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Tempo-induced transitions in polyrhythmic hand movements
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We investigate the cognitive control in polyrhythmic hand movements as a model paradigm for bimanual
coordination. Using a symbolic coding of the recorded time series, we demonstrate the existence of qualitative
transitions induced by experimental manipulation of the tempo. A nonlinear model with delayed feedback
control is proposed, which accounts for these dynamical transitions in terms of bifurcations resulting from
variation of the external control parameter. Furthermore, it is shown that transitions can also be observed due
to fluctuations in the timing control level. We conclude that the complexity of coordinated bimanual move-
ments results from interactions between nonlinear control mechanisms with delayed feedback and stochastic
timing components.S1063-651X%97)05211-7

PACS numbdps): 87.10+e, 87.45.Dr, 05.45:b

I. INTRODUCTION using nonlinear methods of data analysis8] is promising
for gaining new insight into the complex interactions be-
The analysis of dynamical processes underlying braifween subsystems and the resulting dynamical behavior. The
functioning and behavior has evolved into a field of exten-more traditional approach to the analysis of human move-
sive research. In particular, the theory of complex system&€nttiming has employed linear models of covariance struc-
[1] is a promising contribution to these problems from thelures between the produced time mterv[eﬂg?,lq. Related
viewpoint of theoretical physics. This approach is based oﬁ”em?ﬂs r%st OZ stlr ong stanstlgal assumptions which 3“6 of-
. - L e ten violated and also require data aggregation to a degree
g;entrr]c?ltlggrg:nqel::rmc?;l}ﬁecgﬁggﬁ 'Rguge;ob%ir\]lgrr]'?gigrgglathat precludes investigation of interesting qualitative phe-

the Haken-Kelso-B g hasi the i ¢ €romena on the basis of individual performance which is an
e Haken-Kelso-Bunz modg2] emphasizes the importance important advantage of our methods of time series analysis.

_of q_ualitative transitions for the understanding of the dynam- " "A -onsiderable number of studies has focused on the vari-
ics in the control of motor behavior. _ _ ability in the control of movements. In the framework of
Timing of bimanual movements is an ideal experimentalimer-motor or two-level modeléfor review cf.[10]), it has
framework for the study of cognitive motor control. The peen shown that the observed variability can be exploited to
analysis of bimanual polyrhythmic movement tasks may beynalyze the organization of control structures in the brain. At
looked upon as a case study for the more general problem @fie same time nonlinear dynamical models have explained
bimanual coordinatiorf3]. Numerous studies have shown the occurrence of phase transitions in behajldrat least at
that bimanual coordination is subject to strong performance qualitative level.
constraints[4]. Experimental variation of external param-  The typical approach to the study of the stability of rhyth-
eters, like manipulating the required speed of performance amic performance is the analysis of dynamical transitions
the difficulty of the movement pattern, permits the system-which occur when high-order polyrhythms, e.g., 3:8, fall
atic study of how the human movement control systemapart in response to increasing external tempo constraints
adapts to these external and its own internal constraints. THéuring performanc¢11-14. Related experiments were de-
use of performance tempo as an external control parameter figned for the observation of transitions between poly-
the experiment under consideratifhi yields the finding of rhythms of o!lfferent order. In c_ontrast to thls_ we demonstrate
transitions between qualitatively different dynamical re-Nnere the existence of qualitative changes in the stable pro-
gimes. duction of the same polyrhythm when it is performed at dif-

A crucial problem for the analysis of complex natural ferent tempi. The concepts of nonlinear dynamics and timer-

systems is the comparison of theoretical models with experiliotor models are combined. We propose a stochastic timer

mental data. Different from most experiments in physics, ke)Io.r t.he_ control of cycle durations in combination with deter-
observables in living systems are more restrictively preJninistic feedback control. . .
| In Sec. Il we present the design of our experiment. The

scribed by the measurement procedure and their functiona ' ) . !
state can be controlled to a much lower extent. By usin nalysis of the corresponding data, in particular the observa-
ion of qualitative transitions, is given in Sec. Ill. Our non-

symbolic dynamicq6] we demonstrate that, nevertheless, del. which is i duced in S v d

the comparison of theory and experiment can be achieve ear model, which is Introduced in Sec. 1V, reproduces
even at the level of individual subjects based on short an ese dynampal_ transitions. Furth.ermo.re,.n permits the in-
noisy time series clusion of realistic random fluctuations in timing.

