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In the modern industrialized countries every year several hundred thousands of people die due to
- sudden cardiac death. The individual risk for this sudden cardiac death cannot be defined precisely
by common available, noninvasive diagnostic tools like Holter monitoring, highly amplified ECG
and traditional linear analysis of heart rate variability (HRV). Therefore, we apply some rather
unconventional methods of nonlinear dynamics to analyze the HRV. Especially, some complexity
measures that are based on symbolic dynamics as well as a new measure, the renormalized entropy,
detect some abnormalities in the HRV of several patients who have been classified in the low risk
group by traditional methods. A combination of these compiexity measures with the parameters in
the frequency domain seems to be a promising way to get a more precise definition of the individual
risk. These findings have to be validated by a representative number of patients. © 1995 American

Institute of Physics.

. INTRODUCTION

Ventricular arrhythmia, especially ventricular tachycar-
dia (VT) and ventricular fibrillations are in many cases the

cause of sudden cardiac death of patients after myocardial

infarction. The improved identification of patients highly

threatened by these severe rhythm disturbances is an impor-

tant and very actual clinical problem.

Short as well as long-range fluctuations in the heart rate
are related to the autonornic nervous system control of heart
activity and vasomotion. Recent studies have shown that a
low heart rate variability (HRV) is a clear indication of an
increased risk for severe ventricular arrhythmia and sudden
cardiac death. These phenomena seem to be associated with
a structural change of the beat to beat interval dynamics.

Kleiger' showed that a reduced HRV carries an adverse
prognosis in patients who have survived an acute myocardial
infarction. Malik? examined HRV in those patients to find the

optimum time and duration of recording of the ambulatory

ECG for the prediction of the risk of a sudden cardiac death,
or serious arrhythmic events, It has been reported that pa-
tients after an acute myocardial infarction have a reduced
parasympathetic function which causes an increased sympa-
thetic tonus. ' ‘

Therefore, several well-known techniques have been ap-
plied to detect such high risk patients from ECG (¢f. Fig. 1).
First, some rather simple time domain measures of heart rate
variability have been proven useful for clinical purposes.
Second, the spectral analysis of the RR time series that ex-
presses HRV in the frequency domain exhibits different os-
cillating sources of the variability of heart beat generation,
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The different regions in the power spectrum are related to
special physiological phenomena. We have considered the
following: The frequency band < 0.0033 Hz (ultra low fre-
quency power ULF} and the frequency band 0.0033 ... 0.05
Hz (very low frequency power VLF)} represents humoral,
vasomotion and thermo regulations and reflects also the ac-
tivity of the renin—angiotensin—aldosteron system. The fre-
quency band 0.05 ... 0.15 Hz (low frequency power LF) re-

flects modulation of vanafhphr‘ or narasvmnathetic tone by
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barcflex activity (blood pressure regulanon) and the fre-
quency band 0.15 ... 0.45 Hz (high frequency power HF)
represents the modulatlon of vagal activity especially influ-
enced by respiration. Bigger® showed that the day-to-day sta-

bility of the measure of heart period variability makes it pos-

sible to detect small changes due to progression, regression
of diseases or treatment effects. Further on he pointed out
that according to Kleiger’s results the ULF of the spectrum
especially has the strongest association with mortality in
post-infarction patients. Another approach to detect such
high risk is the analysis of very late potentials (VLP) ob-
tained from ECG.*’

However, the traditional techniques of data analysis in
time and frequency domain are often not sufficient to char-
acterize the complex dynamics of heart beat generation.
Hence, different attempts have been reported to apply the
concept of nonlinear dynamics to this problem.® After some
optimism in the 1980s, it has become clear that the HRV
cannot be generally characterized by low fractal dimensions.

The purpose of this contribution is, therefore, to analyze
the HRV by means of other methods of nonlinear dynamics
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FIG. 1. Scheme of different techniques for the analysis of ECG.

which are based on the concept of symbolic dynamics and on
a renormalized entropy.

The organization of this paper is as foilows The kind of
the data and the traditional techniques to analyze them are
described in Sec. II. In Sec. III we introduce differént com-
plexity measures. Their efficiency to detect high risk patients
is discussed in Sec. IV which also includes a comparison
with the results obtained from traditional techniques. Section
V concludes the paper._ :

Il. DATA AND PRE-PROCESSING
A. Data '

. The ECG recordmg has been done as follows: A 30 to 60
min 4 channel high resolution ECG (Rrarik leads and an ad-
ditional diagonal lead) with a sampling frequency of 2000
Hz aid 16 bit resolution (PC system with commercial avail-

ahla faot imitiring haserd)l wae mahtainad nnrlAr root sondi_
acie iast Ulsltlbllls COArd) was oolames unGer rest Conar

tions. The Simson method’ was used to calculate the sum
vector magnitude from the three highly amplified (digital
high pass filter, Butterworth characteristics 40 Hz) leads X,
Y, and Z.

