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Tempo-induced transitions in polyrhythmic hand movements
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We investigate the cognitive control in polyrhythmic hand movements as a model paradigm for bimanual
coordination. Using a symbolic coding of the recorded time series, we demonstrate the existence of qualitative
transitions induced by experimental manipulation of the tempo. A nonlinear model with delayed feedback
control is proposed, which accounts for these dynamical transitions in terms of bifurcations resulting from
variation of the external control parameter. Furthermore, it is shown that transitions can also be observed due
to fluctuations in the timing control level. We conclude that the complexity of coordinated bimanual move-
ments results from interactions between nonlinear control mechanisms with delayed feedback and stochastic
timing components.@S1063-651X~97!05211-2#

PACS number~s!: 87.10.1e, 87.45.Dr, 05.45.1b
ai
n
m
he
o

f
pl
e
m

ta
e
b

m
n

nc
-

e
m
em
T
er

e

al
er
e
re
on
in
s
ve
an

m

e-
The
ve-
uc-

of-
gree
e-
an
sis.
ari-
f

to
At

ned

h-
ns

all
ints
-
ly-
ate
pro-
if-
er-
mer
r-

he
rva-
-

es
in-

ked
I. INTRODUCTION

The analysis of dynamical processes underlying br
functioning and behavior has evolved into a field of exte
sive research. In particular, the theory of complex syste
@1# is a promising contribution to these problems from t
viewpoint of theoretical physics. This approach is based
the notion of qualitative changes induced by variation o
control parameter of the system. As a prominent exam
the Haken-Kelso-Bunz model@2# emphasizes the importanc
of qualitative transitions for the understanding of the dyna
ics in the control of motor behavior.

Timing of bimanual movements is an ideal experimen
framework for the study of cognitive motor control. Th
analysis of bimanual polyrhythmic movement tasks may
looked upon as a case study for the more general proble
bimanual coordination@3#. Numerous studies have show
that bimanual coordination is subject to strong performa
constraints@4#. Experimental variation of external param
eters, like manipulating the required speed of performanc
the difficulty of the movement pattern, permits the syste
atic study of how the human movement control syst
adapts to these external and its own internal constraints.
use of performance tempo as an external control paramet
the experiment under consideration@5# yields the finding of
transitions between qualitatively different dynamical r
gimes.

A crucial problem for the analysis of complex natur
systems is the comparison of theoretical models with exp
mental data. Different from most experiments in physics, k
observables in living systems are more restrictively p
scribed by the measurement procedure and their functi
state can be controlled to a much lower extent. By us
symbolic dynamics@6# we demonstrate that, nevertheles
the comparison of theory and experiment can be achie
even at the level of individual subjects based on short
noisy time series.

The analysis of physiological and psychological syste

*Electronic address: ralf@ik.uni-potsdam.de
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using nonlinear methods of data analysis@7,8# is promising
for gaining new insight into the complex interactions b
tween subsystems and the resulting dynamical behavior.
more traditional approach to the analysis of human mo
ment timing has employed linear models of covariance str
tures between the produced time intervals@5,9,10#. Related
methods rest on strong statistical assumptions which are
ten violated and also require data aggregation to a de
that precludes investigation of interesting qualitative ph
nomena on the basis of individual performance which is
important advantage of our methods of time series analy

A considerable number of studies has focused on the v
ability in the control of movements. In the framework o
timer-motor or two-level models~for review cf. @10#!, it has
been shown that the observed variability can be exploited
analyze the organization of control structures in the brain.
the same time nonlinear dynamical models have explai
the occurrence of phase transitions in behavior@1#, at least at
a qualitative level.

The typical approach to the study of the stability of rhyt
mic performance is the analysis of dynamical transitio
which occur when high-order polyrhythms, e.g., 3:8, f
apart in response to increasing external tempo constra
during performance@11–14#. Related experiments were de
signed for the observation of transitions between po
rhythms of different order. In contrast to this we demonstr
here the existence of qualitative changes in the stable
duction of the same polyrhythm when it is performed at d
ferent tempi. The concepts of nonlinear dynamics and tim
motor models are combined. We propose a stochastic ti
for the control of cycle durations in combination with dete
ministic feedback control.

In Sec. II we present the design of our experiment. T
analysis of the corresponding data, in particular the obse
tion of qualitative transitions, is given in Sec. III. Our non
linear model, which is introduced in Sec. IV, reproduc
these dynamical transitions. Furthermore, it permits the
clusion of realistic random fluctuations in timing.

