZDA(t)=d (t)+BEMT(t,"c02")$(d(t)=0);

diff (t)=T2M(t)-tempmax;
loop(t,
if (diff(t)>0,
P=P+diff (t);
else
ZD(t)=ZDA(t);

)

So far P represents the cumulated positive deviation of the current temperature
trajectory from the guard-rail. Now it is heuristically transformed into a
nondimensional environmental utility measure. It is further adjusted depended
on the guard-rail level in order to become a sensitive argument of the retreat
function below.

P=15*tempmax+max (0,300-15%P) ;
Phi = 15%tempmax + P;

maxdiff=diff("1990");
Loop (t,maxdiff=max(diff (t),maxdiff));

L T o

*.

Phase A (Retreat)

R L S S S R D B ns

*

*

*

IF (maxdiff > epsilon,

here comes the retreat function
R(t)=(1/(14Phi))+(1-1/(Phi+1)) **ord(t);
display R;

compute a new emission barrier
ZD("1990")=ZDA("1990") ;
LOOP(t, ZD(t)=R(t)*ZDA(t);
IF (zd(t)<elo, zd(t)=elo);
IF (zd(t)<emuplo(t), zd(t)=emuplo(t));
)5

store last barrier from phase B
if (aux=1,
db(t)=2zb(t);
);

aux=0;
bin=1;
dta(t)=zda(t)-zd(t);
display zd,dta;

);

maxdta=0;
Loop (t,maxdta=max(dta(t),maxdta));



Modular approach to IA modeling 30

*++++tttttt R

* Meta-Optimization/Phase B
R E S S S

VARIABLES
GF
zt hypothetical increase of the emission threshold

5
Positive Variable zt;

zt.1(t)=1;
zt . £x("1990")=0;
zt . £x("1995")=0;

EQUATIONS
objective
ZTsum
ZTsing(t)

objective .. GF =e= sum(t, zt(t)*(grd(t)-epsilon));
ZTsum.. sum(t, zt(t)) =L= beta * sum(t, dta(t));
ZTsing(t) .. abs(zt(t)) =L= gamma * maxdta;

MODEL CONTROL /ALL/;

OPTION iterlim=500;
OPTION reslim=2000;
OPTION sysout=off;
OPTION solprint=on;

SOLVE CONTROL USING dnlp MAXIMIZING GF;

o s

* Phase B/Evaluation
e

IF (maxdiff le epsilon,

* compute new emission barrier
ZD(t)=ZDA(t)+zt.1(t);
bin=1;
LOOP(t,
IF (zd(t)<elo, zd(t)=elo);
IF (zd(t)<emuplo(t), zd(t)=emuplo(t));
);

* compute convergence measure dev and update zb by current emission trajectory
IF ((abs(maxdiff)<epsilon),
dev=sum(t,abs(emt (t,"co2")-db(t)));
zb(t)=emt (t,"co2");
aux=1;

)

*+++++++++HH+
* Termination condition
*+++++++++Htt 4

IF ((aux=1) and (dev < eta) and (abs(maxdiff)<epsilon),
bin=0;
)5

)