The analysis of physiological and psychological systems Il EXPERIMENTAL SETUP

The 3:4 polyrhythmic taskFig. 1) was performed on an
*Electronic address: ralf@ik.uni-potsdam.de electronic piano with a weighted keyboard mechanic hooked
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for each cycle. Let us denote the realized duration ofkthe

} ; } | left han .
I 7 7 o eft hand cycle k=1,2,3,...,12) byt defined as the sum of the

subintervals of the corresponding hart@ (andth, respec-

: : : ; ; right hand tively). The relative deviations are defined as
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FIG. 1. Schematic illustration of the 3:4 polyrhythmic task used

in the study by Krampeet al. [5]; here for a cycle duration of wherei =1,2,3 and =1,2,3,4. These are the deviations from

1200 ms. ‘R” and “L” in the top panels denote the intervals the prescribed r_hythm regardless of the accuracy in overall
produced by right and left index fingers, respectively. Each cycld®€MPO- The motivation for this transformation is as follows:
starts with simultaneous strokes of the two hands. Three isochrdf @ Subject holds the prescribed tempo within acceptable
nous intervals, i.e., equidistant strokes in time, in the left hand aréolerance, then the relative deviatiof® quantify the preci-
performed against four isochronous intervals in the right handsion of the rhythmic structure of the performance. However,
within each cycle. The position of intervals within a certain cycle it must be keptin mind that this is not an absolute measure of
is indicated by subindices. performance accuracy.

We further reduce the amount of data by a transformation
to a computer which monitored the experiment and recordethto symbol sequences. This simplifies the investigation to
time-stamped data with a resolution of 1 ms. Fourteen difthe analysis of the symbol patterns. Our strategy is to use
ferent metronome tempi ranging from 600 ms per cycle tosuch a coarse graining of the data in order to explore impor-
8200 ms per cycle were presented in a randomized ordetant structures of the underlying dynamics.

Error trials or trials with more than 10% deviation from the In the following we use only two symbol§‘0” and
prescribed timing pattern were discarded. The data reportetll” ). Let us consider the transformed left hand time series
in this paper came from well-trained amateur piani$ts  (3) as an example. To each value of the relative devidﬁion
details cf.[5]). (i=1,2,3;k=1,2,...,12) we assign a symba}, in the fol-

In each trial, subjects listened to the exact rhythm genertowing way:
ated by the computer as long as they wanted, and then played
along (synchronized with the beat for four cycles after
which the computer beat stopped. Participants had to con- o if Iik<0
tinue for another 12 cycles during which the time series were Sn=11 otherwise ,
recorded. Hence, a single time series consists of 12 bars or
cycles. The recorded data are the intervals between SUCC&Gheren=3(k—1)+i=1,2,3, . .,36.This coding scheme is

sive keystrokes produced by both hanas, called static, since we use a fixed threshold in the conditional
Ll 22 12 12 1) part. Such a symbolic description can be progressively re-

B R fined by introducing more symbols. The appropriate number

@) of symbols is practically limited by the length of the time
series from which the symbol sequence is derived, because
the statistical confidence level of the occurrence of the sym-

lll. DATA ANALYSIS bols drops down. Furthermore, plots with many different

ymbols (e.g., more than fiveare much more difficult to

4

RI,RL,RI,R:,RZ, ... R R

Our method of analyzing these data consists of two mair?

parts: First, we transform the recorded time series into anterpret visually. . . .
sequence of symbols. This can be used as a powerful visu- The symbol sequences obtained by the coding of all trials

alization technique. If a transformation to symbolic strings isproduced by subject A, a well-trained amateur pianist, are

applied to a time series, a considerable amount of informa§hOWn n F|g. Za). Any type of rt.agularllty.m the symbol
guences indicates a systematic deviation from the pre-

tion is discarded, but nevertheless characteristic properties Or
the underlying dynamics can be captured by the symbol Ses_cnbed rhythm. On the other hand, near-perfect performance

quence15]. In a second step, we apply the concept of meayvou_ld_yield a completely random patt_ern, since_t_he re_Iative
sures of complexity16] to the symbol sequences in order to deviations(3) would be randomly negative or positive with a

get a quantitative evaluation of the distribution of symbolsSmall absolute value. .
[17] A completely random pattern would also emerge in the

case of largebut random fluctuations around the prescribed
timing pattern. Therefore we introduce a secdmubre re-
fined symbolic coding to our data in order to check our
A straightforward coding of the time series would be tointerpretation that the subject performs the rhythm more ex-
assign a “0” to those intervals which are too short and aactly in the irregular regions of the symbol pldtig. 2(a)].
“1" for those which are too long. This symbolic transforma- This can be done by adding a third symbol to the transfor-
tion, however, is sensitive to fluctuations and trends of thenation(4) for a rather exact performance. It is related to the
cycle duration, which are considerable within a single trial.case of a deviation of less than 5% from the realized interval
We compare the produced intervals with the realized tempduration, i.e.,s, is defined as in Eq(4), but additionally