II. EXPERIMENTAL SETUP

The 3:4 polyrhythmic task~Fig. 1! was performed on an
electronic piano with a weighted keyboard mechanic hoo
5823 © 1997 The American Physical Society
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5824 56R. ENGBERTet al.
to a computer which monitored the experiment and recor
time-stamped data with a resolution of 1 ms. Fourteen
ferent metronome tempi ranging from 600 ms per cycle
8200 ms per cycle were presented in a randomized or
Error trials or trials with more than 10% deviation from th
prescribed timing pattern were discarded. The data repo
in this paper came from well-trained amateur pianists~for
details cf.@5#!.

In each trial, subjects listened to the exact rhythm gen
ated by the computer as long as they wanted, and then pl
along ~synchronized! with the beat for four cycles afte
which the computer beat stopped. Participants had to c
tinue for another 12 cycles during which the time series w
recorded. Hence, a single time series consists of 12 bar
cycles. The recorded data are the intervals between suc
sive keystrokes produced by both hands,

L1
1 ,L2

1 ,L3
1 ,L1

2 ,L2
2 , . . . ,L2

12,L3
12, ~1!

R1
1 ,R2

1 ,R3
1 ,R4

1 ,R1
2 , . . . ,R3

12,R4
12. ~2!

III. DATA ANALYSIS

Our method of analyzing these data consists of two m
parts: First, we transform the recorded time series int
sequence of symbols. This can be used as a powerful v
alization technique. If a transformation to symbolic strings
applied to a time series, a considerable amount of inform
tion is discarded, but nevertheless characteristic propertie
the underlying dynamics can be captured by the symbol
quence@15#. In a second step, we apply the concept of m
sures of complexity@16# to the symbol sequences in order
get a quantitative evaluation of the distribution of symb
@17#.

A. Symbolic dynamics as a visualization technique

A straightforward coding of the time series would be
assign a ‘‘0’’ to those intervals which are too short and
‘‘1’’ for those which are too long. This symbolic transforma
tion, however, is sensitive to fluctuations and trends of
cycle duration, which are considerable within a single tr
We compare the produced intervals with the realized tem

FIG. 1. Schematic illustration of the 3:4 polyrhythmic task us
in the study by Krampeet al. @5#; here for a cycle duration o
1200 ms. ‘‘R’’ and ‘‘ L ’’ in the top panels denote the interva
produced by right and left index fingers, respectively. Each cy
starts with simultaneous strokes of the two hands. Three isoc
nous intervals, i.e., equidistant strokes in time, in the left hand
performed against four isochronous intervals in the right ha
within each cycle. The position of intervals within a certain cyclek
is indicated by subindices.
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for each cycle. Let us denote the realized duration of thekth
cycle (k51,2,3,. . . ,12) by tk, defined as the sum of th
subintervals of the corresponding hand (tL

k and tR
k , respec-

tively!. The relative deviations are defined as

l i
k5

3Li
k2tL

k

tL
k

, r j
k5

4Rj
k2tR

k

tR
k

, ~3!

wherei 51,2,3 andj 51,2,3,4. These are the deviations fro
the prescribed rhythm regardless of the accuracy in ove
tempo. The motivation for this transformation is as follow
If a subject holds the prescribed tempo within accepta
tolerance, then the relative deviations~3! quantify the preci-
sion of the rhythmic structure of the performance. Howev
it must be kept in mind that this is not an absolute measur
performance accuracy.

We further reduce the amount of data by a transformat
into symbol sequences. This simplifies the investigation
the analysis of the symbol patterns. Our strategy is to
such a coarse graining of the data in order to explore imp
tant structures of the underlying dynamics.

In the following we use only two symbols~‘‘0’’ and
‘‘1’’ !. Let us consider the transformed left hand time ser
~3! as an example. To each value of the relative deviationl i

k

( i 51,2,3; k51,2, . . .,12) we assign a symbolsn in the fol-
lowing way:

sn5 H 0 if l i
k,0

1 otherwise ,
~4!

wheren53(k21)1 i 51,2,3,. . . ,36.This coding scheme is
called static, since we use a fixed threshold in the conditio
part. Such a symbolic description can be progressively
fined by introducing more symbols. The appropriate num
of symbols is practically limited by the length of the tim
series from which the symbol sequence is derived, beca
the statistical confidence level of the occurrence of the sy
bols drops down. Furthermore, plots with many differe
symbols ~e.g., more than five! are much more difficult to
interpret visually.

The symbol sequences obtained by the coding of all tr
produced by subject A, a well-trained amateur pianist,
shown in Fig. 2~a!. Any type of regularity in the symbo
sequences indicates a systematic deviation from the
scribed rhythm. On the other hand, near-perfect performa
would yield a completely random pattern, since the relat
deviations~3! would be randomly negative or positive with
small absolute value.