After dlgltlzmg and extracting of RR intervals by auto-
matic procedures all RR time series have been checked by a
technician and if necessary edited. The software RR detec-
tion algorithm is based on thé cross-correlation téchnique,

B. Patients

. In this preliminary study, we have included a sample of

43 patients subdivided in 3 groups {cf. Fig. 2). The first
group consists of 21 healthy persons. In the second group
there are 9 patients after myocardial infarction (MI) with low
electrical risk (arrhythmias of low degree). Group 3 repre-
sents those 13 cardidc patients after MI for whom severe
ventricular arrhythmias (sustained ventricular tachycardia)

hava hoan dasnimantad
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C. Traditional analysis

These techniques can be divided into time and frequency
domains (see Fig. 1).

In the time domain we have calculated the followmg
standard paramieters: the quotient of mean and standard de-
viation, the standard deviation of averages of NN intervals

over 1 and over 5 minutes as well as the proportion of NN-
interval-differences >50 and >100 ms and the root mean
square of successive differences,

From the estimated power spe'ctrum. we have determined
the power of the 4 above-mentioned frequency bands (ULF,
VLE, LE, HF) and the ratios LF/whole power and LF/HF.

All these quantities that are based on linear statistics are
rather simple to calculate, but they do not lead to a satisfying
detection of high risk patients. The rapid development in the
theory of nonlinear dynamical systems has caused some op-
timism for a more appropriate understanding of such com-
plex rhythms, as expressed in the HRV.

lil. COMPLEXITY MEASURES

In the 1980s the wide-spread hope arose that many com-
plicated systems observed in nature can be described by a
few nonlinear coupled modes. The properties of these sys-
tems are characterized by fractal d1men51ons Lyapunov ex-
ponents, or Kolmogorov—Sinai entropy.® However, we now
know that such a low dlmenqonahtv can be expected onlv
for rather coherent phenomena, such as observed in laser
systems. Physiological data, as studied here, seem to have a
niore complex structure, may be due to high-dimensional
processes or due to the influence of random-like fluctuations.
In this section, we present rather unconventional approaches
to find some characteristics in these records.

A. Symbolic dynamics

Symboli¢ dynamics is based on a coarse-graining of the
measurements, i.e., the data ¢, are transformed into a pattern
whose elements are only a few symbols (letters from some
alphabet). This way, the study of the dynamics simplifies to
the description of symbol sequences. In doing so one loses
some amount of detailed information, but some of the invari-
ant, robust properties of the dynamics may be kept (Hao®).

The first step is to find a suitable symbolic description. If
we do not know a generating partition, there is no straight-
forward procedure for this problem, but it is context depen—
dent (Kurths ef al.'?). Hence, we have to look for a coding
procedure which is suitable for our purpose. From various
tests we have found that for our purpose at least 4 different
symbols are necessary. This leads us to use two different
kinds to transform the HRV records into symbol sequences.
The first transformation refers to three given levels,

0, if t,>(1+a)u,

. 1, if ;> and 1, <{1+a)u, 0
Fa™ LZ, if 1,>(1~a)p and 1,<p, W
3,

if t,=<(1—a)pu,
where u denotes the mean RR-interval and a is a special
parameter specified in. Sec. IV. The second transformation
considers the kind of difference between two adjacent mea-
surement values; it especially reflects dynamical properties
of the record:
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FIG. 2. Tachograms of a healthy {top} and two ill persons.

0, if At,>1.50,, somewhat and test for the number of words with a Tow prob-
T e s - abllty of oceurence (Guobablty les han 0001,
3,"" —_ R ) (2) ﬂ lehblbdl HICASUET O aYILIDUL SCHULIICES 1> e DlldIlIlUll

2, ifAz,>—150, and Ar7,<0, entropy. From the probabilities p(s*) of words of length &

3, if At,<s~—150,, ‘we get the Shannon entropy of kth order as follows:

with At,=t,,,—1, and &, is the variance of Ar,. In the He=— Y  pls"log plsh). (3)

following we check, which of these transformations is more
appropriate for our purpose. )

Next, some classical parameters, whlch quantify differ-
ent aspects of the behav1or of such a symbohc string s, are
presented.

The first approach is to calculate the frequenc1es of oc-
curring symbols. To investigate a rather broad range of dy-
namics, one should analyze long words. However, our data
sets only contain about 2000 RR-intervals and the number of
all possible words of length { basing on the alphabet, as
introduced in Eg. (1), is 4. We, therefore, count length-3
words as a good compromise between including some dy-
namics and the reliability in estimating the frequencies. With

these frequencies one can distinguish rather uniform distri-

butions from more complicated ones. This leads to the first
measure of complexity which simply counts the number of
forbidden words. For statistical reasons, we modify this idea

sF.p(s*)=0

This H, measures the average number of bits needed to
specify an arb1trary word of length k& in the symbolic string.