A. Symbolic dynamics as a visualization technique
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FIG. 2. Symbol sequences of all trials of one individual A. The time is increasing on the ordinate, where 36 symbols are plotted for left
hand time series and 48 symbols for the right hand. The trials are sorted with respect to the realized cycle duration. The cycléldurations
(m9) are indicated by the vertical labels between the plots. Two-symbol cddjnglefined in Eq.(4), in comparison with three-symbol
coding(b). Irregular symbol patterns correspond to accurate performance which is demonstrated by the accumulation of gray gymbol in
These results are qualitatively stable; the symbol patterns are in good agreement with those obtained by dynamic cddjng rules

sp=2, if [I¥| or |r}‘|<5%. The corresponding symbol pat- about 1.2 s. This indicates that the left hand performs more
terns[Fig. 2(b)] demonstrate that the transition from nearly accurately for a faster tempo.
periodic symbol sequences to irregular ones in the right hand The technique of symbolic codings is a visualization tool
of subject A occurs simultaneously with a significant in- which can extract structures from rather sha@ cycles and
crease in the mean accuracy which is indicated by the innoisy time series. To obtain clear results one has to find a
crease in the number of gray symbots € 2) for increasing  suitable class of coding rules. The qualitative structure of the
cycle durations. symbol patterns, however, turns out to be rather stable. This
We observe two order-disorder transitions in Figa)2 can be demonstrated by a dynamic coding scheme, which
One transition occurs in both hands at a cycle duration ofepresents a different type of symbolic transformafin6].
about 1.9 s. When the tempo is increased, a second transition this coding we map an interval, L¥ of the original time
to irregular symbol sequences happens in the left hand aeries(1,2) to a “0”, if the actual value is smaller than its
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FIG. 3. Shannon entropip) of the distribution of words obtained from the data of subjedtedt hand(a), right hand(b)]. A low value
of the S(p) corresponds to highly regular symbol sequences. The dashed line shows the Shannon entropy for simulatatodatays
using the variances as in the experimental time seiig#\ plot of the relative phase@n units of 7r) also indicates the dynamical transitions.

preceding value, and to a “1,” if it is larger. In the corre-  To distinguish different kinds of probability distributions,
sponding symbol plofFig. 2(c)] we observe transitions at we calculate the well-known Shannon entropy of the distri-
the same positions. In contrast to Fig$a,® this dynamic  butionp,

symbolic coding is more sensitive to noise, since its thresh- Ny,
old in the coding rule is not fixed at a certain value.
=—-cC inp; , 5
S(p)=-c2, pilnp, (5)
B. Statistics of symbols and measures of complexity here normalized with respect to the number of all wakgs

Now we outline the main ideas of how the symbol se-usingc=1/InN,,. The qualitative changes in the symbol pat-
quences can be used for a quantitative study of the dynamid§'n are correctly described by the Shannon entridpgs.
of polyrhythms. Due to the fact that the basic rhythmic struc-3(@b]. In particular, the two transitions in Fig.(@ (left

ture is a cycle, it is appropriate to subdivide the time seried2nd, aboveare reflected in two sharp transitions in the
into substrings or “words” of thregleft hand or four (right ~ >"&nnon entropy. Applying algorithmic complexitf. [16])

hand symbols and to study the occurrence of these wordd® th? ;ymbol sequences Ieads to comparable results.
It is important to note that linear measures for the fluctua-