A completely random pattern would also emerge in t
case of large~but random! fluctuations around the prescribe
timing pattern. Therefore we introduce a second~more re-
fined! symbolic coding to our data in order to check o
interpretation that the subject performs the rhythm more
actly in the irregular regions of the symbol plot@Fig. 2~a!#.
This can be done by adding a third symbol to the transf
mation~4! for a rather exact performance. It is related to t
case of a deviation of less than 5% from the realized inter
duration, i.e.,sn is defined as in Eq.~4!, but additionally

e
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56 5825TEMPO-INDUCED TRANSITIONS IN POLYRHYTHMIC . . .
FIG. 2. Symbol sequences of all trials of one individual A. The time is increasing on the ordinate, where 36 symbols are plotted
hand time series and 48 symbols for the right hand. The trials are sorted with respect to the realized cycle duration. The cycle duT
~ms! are indicated by the vertical labels between the plots. Two-symbol coding~a!, defined in Eq.~4!, in comparison with three-symbo
coding~b!. Irregular symbol patterns correspond to accurate performance which is demonstrated by the accumulation of gray symb~b!.
These results are qualitatively stable; the symbol patterns are in good agreement with those obtained by dynamic coding rules~c!.
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ku or ur j

ku,5%. The corresponding symbol pa
terns@Fig. 2~b!# demonstrate that the transition from nea
periodic symbol sequences to irregular ones in the right h
of subject A occurs simultaneously with a significant i
crease in the mean accuracy which is indicated by the
crease in the number of gray symbols (sn52) for increasing
cycle durations.

We observe two order-disorder transitions in Fig. 2~a!.
One transition occurs in both hands at a cycle duration
about 1.9 s. When the tempo is increased, a second trans
to irregular symbol sequences happens in the left han
d

-

f
ion
at

about 1.2 s. This indicates that the left hand performs m
accurately for a faster tempo.

The technique of symbolic codings is a visualization to
which can extract structures from rather short~12 cycles! and
noisy time series. To obtain clear results one has to fin
suitable class of coding rules. The qualitative structure of
symbol patterns, however, turns out to be rather stable. T
can be demonstrated by a dynamic coding scheme, w
represents a different type of symbolic transformation@16#.
In this coding we map an intervalRj

k , Li
k of the original time

series~1,2! to a ‘‘0’’, if the actual value is smaller than its
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FIG. 3. Shannon entropy~5! of the distribution of words obtained from the data of subject A@left hand~a!, right hand~b!#. A low value
of the S(p) corresponds to highly regular symbol sequences. The dashed line shows the Shannon entropy for simulated data~surrogates!
using the variances as in the experimental time series.~c! A plot of the relative phases~in units ofp) also indicates the dynamical transition
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preceding value, and to a ‘‘1,’’ if it is larger. In the corre
sponding symbol plot@Fig. 2~c!# we observe transitions a
the same positions. In contrast to Figs. 2~a,b! this dynamic
symbolic coding is more sensitive to noise, since its thre
old in the coding rule is not fixed at a certain value.

B. Statistics of symbols and measures of complexity

Now we outline the main ideas of how the symbol s
quences can be used for a quantitative study of the dyna
of polyrhythms. Due to the fact that the basic rhythmic stru
ture is a cycle, it is appropriate to subdivide the time ser
into substrings or ‘‘words’’ of three~left hand! or four ~right
hand! symbols and to study the occurrence of these wo
To give an example, subject A@Fig. 2~a!# uses almost exclu
sively the right hand word ‘‘0110’’ for bar durationsT,2 s,
i.e., the first and last interval of each bar is too short, wher
the two other intervals are too long. From the definition
the relative deviations ~3! it is clear that
( i 51

3 l i
k5( j 51

4 r j
k50 (k51,2, . . .,12), implying that words

consisting entirely of ‘‘0’’s or ‘‘1’’s, are impossible. There
fore we retainNw

L 5232256 possible words for the left an
Nw

R52422514 words for the right hand.
The relative frequencypi5Ni /Nw of word i is calculated

using all cycles generated during several trials at a cer
tempo. The corresponding relative frequency distribution
denoted byp. For the data in Fig. 2~a! the fact that the
subject uses almost exclusively the word ‘‘0110’’ in the rig
hand leads to a strongly peaked probability distribution.
-

-
ics
-
s
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s
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To distinguish different kinds of probability distributions
we calculate the well-known Shannon entropy of the dis
bution p,

S~p!52c(
i 51

Nw

pi lnpi , ~5!

here normalized with respect to the number of all wordsNw
usingc51/lnNw . The qualitative changes in the symbol pa
tern are correctly described by the Shannon entropy@Figs.
3~a,b!#. In particular, the two transitions in Fig. 2~a! ~left
hand, above! are reflected in two sharp transitions in th
Shannon entropy. Applying algorithmic complexity~cf. @16#!
to the symbol sequences leads to comparable results.