U.'le- COI‘[CGP[ OI nenyl GII[['Opy Wwas III.U.'UUU.LEG asa gen-
eralization of Shannon’s ansatz

> p(s")"?)

5*

H,,(c“')=(1‘—g)_1 1og2( (4}

where g is a real number and g # 1. It includes different
averaging of probabilities. H,(f) converges to Shannon en-
tropy Hy as g— 1. Both, the Shannon entropy and the spec-
trum of Renyi entropies are measures of complexity which
characterize systems as follows: 14

(1} The complexity is zero for constant sequences.
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(2) In case of periodicity with prime period m,m<k one
gets H=log, m.

(3) For uniform distributions it takes its maximum value
H=k log, @ where a is the number of symbols.

(4) H? decreases with growing g.

(5) If g>1 those words of length k& with large probability
dominantly influence the Renyi entropy. This behavior is
strengthened for larger g values. Vice versa, if 0<g<1
then words with small probablllty mainly determine the

wnlana ~f E7(G)
Vﬂluc- il Ilk .

In order to get reliable estimates of these H, or HY,
which are also based on counting the frequencies of sub-
strings, we calculate here entropy of order 3 only. A possible
inhomogeneous structure inherent the data is checked by de-
termining the Renyi entropies for g=4 and ¢=0.25.

It is important to note that all special complexity mea-
sures mentioned above do not include long-range correla-
tions:

B. Renormalized entropy

The main purpose of this paper is the comparison of the
HRYV of different persons to get some judgement of their risk
for sudden cardiac death. As is well-known, the underlying
system that generates the HRV is not closed, but an open
one. From the viewpoint of general system theory, this
means that different persons may have different mean en-
ergy. In such a case the immediate comparison of measures,
such as Shannon entropy, may lead to some difficulties. Bas-
ing on a recent suggestion of Klimontovich,'> we, therefore,
introduce here another comiplexity measure, the renormalized
entropy. This approach, loosely speaking, renormalizes the
entropy obtained from a time series x(#} of a certain person
in such a manner that the mean effective energy coincides
with that of a reference person x,(¢).

Starting from these two time series, we can easily esti-
mate the corresponding probability distributions f(z) and
f:(z). By using formal arguments from thermodynamics the
effective energy is defined as:

e 2)=—log f,(2). S (5)

The renormalization of f, into f, is constructed such that
the mean effective ehergies <h.>> of £ and £, are equal. To
make this idea operational, we first represent the distribution
in terms of the canonical Gibbs distribution

.(I)(chf) _heff(z))

f,(z>=exp( — ©

which can be rewritten as

Flz) = C(To) - exp(— hes(2) Teghs (7)

where Teff and ®(Tg) are the effective temperature respec-
Li'v'my, the fiee effective CHETEY. Because ueff can be calcu-
lated from Egq. (5), there are two unknowns in Eq. (7):
C(T.q) and Toy. They are determined from the following

two conditions.

(a) Normalization:
f Fl2)dz=1;
(b) equality of mean effective energy:

J‘ b 2)f (2)dz= f hei(2)f(2)dz.

Hence f, fulfills the properties wanted. Consequently, we

amnare the Shannan entronies of £ and £
il ‘ Alxl.lu. LIl W ZLICLLIAAVSLE \lllLlUlll\-’ﬂ ULJ ulluJ r
_ff(z)IOg f(z)dz
and (®)

A=~ j FA)log F(z)dx.

For that the renormalized entropy difference
AB=H-H, 9

is introduced. It is important to note that AH is a relative
meéasure that depends on the reference person (system) cho-
sen. Applying it to the logistic map, we have recently found
that this renormalized entropy is the only complexity mea-
sure which clearly indicates all transitions between different
regimes which .are caused by this map (Saparin et al.'®,
Therefore, this new measure can also be a good tool to detect
high risk patients.

IV. RESULTS AND DISCUSSION

We calculate all characteristics of the three main differ-
ent approaches mentioned above from the HRV records de-
scribed in Sec. II. The parameters in the time and in the
frequency domain are determined as usually, i.e., 5 param-
eters in the time domain and 6 parameters in the frequency
domain (as described in Sec. II C) (see Table I).

Next, we describe some details of the estimate of the
complexity measures introduced in Sec. 1L It comes out that
the first transformation [Eq. (1)] into a symbol sequence is
for our purpose more appropriate than the dynamical trans-
formation [Eq. (2)]. The optimum value of ¢ in Eq. (1) is
about 0.1. For persons with cardiac risk, the distribution of
length-3 words is concentrated on about 10 words (of 64
possible ones), whereas healthy persons are characterized by
a more uniform distribution. An efficient criterion to distin-
guish both is then; persons have a risk if there are more than
44 words which seldom occur. As expected, the Shannon
entropy is not so useful as the generalized Renyi entropies.
Due to the higher variability of healthy persons, we expect
that Renyi entropies for a rather small ¢ is much higher for
this group than for the high risk group. The special criterion

TABLE 1. Number of subjects found as risk by dlfferent technigues (Secs.
i B and TII).