To give an example, subject |&Fig. 2(a)] uses almost exclu- . .
sively the right hand word “0110” for bar duratio&<2 s tions or accuracy, e.g., covariances, shpw a much smoother
' _transition which cannot be identified reliably at the level of

i.e., the first an_d last interval of each bar is too short_, \.N.herear%dividuals. The significance of our results has been tested
the two other mterva_ls are too Iong. Fr_om the definition ofby analyzing computer-generated random patterns of the
th3e krelajlvek deviations (3) it is clear that g3me data length. For each experimentally observed time se-
2li=27_4r;=0 (k=1,2,...12), implying that words ries we simulate a Monte Carlo time series using the same
consisting entirely of “0”s or “1"s, are impossible. There- variances of intervals as in the original défigs. 3a,b].
fore we retairN, = 23—2=6 possible words for the left and The corresponding Shannon entrojiashed lingis signifi-
NVRV=24—2= 14 words for the right hand. cantly higher than the entropy of the original data in those
The relative frequencp;=N; /N,, of wordi is calculated regions where regular symbol sequences occur.
using all cycles generated during several trials at a certain The dynamical transitions can also be visualized by an
tempo. The corresponding relative frequency distribution isanalysis of the relative phasés.g.,[11]). If we define the
denoted byp. For the data in Fig. @ the fact that the phase of the leftslow) hand as linear increasing from 0O to
subject uses almost exclusively the word “0110" in the right 27 between two successive strokes, then we can determine
hand leads to a strongly peaked probability distribution.  the relative phase of the three strokes of the right hand with
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FIG. 4. Symbol sequences of all trials and corresponding Shannon entropies for two other individuals obtained by the two-symbol

coding. The data of subject &), (b) show a sharp transition in the right hand, whereas the data of subj@gt @) are an example for a
qualitative transition in the left hand.

respect to the phase of the left hand. If the performance isotice a plateau region of the relative phase. Therefore the
perfect, then we can read off these relative phases directlgnalysis of relative phases also proves the existence of dy-
from the task sketch in Fig. 1. We obtain a relative phase ohamical transitions. A comparison with FiggaBand 3b)

34 for the first stroke of the right handr for the second, shows, however, that the plots of the Shannon entropy can
and 37 for the third stroke. In the plot of relative phases extract three different dynamical regimes more clearly.

[Fig. 3(c)] we observe that these predictions are fulfilled by

subject A in the range of slow temfirial index greater than
100). For faster performance considerable deviations occur.

C. More examples

In particular, the relative phase of the third stroke of the right The data produced by two other subjects are visualized in
hand is increasing fron} 7 to . For trials 60 to 85 we Fig. 4 using the two-symbol codin@) and the correspond-
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ing Shannon entropies. As for subject A, the variation of
tempo or cycle duratiorf, our external control parameter,
enables us to observe qualitative transitions.

An example of a rather sharp transition occurring in the
right hand is the one at cycle duratidir=2 s in Fig. 4a), period 2
approximately at trial number 90. In Fig(a}, a transition
can be seen in the left handB4= 1.5 s(trial 60). Transitions
can occur in the left or right hand, or even in both hands at
the same tempfsubject A, Fig. 2a)]. Preliminary investiga-
tions on a larger study indicate that there is no straightfor-
ward relation to handedness. All subjects tested were right

handed. This demonstrates a complex dynamical interaction FIG. 5. Bifurcation diagram of the nonlinear error correction
of the hands model (7). A pitchfork bifurcation occurs at=+1. The period-

doubling bifurcation ¢=—1) creates oscillating solutions for

The fact that the transitions do not always occur in thec<—1 which are the basis for reproducing the periodic symbol

fast range of tempi is very important. As an example, a regu-sequences obtained from the experiments.

lar symbol pattern in an intermediate range of cycle dura-

tions (between 1.5 s and 3.5 s observed in the data set

produced by subject {Fig. 4(c)]. It implies that the transi-

t'nfgnst ecl:fn?rc;:logisiglrjnenrihcgrntﬁglr:ngarrelté/ull? ct)rf]?nr:rl;i?ngng\i/oe'-n our case by a constant rate of informa_ltion processing in
: L the human movement control system. With the two param-

mechanical constraints at fast temfi<{2 9. Furthermore, eterse andk we can adjust the slope and the asymptotic

the Shannon entropy for the left hand of subje¢Fiy. 4b)] value of the correction function separately

and for the right hand of subject [Fig. 4(d)] indicate that In the deterministic case, i.e., va)—0 or. s=5- for all

the corresponding symbol patterns are not completely ran- _ icear transformation o;‘ \'/a.r'iable :a(x-l—ég leads

dom. Instead these patterns show subtle periodic structur?s the svstem B Hooon

which we also see by visual inspection. In these cases the y

dynamics may be close to a qualitative transition.