It is important to note that linear measures for the fluctu
tions or accuracy, e.g., covariances, show a much smoo
transition which cannot be identified reliably at the level
individuals. The significance of our results has been tes
by analyzing computer-generated random patterns of
same data length. For each experimentally observed time
ries we simulate a Monte Carlo time series using the sa
variances of intervals as in the original data@Figs. 3~a,b!#.
The corresponding Shannon entropy~dashed line! is signifi-
cantly higher than the entropy of the original data in tho
regions where regular symbol sequences occur.

The dynamical transitions can also be visualized by
analysis of the relative phases~e.g., @11#!. If we define the
phase of the left~slow! hand as linear increasing from 0 t
2p between two successive strokes, then we can determ
the relative phase of the three strokes of the right hand w
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FIG. 4. Symbol sequences of all trials and corresponding Shannon entropies for two other individuals obtained by the two
coding. The data of subject B~a!, ~b! show a sharp transition in the right hand, whereas the data of subject C~c!, ~d! are an example for a
qualitative transition in the left hand.
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respect to the phase of the left hand. If the performanc
perfect, then we can read off these relative phases dire
from the task sketch in Fig. 1. We obtain a relative phase
3
2 p for the first stroke of the right hand,p for the second,
and 1

2 p for the third stroke. In the plot of relative phase
@Fig. 3~c!# we observe that these predictions are fulfilled
subject A in the range of slow tempi~trial index greater than
100!. For faster performance considerable deviations oc
In particular, the relative phase of the third stroke of the rig
hand is increasing from1

2 p to p. For trials 60 to 85 we
is
tly
f

r.
t

notice a plateau region of the relative phase. Therefore
analysis of relative phases also proves the existence of
namical transitions. A comparison with Figs. 3~a! and 3~b!
shows, however, that the plots of the Shannon entropy
extract three different dynamical regimes more clearly.

C. More examples

The data produced by two other subjects are visualize
Fig. 4 using the two-symbol coding~4! and the correspond
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5828 56R. ENGBERTet al.
ing Shannon entropies. As for subject A, the variation
tempo or cycle durationT, our external control paramete
enables us to observe qualitative transitions.

An example of a rather sharp transition occurring in t
right hand is the one at cycle durationT'2 s in Fig. 4~a!,
approximately at trial number 90. In Fig. 4~c!, a transition
can be seen in the left hand atT'1.5 s~trial 60!. Transitions
can occur in the left or right hand, or even in both hands
the same tempo@subject A, Fig. 2~a!#. Preliminary investiga-
tions on a larger study indicate that there is no straight
ward relation to handedness. All subjects tested were r
handed. This demonstrates a complex dynamical interac
of the hands.

The fact that the transitions do not always occur in
fast range of tempi is very important. As an example, a re
lar symbol pattern in an intermediate range of cycle du
tions ~between 1.5 s and 3.5 s! is observed in the data se
produced by subject C@Fig. 4~c!#. It implies that the transi-
tions are a consequence of nonlinearity in the human mo
ment control system, rather than a result of increasing b
mechanical constraints at fast tempi (T,2 s!. Furthermore,
the Shannon entropy for the left hand of subject B@Fig. 4~b!#
and for the right hand of subject C@Fig. 4~d!# indicate that
the corresponding symbol patterns are not completely
dom. Instead these patterns show subtle periodic struct
which we also see by visual inspection. In these cases
dynamics may be close to a qualitative transition.

We now use the results of our data analysis to develo
dynamical model which exhibits the same type of transitio
as found in the experiments. We stress the importance o
finding of qualitative changes and their description by app
priate techniques as an ideal starting point for deriving c
ceptual models.

IV. MODELING

A. Nonlinear error correction

A considerable amount of theoretical work on the prod
tion of rhythmic movements focuses on stochastic mod
without error correction. In this framework, the dynamic
structures, e.g., the patterns of covariances between inter
are explained by different stochastic variables operating
hierarchical organization~cf. @10# for a review!. Qualitative
transitions cannot arise from the dynamics of these mod

Different from this purely stochastic approach, we aim
a dynamical explanation of the observed qualitative tran
tions. Therefore we have to include a nontrivial determinis
component of the dynamics, comparable to the well-kno
Haken-Kelso-Bunz model@2#. We start with an equation fo
error correction of single-handed movements,

xi 115d i 111k tanh@a~xi2d i !#. ~6!

