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A time series analysis of observed solar radio pulsations suggests that there must be a low-dimensional attractor. The 
power spectrum cannot be interpreted as a superposition of periodic components. Estimates of the maximum Lyapunov 
exponent and of the Kolmogorov entropy give some indications for a deterministic chaos. In order to study the limitations 
inherent in small data samples we include data from the Lorenz model and an artificial noise record. Consequences for the 
physical modelling of the pulsation event are discussed. 

1. Introduction 

Geophysical and astrophysical research rely on 
experimental data. In contrast to other fields of 
physics it is generally not possible to influence the 
medium under consideration or to repeat an ob- 
servation under the same co~aditions. Nevertheless, 
measurements play an important role in modelling 
the physical processes involved. 

Usually, the correlation analysis and the spec- 
tral analysis are applied to the data [1], which is 
connected with the physical concept of mode in 
linear theories. New methods for the description 
of dynamical systems (in particular of the de- 
terministic chaos) have been developed. The con- 
cept of mode has been supplemented by other 
quantities such as dimension, Lyapunov expo- 
nents and the Kolmogorov entropy. Recently, al- 
gorithms have been proposed to estimate these 
quantities from measurements [2]. 

Here, we report observations of solar radio radi- 
ation exhibiting a pulsating structure, which is a 

specific manifestation of solar activity. The pres- 
ent paper deals with these measurements. Both 
concepts of time series analysis are used to obtain 
some aids for modelling the physical background 
mechanism. 

In section 2 we introduce the data. Section 3 
deals with the spectral analysis. Estimates of 
the attractor dimension are treated in section 4. 
Further basic properties of an attractor, such 
as the maximum Lyapunov exponent and the 
Kolmogorov entropy, are discussed in section 5. 
Section 6 contains an interpretation of our results. 

2. Observations 

The variation of the solar electromagnetic radia- 
tion and the particle emission is mainly caused by 
solar active regions. Solar radio emission in the 
d m - m  wave range provides information about 
the physical processes in the chromosphere and 
the corona. Flares are the most violent manifesta- 
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Fig. 1. The radio flux record of the pulsating structures on June 3, 1982 at the frequency of 778 MHz obtained at the Tremsdorf  
observatory (first part). The density I of the solar flux is given in Solar Units  (1 S. U. = 10 -22 W m -2  Hz-1) .  

tion of solar activity. They are typically associated 
with an impulsive energy release [3]. It should be 
mentioned that research still has not led to a 
satisfactory model to describe the flare mecha- 
nism. Monitoring the process of the generation 
and propagation of radio waves in the Sun's atmo- 
sphere is complicated, too. 

On June 3, 1982, an impulsive solar flare was 
observed. The main phase of the radio flare was a 
so-called type-IV burst with pulsating structures 
of the radio flux in the frequency range of 480-800 
MHz [4]. Usually, the duration of such a solar 
radio pulsation event is not longer than a minute. 
The duration of the considered pulsations (40 s) 
provides a data length of 640 points, which refers 
to a sampling rate of At = 0.064 s. In the follow- 
ing, results are related to this time unit At. The 
record obtained by a single frequency radiometer 
at the Tremsdorf  observatory is partly shown in 
fig. 1. 

Models for solar radio pulsations are based on 
the linearized equations of MHD oscillations or 
on the time evolution of plasma instabilities. Often, 
these approximations explain the pulsations as a 
sum of periodic modes (peaks in the power spec- 
trum) [5, 6]. 
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Fig. 2. The power spectrum of the whole solar record (see fig. 
1). 

3. Spectral analysis 

A stationary stochastic process can be described 
by its power spectrum (Fourier transform of the 
autocovariance function) [7]. There are indications 
that during pulsations a relative stationarity may 
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be assumed. The autocovariance function esti- 
mated from the record decreases with a correla- 
tion time of about ten. The estimation of the 
maximum entropy spectrum (MES), as proposed 
by Burg, provides a resolution which is much 
higher than is usually obtained by other methods 
[8]. The inspection of the MES computed from the 
considered data shows a broad-band power 
spectrum (fig. 2). The peaks are inside an 80% 
confidence interval. Hence, we cannot call them 
significant. 