We now use the results of our data analysis to develop a
dynamical model which exhibits the same type of transitions Zi1=ctanh(z), @)

as found in the experiments. We stress the importance of the

finding of qualitative changes and their description by approyynerec=ka is the control parameter. The qualitative behav-
priate techniques as an ideal starting point for deriving CONjy of this equation can be described by a bifurcation dia-
ceptual models. gram[18]. For|c|<1 model(7) generates the same qualita-
tive behavior as a model with linear error correctiftig. 5).
V. MODELING The asymptotic solution ig= 0, a fixed point. Ific|>1, then
A. Nonlinear error correction this solution becomes unstable. Different from linear models,

A considerable amount of theoretical work on the roduc—Eq' (6) creates two additional fixed points. For-1 there is
. X °p a pitchfork bifurcation with a positive and a negative branch.
tion of rhythmic movements focuses on stochastic model

without error correction. In this framework, the dynamical he asymptotic value af depends on the initial conditions,

structures, e.g., the patterns of covariances between intervaForCZ —1 there is a period-doubling bifurcation which cre-
are explai}ledg.kgy dif?erent stochastic variables operating in g es an oscillatory solution. This period-doubling bifurcation
hierarchical organizatiokcf. [10] for a review. Qualitative f period 2 can explain the occurrence of periodic symbol

transitions cannot arise from the dynamics of these models? atterns in the experiments. Therefore we use basically two

Different from this purely stochastic approach, we aim atequatlons of typd6) for our modeling of bimanual move-

. X L .ments.
a dynamical explanation of the observed qualitative transi-
tions. Therefore we have to include a nontrivial deterministic ) _
component of the dynamics, comparable to the well-known B- A nonlinear model for the production of polyrhythms
Haken-Kelso-Bunz mod¢R]. We start with an equation for ~ Qur model is formulated for the production of polyrhyth-
error correction of single-handed movements, mic movements of arbitrary order, i.&\] strokes per cycle
with the right hand versull' strokes with the left hand. For
the experiments discussed here, we Nik=4 andN'=3.
The tempo(or cycle duratioh is denoted bys. Because of
considerable fluctuations is used as a random variable,
In this model an intervak;. ; is produced by a stochastic Whered, is its realization in cycle. The stochastic proper-
Variab]e(timekeepe)’ 5i+l and an error correction term. The ties of 8 will be treated below. The requirEd interval dura-
error correction operates with respect to the deviations,  tions for the hands aré = 5,/N" and § ;= 8. /N'.
of the last interval from the last timekeeper value. For small The deterministic control loop of our model consists of
deviation we assume a linear error correction. For larger detwo coupled maps which generate the interval durations of
viations there is a saturation effect. This is a common type ofhe subsequent strokes for the rightand the leftx, hand,
nonlinearity in biological systems which could be motivatedrespectively,

Xi+1= Oj+1 T K tanf a(x— 6;) ]. (6)
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2 )
X, =8 L+ ATk} tanh[ o (x]_ ;= 8 ;- )]+ Ok} tanh[@3(0 ¢~ &H1.

o =58 + Al tanhl @ (xl_,— 8L ))]+ Ok tanh (8 (— 8 D)),
®

O (In)

wherec=|(j—1)/N"]+1=[(i—1)/N'|+1 is the cycle in- feedback control, then a stochastic detunéngould lead to

dex and - - - | denotes the integer part of the included expresa desynchronization of the hands. As a consequence, the si-
sion. To each subinterval!' we assign the value of the multaneous stroke at the end of each cycle would fail. In
stochastic duratioﬁ(r:" with respect to the actual tem@ of contrast to this, our experiments show that subjects were able
the cycle. This value is then corrected by two feedbacko perform the simultaneoutasy stroke of the cycle. This is
mechanisms: The first correction tefi is active within the ~the motivation for the coupling mechanis(th).

cycle and the coupling terrfil) is only active at the end of Second, to understand the form of the estimated cycle

each cycle. This is fulfilled by defining duration, we compare the within-hand correctibnwith the
coupling mechanisngll). For the within-hand correction in
ol {1 if(i+1) mod N"'#0 cycle ¢ the value of the temp@ L" is assumed to be inac-
Air= 0 otherwise, cessible for the control system due to delay and fluctuations.
For the coupling mechanisitil) the control system has to
. 1 if(i+1) mod N'=0 compare the instantaneous cycle duratiérisand & 'C Since
0 :{0 otherwise. (9 their realized values are inaccessible in cycleve assume