In this model an intervalxi 11 is produced by a stochasti
variable~timekeeper! d i 11 and an error correction term. Th
error correction operates with respect to the deviationxi2d i
of the last interval from the last timekeeper value. For sm
deviation we assume a linear error correction. For larger
viations there is a saturation effect. This is a common type
nonlinearity in biological systems which could be motivat
f
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in our case by a constant rate of information processing
the human movement control system. With the two para
etersa and k we can adjust the slope and the asympto
value of the correction function separately.

In the deterministic case, i.e., var(d)→0 or d i[d0 for all
i , a linear transformation of variables,zi5a(xi2d0), leads
to the system

zi 115c tanh~zi !, ~7!

wherec5ka is the control parameter. The qualitative beha
ior of this equation can be described by a bifurcation d
gram@18#. For ucu,1 model~7! generates the same qualit
tive behavior as a model with linear error correction~Fig. 5!.
The asymptotic solution isz50, a fixed point. Ifucu.1, then
this solution becomes unstable. Different from linear mode
Eq. ~6! creates two additional fixed points. Forc51 there is
a pitchfork bifurcation with a positive and a negative branc
The asymptotic value ofz depends on the initial conditions
For c521 there is a period-doubling bifurcation which cr
ates an oscillatory solution. This period-doubling bifurcati
of period 2 can explain the occurrence of periodic sym
patterns in the experiments. Therefore we use basically
equations of type~6! for our modeling of bimanual move
ments.

B. A nonlinear model for the production of polyrhythms

Our model is formulated for the production of polyrhyth
mic movements of arbitrary order, i.e.,Nr strokes per cycle
with the right hand versusNl strokes with the left hand. Fo
the experiments discussed here, we fixNr54 and Nl53.
The tempo~or cycle duration! is denoted byd. Because of
considerable fluctuationsd is used as a random variable
wheredc is its realization in cyclec. The stochastic proper
ties of d will be treated below. The required interval dur
tions for the hands ared c

r 5dc /Nr andd c
l 5dc /Nl .

The deterministic control loop of our model consists
two coupled maps which generate the interval durations
the subsequent strokes for the rightxj

r and the leftxi
l hand,

respectively,

FIG. 5. Bifurcation diagram of the nonlinear error correctio
model ~7!. A pitchfork bifurcation occurs atc511. The period-
doubling bifurcation (c521) creates oscillating solutions fo
c,21 which are the basis for reproducing the periodic sym
sequences obtained from the experiments.
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where c5 b( j 21)/Nr c115 b( i 21)/Nl c11 is the cycle in-
dex andb••• c denotes the integer part of the included expr
sion. To each subintervalxi

r ,l we assign the value of th
stochastic durationdc

r ,l with respect to the actual tempodc of
the cycle. This value is then corrected by two feedba
mechanisms: The first correction term~I! is active within the
cycle and the coupling term~II ! is only active at the end o
each cycle. This is fulfilled by defining

D i
r ,l5 H1 if~ i 11! mod Nr ,lÞ0

0 otherwise,

Q i
r ,l5 H1 if~ i 11! mod Nr ,l50

0 otherwise. ~9!

Now we discuss the different terms in the model eq
tions ~8! in detail.

I. The first correction operates within a cycle, i.e., d
namical correction is performed separately for each ha
Previous investigations@19# have shown that this correctio
has to incorporate two essential properties in order to re
duce the experimentally observed symbol patterns.

~a! The first property is anonlinear correction function.
As in Eq. ~6! we have chosen a tanh function here; a pie
wise linear function or any sigmoid function would also be
possible choice. This nonlinearity enables the model to
produce the bifurcations underlying the experimentally o
served periodic symbol sequences.

~b! The second important feature is that the correct
operates with atime delay d. In some casesd50 yields to
the observed symbol patterns. On the other hand, a d
time d>2 would lead to symbol patterns with a perio
longer than a cycle which is never found in the experimen
data @19#. Therefore, to explain almost all of the observ
periodic symbol patterns, we fixd51.

II. The coupling mechanism aims at the synchronizat
of the movements of the hands and is performed at the en
each cycle with a strength given by parametersk2

r and k2
l .

The coupling of the hands is done on the basis of a pre
tion of theestimated cycle durationsd̂ c

r andd̂ c
l of the cycle

c. Here we use

d̂ c
r 5Nrxi 2d

r , d̂ c
l 5Nlxi 2d

l . ~10!

The explicit form of these estimations determines the ty
of symbol pattern that is produced by the model. The corr
tion function is the tanh function as in~I!.