No.of Time Frequency Reﬁyi Frequency .
Group subjects domain  domain  information of words  AS
Healthy 21 0 1 0 0 o
Low risk 9 3 4 6 5 &
High risk 13 6 9 7 11 8

CHAOS, Vol. 5, No. 1, 1995
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probability density.
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FIG. 3. Renormalization of distributions in the power spécti'um: top—original distribution of the reference person; bottorn—original (solid line) and

renormalized (dashed) distribution of another person.

reads then: H3°<(3.6 is an indication for cardiac risk. We
also apply this kind of complexity measure for strings ob-
tained from transformation equation (2). 3

Our calculation of the renormalized entropy AH is based
on the distribution of the trigonometric components, i.e., es-
pecially the power spectrum in the range 0-0.25 Hz. We
have tested several healthy probands as reference persons
and have chosen that with the largest renormalized entropy.
The corresponding power spectrum is shown in Fig. 3 (upper
panel). Note that this choice of a reference subject does not
bCﬂbluVGly lﬂﬂ.uﬂﬂtﬂ me fﬂbun& mgurt: .) '\lOWCl' pdﬂﬁl) uem—
onstrates how the renormalization procedure influences a dis-
tribution. After choosmg this reference person, the AH of all
healthy persons under consideration is in the interval
(~0.75,0). Hence, an indication for cardiac risk is if AH is
outside of this interval. We indeed find values in both direc-
tiens; a very low AH expresses a strongly reduced variabil-
ity.

It is important to note that no healthy proband is misin-
terpreted by means of these commplexity measures. To deter-

A praSeRns ARl VUL ARt SALLPRDANS Y AARGoI. AU RSN

mine, on the other hand, the 1nd1v1dual ca;dlac risk, it is
more suitable if we consider an integrated risk that includes
all 4 criteria discussed above. This is in accordance with the

use of the special parameters in the time and frequency
domain. Hence, we can compare three different risk esti-
mates (Flg 4 and Table I):

(a) As expected, the parameters in the time domain are
less efficient than the other ones. By means of this risk, about
40% of the Hhigh risk patients are detected only. Therefore,
this approach will not be further included.

(b) The analysis in the frequency domain leads to a
rather good distinction of the three groups. This seems to be
due to the physiological meaning of some bands in the power
SpﬁC{ﬂ‘uu

{c) The risk basing on the complexity measures gives the
best detection rate of the high risk patients.

Because the persons detected in the frequency dorhain
and by complexity measures are not completely overlapping,
we combine both, This way, a very good detection rate of
high risk patients is obtained,

The evaluation of persons for whom only a Iow risk has
so far been reported is an open problem. Here, we get an
imnortant difference between both kinds of tools. To check

A vaday, RALIRARALS URiWihdl el UL RV §Lv 8.9

Wthh techniques better fit to find high risk patients from this
group, a more sophisticated medical characterization than the
electric risk (LOWN4) is necessary.
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FIG. 4. Comparison of the detection rate for high cardiac risk by means of different techniques. The subjects are subdivided in 3 groups classified by usual
methods. NLD refers to comlexity measures obtained from nonlinear dynamics.-

V. SUMMARY

We have applied the concept of complexity measures to
determine the risk for sudden cardiac death from the HRY, a
very actual clinical problem. By means of classical methods,
especially parameters in the time domain, the individual risk
cannot be defined precisely enough.

We have found some indications that two kinds of com-
plexity measures are very promising:

(a} Renyi entropies and the number of forbidden words,
both of which are based on the notion of symbolic dynamics
as well as (b) a renormalized entropy which we have recently
analyzed in the framework of complexity measures.'®

In combination with some parameters in the frequency
domain, these quantities seem to define a rather precise defi-
nition of the individual risk, In contrast to this, the parami-
eters in the time domain which are in broad use do not im-
prove the detection rate.

It is important to note that one cannot find an optimum
complexity measure. We guess that a combination of some
such quantities which refer to different aspects, such as struc-
tural or dynamical properties, seems to be the most promis-
ing way. The complexity measure proposed by Pincus'” as
well as the criteria that are based on the description of long-

range correlations (cf. Peng et al.'®) should also be included
to define the individual risk.

Finally, we would like to emphasize that our findings
have to be validated by a larger and more representative
number of patients, especially to check our optimized non-
standard techniques. We also think that the study of the heart
rthythms are in its infancy and should by continued by mod-
eling the underlying processes and further analyses of mea-
surements.
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