that those intervals which would be the basis for the within-
Now we discuss the different terms in the model equa-hand correctionx|_,4 and X|_4, are also used for the cou-
tions (8) in detalil. pling. Therefore the form of the estimated cycle durations
I. The first correction operates within a cycle, i.e., dy-(10) is consistent with the form of the within-hand correc-
namical correction is performed separately for each handion. Since the choice of the estimates determines the peri-
Previous investigationgl9] have shown that this correction odic symbol patterns, which can be produced by numerical
has to incorporate two essential properties in order to reprasimulations of the model, additional constraints arise from
duce the experimentally observed symbol patterns. symbol patterns observed in the experimental d&igs.
(a) The first property is anonlinear correction function 2(a), 4(a), and 4c)].
As in Eqg. (6) we have chosen a tanh function here; a piece-
wise linear function or any sigmoid function would also be a C. Analysis of the model
possible choice. This nonlinearity enables the model to re-

produce the bifurcations underlying the experimentally ob- 10 demonstrate that our model can explain the structure
served periodic symbol sequences. of the symbol patterns derived from the experimental data,

(b) The second important feature is that the correctionVe€ NOW present some analytical results on the dynamics for
operates with aime delay d In some cased=0 yields to d=1. This is done in the deterministic case and for strongly

the observed symbol patterns. On the other hand, a deld} nl|rr}ear control, 18—, where tanhz)—sgn(). We
time d=2 would lead to symbol patterns with a period X ki'=—1 and|ky'|=1. Furthermore, we assume that the
longer than a cycle which is never found in the experimentaflynamics is stationary and the rr_1a>:|marl perrlod rlength of the
data[19]. Therefore, to explain almost all of the observedslymbOI sequences is a cycle, i.€;=X;— 8,=2j 4, and
periodic symbol patterns, we fik=1. Zj=X;{— 6y=12,3, for all n=0,1,2,... . Under these as-

Il. The coupling mechanism aims at the synchronizationsumptions the model gives seven equations for the relation-
of the movements of the hands and is performed at the end ¢hip of subintervals,

each cycle with a strength given by parameteysand k'z.

r_ r
The coupling of the hands is done on the basis of a predic- z;=—sgrzy), (1)
tion of theestimated cycle durations” and 5 |, of the cycle
c. Here we use Y ’ ¢ Y Zp=—sgr(zy), (12
SI=N'X_q, 3L=N'x_q. (10 23=—sgnzy), (13
The explicit form of these estimations determines the type z,=Kysgn(4z,—32)), (14
of symbol pattern that is produced by the model. The correc- )
tion function is the tanh function as it). for the right hand and

Some additional remarks on these assumptions are neces- | |
sary: First, if the within-hand correction is the only type of z;=—sgn(zy), (15
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Z,=—sgnzy), (16) . . . .

z,=k,sgn(3z, —47)), 17)

for the left hand. These equations lead to four different sym-
bol sequences in the right hafitD011,” “0110,” “1001,”
“1100") and two for the left hangd‘010,” “101” ). Which

of these patterns are combined is determined by the cot
pling. If ky=Kk5, then we getz;=—2;, and if kh=—k},
then we will observe symbol sequences with-z, . These
symbolic structures are in correspondence with the experi e
mental data. In the symbol patterns of subjecfFig. 2(a)] 10
we observe the periodic symbol sequences “0110” producet

by the right hand for trials 1-50 and in combination with cycle duration (t)[ms)

“010” produced by the left hand for trials 50—90. For sub-

ject B we also observe the pattern “0110” in the right hand  fiG_ 6. Relation between cycle variance wrénd mean cycle

for the fast range of tempi. Additional symbol patterns, like duration(t) for subject C. As a rough approximation we obtain a
“100" in the left hand of subject C for trials 1-50, can also polynomial of second ordef18) with a=1.003 andb=1.06

be explained dynamically by the model. This can be demonx 103, Note that the time series consists of only 12 values, which

strated by numerical simulations. contributes to the scattering of data points around the regression
An important feature of the symbol patterns is their sta-line.

bility, which is found in the experimental data. This has to be

investigated by simulations of the model below. Now wewhere ¢ is a uniform random deviate betweenl and 1.

cycle variance var(t) [ms%

2000 4000 8000

address the stochastic properties of our model. Analyzing the symbol patterns obtained by numerical simu-
lations of our model yields an upper limit for the detuning
D. Stochastic fluctuations in timing parameter:e<10 2. The question of whethes . and & |,

arise from two different, but certainly coupled timing pro-

A realistic model of h“”.‘a” movement timing has to N cesses is outside the scope of this work. We now discuss the
clude the random fluctuations observed in related experi-

: ; : inclusion of the random fluctuations which originate from
ments. We now specify the stochastic properties of th hguni;)torosystsma dom fluctuations ch originate 1ro
tempo variables. A second source of randomness is the . rl .