Some additional remarks on these assumptions are ne
sary: First, if the within-hand correction is the only type
-

k

-
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-
-

n

ay

l

n
of

c-

e
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feedback control, then a stochastic detuninge would lead to
a desynchronization of the hands. As a consequence, th
multaneous stroke at the end of each cycle would fail.
contrast to this, our experiments show that subjects were
to perform the simultaneous~last! stroke of the cycle. This is
the motivation for the coupling mechanism~II !.

Second, to understand the form of the estimated cy
duration, we compare the within-hand correction~I! with the
coupling mechanism~II !. For the within-hand correction in
cycle c the value of the tempod c

r ,l is assumed to be inac
cessible for the control system due to delay and fluctuatio
For the coupling mechanism~II ! the control system has to
compare the instantaneous cycle durationsd c

r andd c
l . Since

their realized values are inaccessible in cyclec, we assume
that those intervals which would be the basis for the with
hand correction,xi 2d

r and xi 2d
l , are also used for the cou

pling. Therefore the form of the estimated cycle duratio
~10! is consistent with the form of the within-hand corre
tion. Since the choice of the estimates determines the p
odic symbol patterns, which can be produced by numer
simulations of the model, additional constraints arise fro
symbol patterns observed in the experimental data@Figs.
2~a!, 4~a!, and 4~c!#.

C. Analysis of the model

To demonstrate that our model can explain the struct
of the symbol patterns derived from the experimental da
we now present some analytical results on the dynamics
d51. This is done in the deterministic case and for stron
nonlinear control, i.e.,a→`, where tanh(az)→sgn(z). We
fix k1

r ,l521 anduk2
r ,l u51. Furthermore, we assume that th

dynamics is stationary and the maximal period length of
symbol sequences is a cycle, i.e.,zj

r5xj
r2d0

r 5zj 14n
r and

zi
l5xi

l2d0
l 5zi 13n

l for all n50,1,2, . . . . Under these as
sumptions the model gives seven equations for the relat
ship of subintervals,

z1
r 52sgn~z3

r !, ~11!

z2
r 52sgn~z4

r !, ~12!

z3
r 52sgn~z1

r !, ~13!

z4
r 5k2

r sgn~4z2
r 23z1

l !, ~14!

for the right hand and

z1
l 52sgn~z2

l !, ~15!
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z2
l 52sgn~z3

l !, ~16!

z3
l 5k2

l sgn~3z1
l 24z2

r !, ~17!

for the left hand. These equations lead to four different sy
bol sequences in the right hand~‘‘0011,’’ ‘‘0110,’’ ‘‘1001,’’
‘‘1100’’ ! and two for the left hand~‘‘010,’’ ‘‘101’’ !. Which
of these patterns are combined is determined by the c
pling. If k2

r 5k2
l , then we getz1

r 52z1
l , and if k2

r 52k2
l ,

then we will observe symbol sequences withz1
r 5z1

l . These
symbolic structures are in correspondence with the exp
mental data. In the symbol patterns of subject A@Fig. 2~a!#
we observe the periodic symbol sequences ‘‘0110’’ produ
by the right hand for trials 1–50 and in combination wi
‘‘010’’ produced by the left hand for trials 50–90. For su
ject B we also observe the pattern ‘‘0110’’ in the right ha
for the fast range of tempi. Additional symbol patterns, li
‘‘100’’ in the left hand of subject C for trials 1–50, can als
be explained dynamically by the model. This can be dem
strated by numerical simulations.

An important feature of the symbol patterns is their s
bility, which is found in the experimental data. This has to
investigated by simulations of the model below. Now w
address the stochastic properties of our model.

D. Stochastic fluctuations in timing

A realistic model of human movement timing has to i
clude the random fluctuations observed in related exp
ments. We now specify the stochastic properties of
tempo variabled. A second source of randomness is t
motor system, which is discussed below.

The tempo variabled is treated as an uncorrelated rando
process. For the study of qualitatively different dynamic
regimes, it is important that the variance var(d) of d is a
monotonously increasing function of the mean value^d&.
This fact is in good agreement with the hypothesis that
interval duration is produced by some elementary coun
mechanism. The explicit form in the production rhythm
however, depends on the experimental design.

For numerical simulations of our model we estimate
relation between the mean value^d& and the variance var(d)
from the experiments. Under the assumption that the n
produced by the motor system is small compared to the fl
tuations in the timing control, the bar durationtc of cycle c
can be used as an approximation todc . For simplicity we
assume a polynomial relation of second order@10#,

var~d!5a^d&1b^d&2, ~18!

which includes the two parametersa andb ~Fig. 6!. For the
simulations we useg-distributed random variables with th
required relation between mean and variance.

At this point the question arises, how the value of t
stochastic variabledc is related to the values ofd c

r andd c
l .

Let us assume that there is stochastic variation in the te
for the right and the left hand. We introduce, therefore
detuning parametere with

d c
r ,l5

dc

Nr ,l
~11ej!, ~19!
-

u-

ri-

d

-

-

i-
e

l

e
g
,

e

se
c-

po
a

where j is a uniform random deviate between21 and 1.
Analyzing the symbol patterns obtained by numerical simu
lations of our model yields an upper limit for the detuning
parameter:e<1022. The question of whetherd c

r and d c
l

arise from two different, but certainly coupled timing pro-
cesses is outside the scope of this work. We now discuss
inclusion of the random fluctuations which originate from
the motor system.

The variablesxi
r ,l represent the control level. We imple-

ment our dynamical timing model into the framework of the
so-called two-level timing@10#. The commands for the hand
movements produced by the control level are executed by t
motor level with some stochastic motor response. The stro
i of the right hand is performed with motor responsemi

r ~Fig.
7!. Therefore the intervalsxi

r ,l observed are bounded by two
motor reponses, i.e.,

yj
r5xj

r1mj
r2mj 21

r , ~20!

yi
l5xi

l1mi
l2mi 21

l . ~21!

As a first approximation the motor responsesmi
r ,l are as-

sumed to be uncorrelated andg-distributed random numbers
which are statistically independent from the control leve
xi

r ,l . If the process on the control level,xi
r ,l , is also statisti-

cally independent, the two-level timing yields simple predic

FIG. 6. Relation between cycle variance var(t) and mean cycle
duration^t& for subject C. As a rough approximation we obtain a
polynomial of second order~18! with a51.003 andb51.06
31023. Note that the time series consists of only 12 values, whic
contributes to the scattering of data points around the regress
line.

FIG. 7. Schematic illustration of two-level timing. The motor
delays are uncorrelated. Due to the measurement procedure,
successive intervals are negatively correlated.
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FIG. 8. Simulation of the model for bimanual production of polyrhythms using a linear variation ofk1
r . ~a! The symbol patterns are in

good agreement with those produced by subject B. On the basis of the Shannon entropy~b! it can be seen that the transition in th
experimental data is rather sharp when compared to the simulation. This is a consequence of the strictly linear variation of th
parameter which may not apply for the experimental case.
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tions on the covariances. The variance of the recorded in
vals is a sum of terms arising from the two sources
variability,

var~yi !5var~xi !12var~mi !. ~22!

Since each recorded intervalyi
r ,l is affected by two motor

responses, we observe a negative autocovariance functio
lag equal one,

cov~yi ,yi 11!5cov~xi ,xi 11!1cov~mi2mi 21 ,mi 112mi !

52var~mi !. ~23!

We can use these two equations for estimating the varia
of the control level and the motor system separately,

var~mi !52cov~yi ,yi 11!, ~24!

var~xi !5var~yi !12cov~yi ,yi 11!. ~25!

For simple tasks like unimanual tapping, where the stro
assumption of statistical independence is a valid approxi
tion, two-level timing predicts that the timer variance~25! is
increasing with the cycle duration, whereas the motor v
ance~24! should remain constant. This prediction has be
confirmed in many cases~cf. @10# for a review!, even for the
more complicated case of synchronization of finger mo
ments with a metronome. Therefore two-level timing do
not exclude error correction, which is an essential propert
our dynamical model.

Furthermore, there is neurophysiological evidence for
concept of two-level timing. A study of the effects of neur
logic damage to the cerebellum@20# has demonstrated a dis
r-
f

for

es

g
a-

i-
n

-
s
f

e

sociation effect between estimates of timekeeper inte
variance and response delay variance.

E. Numerical simulations

Now we present two examples of numerical simulatio
of the model. Our model is a stochastic nonlinear model.
a consequence, order-disorder transitions in the symbol
terns can be due to increase of fluctuations as well as b
cations of the underlying deterministic control system. Ge
erally, realistic simulations will involve both types o
transitions.

The strengths of the correction mechanism are given
the value of the parametersk1,2

r ,l , Eq. ~8!. Since these param
eters determine the saturation or maximal correction, i
reasonable to assume a linear dependence of the param
on the cycle duration as a first approximation.

In the first simulation@Fig. 8~a!# we use only one contro
parameter (k1

r 5245, . . . , 21), which leads to a clear tran
sition in the right hand. Because of the linear variation of t
parameter the bifurcation point is at trial 85. The cont
parameter of the right hand correction is near the bifurcat
point, k1

l a1
l 50.7. The coupling of the two hands induce

subtle structures in the symbol pattern of the left hand, wh
is confirmed by the plot of the Shannon entropy@Fig. 8~b!#.
The other parameters arek1

l 527, k2
r 5210, k2

l 510,
a1

r 50.05, a1
l 50.1, a2

r 50.3, a2
l 50.05, a51, b51023,

e5331023, var(m)550, initial values:x0
r ,l,0, x21

r ,l .0.
The simulation in Fig. 8 is qualitatively in agreement wi
the experimental data in Fig. 4~a! ~subject B!.