R The variables¢;" represent the control level. We imple-
motor system, which is discussed below.
The tempo variable is treated as an uncorrelated random

ment our dynamical timing model into the framework of the
process. For the study of qualitatively different dynamicalso'ca"ed two-level timing10]. The commands for the hand
regimes, it is important that the variance w@r(of 6 is a

movements produced by the control level are executed by the
\ ) ; motor level with some stochastic motor response. The stroke

monotonously increasing function of the mean va{4®.

This fact is in good agreement with the hypothesis that th

é of the right hand is performed with motor respomsie(Fig.
H rl
interval duration is produced by some elementary counting): 1€refore the intervals; " observed are bounded by two
mechanism. The explicit form in the production rhythms,

motor reponses, i.e.,
however, depends on the experimental design.
For numerical simulations of our model we estimate the
relation between the mean val(i®) and the variance va#)
. . . Iy m—m (22
from the experiments. Under the assumption that the noise Yi=X i i-1-
produced by the motor system is small compared to the fluc-

tuations in the timing control, the bar duratithof cyclec ~ AS @ first approximation the motor respongef’ are as-
can be used as an approximationdg. For simplicity we sumed to be uncorrelated anetlistributed random numbers

yj=xj+m-m_,, (20)

assume a polynomial relation of second orfs], V\ﬁich are statistically independent fr?rln _the control_ I(_evel
X;" . If the process on the control leved,” , is also statisti-
var(8) =a(8)+b(8)?, (18)  cally independent, the two-level timing yields simple predic-

which includes the two parameteasandb (Fig. 6). For the
simulations we use~distributed random variables with the i Tip1
required relation between mean and variance.

At this point the question arises, how the value of the
stochastic variabl@, is related to the values of . andé .
Let us assume that there is stochastic variation in the tempi
for the right and the left hand. We introduce, therefore, a
detuning parametes with

control level

M1 motor level

\ oberserved intervals

Yi Yit1

S FIG. 7. Schematic illustration of two-level timing. The motor
S fcv':_c(l_;_fg), (19 delays are uncorrelated. Due to the measurement procedure, the
N successive intervals are negatively correlated.
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Simulation
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FIG. 8. Simulation of the model for bimanual production of polyrhythms using a linear variatikh.af) The symbol patterns are in
good agreement with those produced by subject B. On the basis of the Shannon €b}rdpyan be seen that the transition in the
experimental data is rather sharp when compared to the simulation. This is a consequence of the strictly linear variation of the control
parameter which may not apply for the experimental case.

tions on the covariances. The variance of the recorded intesociation effect between estimates of timekeeper interval
vals is a sum of terms arising from the two sources ofvariance and response delay variance.
variability,

var(y;) =var(x;) + 2vaim). (22) E. Numerical simulations
Now we present two examples of numerical simulations
Since each recorded intervg]” is affected by two motor of the model. Our model is a stochastic nonlinear model. As
responses, we observe a negative autocovariance function farconsequence, order-disorder transitions in the symbol pat-

lag equal one, terns can be due to increase of fluctuations as well as bifur-
cations of the underlying deterministic control system. Gen-
COMY;,Yi+1) = COMX; ,Xj+1) + COVM;— M1, M 43— M) erally, realistic simulations will involve both types of
transitions.
=—vanm,). (23

The strengths of the correction mechanism are given by
Qe value of the parametek.ﬁ - EQ. (8). Since these param-
eters determine the saturation or maximal correction, it is
reasonable to assume a linear dependence of the parameters
(24) on the cycle duration as a first approximation.

In the first simulatior{Fig. 8@a)] we use only one control
(25) parameter ;= —45, ..., —1), which leads to a clear tran-
sition in the right hand. Because of the linear variation of the

For simple tasks like unimanual tapping, where the stron arameter the bifgrcation point is_at f[rial 85. The_ contr_ol
assumption of statistical independence is a valid approxima@2rameter of the right hand correction is near the bifurcation
tion, two-level timing predicts that the timer varian@s) is ~ POint, kia;=0.7. The coupling of the two hands induces
increasing with the cycle duration, whereas the motor vari: subtle structures in the symbol pattern of the left hand, which
ance(24) should remain constant. This prediction has beeriS confirmed by the plot of the Shannon entrdpyg. | 8(b)]
confirmed in many casésf. [10] for a review, even for the ~The other jparameters ark)=—7, ki=—10, ky=
more complicated case of synchronization of finger move<a;=0.05, al 0.1, a4=0.3, a5=0.05, a=1, b= 10_
ments with a metronome. Therefore two-level timing doese= 3x10°3, var(m)=50, initial values.x0 <0, x'_'1>0.
not exclude error correction, which is an essential property offhe simulation in Fig. 8 is qualitatively in agreement with
our dynamical model. the experimental data in Fig(&@ (subject B.