Using a linear variation of several parameters, we c
reproduce more complicated transitions. The symbol pat
of subject A @Fig. 2~a!# is an example with two transition
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FIG. 9. Example for a simulation of the model in a more complicated case. The symbol patterns~a! and Shannon entropies~b! are
qualitatively in agreement with those produced by subject A.
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between regular and irregular symbol sequences in the
hand, where a regular region of symbol sequences exte
approximately from a cycle duration of 1.2 s to 3 s. T
parameters for a simulation with comparable qualitative f
tures~Fig. 9! arek1

r 5235, . . . , 230,k1
l 5210, . . . , 225,

k2
r 528, . . . , 215, k2

l 51, . . . , 25, a1
r 5a1

l 50.06,
a2

r 50.3,a2
l 50.08,a51, b51023, e51023, . . . , 1022, ini-

tial values:x0
r ,l,0, x21

r ,l .0.
These two examples demonstrate that the proposed m

is able to reproduce qualitative characteristics of the dyna
cal transitions. It is a challenge for future work to compa
numerical simulations with the experimental data in order
extract the control parameters underlying the performanc
individuals. Using this approach, the complexity of the d
namics of hand movements could be captured in the va
tion of the control parameters of the dynamical model~8!. To
check our model in a variety of situations it has to be appl
to different experimental paradigms, e.g., polyrhythms
different orderNr :Nl .

V. SUMMARY

The analysis of physiological and psychological time
ries @8# is typically obstructed by intrinsic fluctuations an
measurement noise. An additional problem is that our ti
series are rather short~12 cycles!. Even for longer experi-
mental observations, instationarities typically limit the leng
of data series which can be used for the analysis. Des
these difficulties we have shown that a coarse graining of
data by transformation to symbol sequences can be suc
fully used to extract significant properties of the underlyi
dynamics.

In particular, our symbolic coding is well adapted for th
detection of qualitative changes in the behavioral dynam
ft
ds

-

del
i-

o
of
-
a-

d
f

-

e

ite
e
ss-

s.

A qualitative transition from correct to incorrect timing o
the rhythmic structure is transformed into a disorder-or
transition in the symbol sequences@6#. This is quantitatively
described by the Shannon entropy of the distribution
words, as a measure for stochasticity of the symbol
quences.

The existence of qualitative transitions in our experime
is an important finding for the modeling of simple moveme
tasks which are typically described by statistical timer-mo
models@10#. These models are linear. Therefore it is impo
sible to reproduce qualitative changes which we have pro
to exist in the experimental data. The value of the tim
motor approach is to highlight the stochastic componen
movement timing. This emphasizes the advantage of
model which combines the stochastic description of
timer-motor approach with a nonlinear control mechanism
account for both stochasticity and dynamical transitions.

We have shown that our model reproduces the experim
tally observed symbol patterns, if the discrete time delay
fixed at d51. The existence of such a time delay@22# is
supported by physiological experiments@23#, which show
the ubiquity of delay processes. As an example, volunt
movements are initiated by firing of motor neurons with
time delay of order 100 ms. If these movements are distur
by some external influence, then an additional increase
activity in the motor cortex is observed after 20 ms. A re
sonable estimate of a time delay between brain processes
observed movements will be bounded within these lim
Since the shortest intervals of the polyrhythm task are ab
50 ms, we expect time-delayed error correction,d51, in the
theoretical model.

Additional support for the concept of time-delayed err
correction arises from an experimental study, where subj
were required to synchronize their movements with a me
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nome. In the analysis based on the concept of two-level t
ing, time-delayed error correction has been found for f
tempi @24#. This corresponds tod51 for the error correction
in our model.

Recently the impact of artificial delays on visually guid
movements was used to analyze the feedback loop in d
@25#. The importance of time delay in feedback loops, wh
is emphasized by our results, suggests that artificial delay
~auditory! feedback might be a promising approach for t
experimental study of the production of rhythms.

In this work we have shown that the stochastic proper
of timing structures interact with the nonlinear dynamic
Therefore dynamical models@1# and statistical two-leve
models@10# were combined to understand the variability
movement control. In this sense, our approach may be
to bridge the gap between two methodological and theor
-
,

ny
o
.

sy

R

ss

or
-
t

ail

of

s
.

le
ti-

cal traditions in the more general discussion about stocha
versus deterministic aspects of simple movement tasks.
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