Furthermore, there is neurophysiological evidence for the Using a linear variation of several parameters, we can
concept of two-level timing. A study of the effects of neuro- reproduce more complicated transitions. The symbol pattern
logic damage to the cerebellur@0] has demonstrated a dis- of subject A[Fig. 2(a)] is an example with two transitions

We can use these two equations for estimating the variancéd
of the control level and the motor system separately,

var(m;) = —coMY;,Yi+1),

var(x;)=vary;)+2couy;,Yi+1)-
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FIG. 9. Example for a simulation of the model in a more complicated case. The symbol patleamel Shannon entropigb) are
qualitatively in agreement with those produced by subject A.

between regular and irregular symbol sequences in the lefk qualitative transition from correct to incorrect timing of
hand, where a regular region of symbol sequences extendse rhythmic structure is transformed into a disorder-order
approximately from a cycle duration of 1.2 s to 3 s. Thetransition in the symbol sequendds. This is quantitatively
parameters for a simulation with comparable qualitative feadescribed by the Shannon entropy of the distribution of

tures(Fig. 9 arek;=—35, ..., —30,k'1= —-10, ...,—25, words, as a measure for stochasticity of the symbol se-
a5=0.3,a,=0.08,a=1,b=10"3e=1073,..., 1072, ini- The existence of qualitative transitions in our experiment

tial values:xy'<0, x|, >0. is an important finding for the modeling of simple movement

These two examples demonstrate that the proposed modi@sks which are typically describ_ed by statistical t_in_1er_-motor
is able to reproduce qualitative characteristics of the dynamiodels[10]. These models are linear. Therefore it is impos-
cal transitions. It is a challenge for future work to compareSiPle to reproduce qualitative changes which we have proven
numerical simulations with the experimental data in order tdf© €xist in the experimental data. The value of the timer-
extract the control parameters underlying the performance dP'otor approach is to highlight the stochastic component in
individuals. Using this approach, the complexity of the dy-movement timing. This emphasizes the advantage of our
namics of hand movements could be captured in the varignodel which combines the stochastic description of the
tion of the control parameters of the dynamical mo@l To ~ timer-motor approach with a nonlinear control mechanism to

check our model in a variety of situations it has to be appliec®ccount for both stochasticity and dynamical transitions.
to different experimental paradigms, e.g., polyrhythms of e have shown that our model reproduces the experimen-
different orderN™ N tally observed symbol patterns, if the discrete time delay is

fixed atd=1. The existence of such a time delf32] is
supported by physiological experimerta3], which show
the ubiquity of delay processes. As an example, voluntary
The analysis of physiological and psychological time se-movements are initiated by firing of motor neurons with a
ries [8] is typically obstructed by intrinsic fluctuations and time delay of order 100 ms. If these movements are disturbed
measurement noise. An additional problem is that our timéy some external influence, then an additional increase of
series are rather shofl2 cycles. Even for longer experi- activity in the motor cortex is observed after 20 ms. A rea-
mental observations, instationarities typically limit the lengthsonable estimate of a time delay between brain processes and
of data series which can be used for the analysis. Despitebserved movements will be bounded within these limits.
these difficulties we have shown that a coarse graining of th&ince the shortest intervals of the polyrhythm task are about
data by transformation to symbol sequences can be succes) ms, we expect time-delayed error correctids,1, in the
fully used to extract significant properties of the underlyingtheoretical model.
dynamics. Additional support for the concept of time-delayed error
In particular, our symbolic coding is well adapted for the correction arises from an experimental study, where subjects
detection of qualitative changes in the behavioral dynamicswere required to synchronize their movements with a metro-

V. SUMMARY



56 TEMPO-INDUCED TRANSITIONS IN POLYRHYTHMC . .. 5833

nome. In the analysis based on the concept of two-level timeal traditions in the more general discussion about stochastic
ing, time-delayed error correction has been found for fastrersus deterministic aspects of simple movement tasks.
tempi[24]. This corresponds td=1 for the error correction
in our model.
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