For comparison, we study autoregressive (AR) 
approaches which cover a wide range of stochastic 
processes. They are defined by the stochastic 
difference equation 

p 

X, = ~ akX,_ k + N,, (1) 
k = l  

where N t is identically and independently distrib- 
uted (white noise). From eq. (1) it follows im- 
mediately that the power spectrum of such an 
AR-process can be written as 

P x x ( f )  = °2 (2) 
1 P 2 

- ~ a k e x p ( - 2 ~ r i f k )  
k = l  

(o2-var iance  of Nt) [9]. From eq. (2) we easily 
find a regular 5th order AR-process whose power 
spectrum (fig. 3) is very similar to that of the solar 
record (fig. 2). But in contrast to this an AR-model 
adaption does not yield a satisfactory description 
of the data in the time domain, i.e. the structure of 
the solar record is different from AR-processes in 
spite of their spectral resemblance. 

For a generalization of the above analysis we 
have applied a time-dependent parameter esti- 
mate, too (sliding algorithms) [10], which likewise 
does not contribute to a sufficient reduction of the 
model errors. 

Summarizing, we cannot determine significant 
structural parameters of the record using methods 
of the spectral analysis only. 
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Fig. 3. The power spectrum of an AR-process of the 5th 
order. 

Therefore, further investigations are devoted to 
a new field of time series analysis concerning the 
dimension of a possible attractor and a stability 
analysis in order to distinguish between quasi- 
periodicity, deterministic chaos and random noise. 

In view of the rather short record (640 points) 
(cf. [11-14]) we treat typical models of the same 
length in order to check the reliability of our 
results: 

a) AR-5 process (p  = 5 in eq. (1), fig. 3); 
b) periodic data; 
c) the Lorenz model [15] with At = 0.1; 

d x  
dt  = - 1 0 ( x - y ) ,  

d y  = x ( 2 8 - z )  - y ,  
dt  

dz  8 
d---i = x y  - -ff z .  

(3) 

Now we can test the applicability of the al- 
gorithms to such short data lengths. 
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4. Attractor dimension 

We focus our attention on the question: Is there 
a low-dimensional attractor underlying the ob- 
served pulsations? 

The dimension furnishes an estimate of the 
number  of variables which are at least required to 
describe the system. For the study of complex 
attractors the concept of fractal dimensions is 
useful [16]. 

We consider three generalized order-q dimen- 
sions [12]: 

D o -capaci ty  or fractal dimension; 

D 1 - informat ion or pointwise dimension; 

D 2 -correlat ion exponent. 

They are connected by the rigorous inequalities: 

D O > D z > D 2. (4) 

There are examples showing that these dimensions 
diverge considerably reflecting the inhomogeneity 
of the attractor [17]. The computation of Dq from 
time series is based on a reconstructed m-dimen- 
sional pseudo-phase space [18], for which a time 
lag ~" is needed. Our results are not significantly 
influenced by the choice of r (tested for r = 
1 . . . .  ,12). The N points in the reconstructed phase 
space are denoted by xs and the Euclidean norm 
is used. A local density function nj is defined by 

1 nj(r)= N - 1  EO(r-xj-xk) ,  (5) 
j ~ k  

1, if s > O ,  
O ( s ) =  0, otherwise. 

The Dq values are estimated by different ways of 
averaging (cf. [12, 17, 19]) 

C q ( i , ' )  --~- j~= 1 (nj (/')) q-1 --rD,. ( 6 )  

We obtain Do and 9 2 with the harmonic (q --* 0) 
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Fig. 4. a) Log C2 versus log r of the solar measurement, b) 
Dependence of the D2 corresponding to (6) on the embedding 
dimension m. × - L o r e n z  model; o-solar  data. c) Log C 2 
versus log r of the AR-5 process. 

and the arithmetic (q = 2) mean, respectively. The 
estimated information dimension D 1 is given by 
the geometric mean of n j, the bars marking ap- 
proximated values (cf. eq. (6)). 

The log C 2 vs. log r plot from the solar record 
displays a good agreement with a power law for 
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Table I 
Estimates of attractor dimensions 

Data Dimension D 0 D1 D2 

Periodic 1 1.03 _+ 0.05 1.03 _+ 0.05 1.025 + 0.05 
signal 

Lorenz 2.06 2.11 _+ 0.1 2.11 + 0.1 2.05 _+ 0.1 
model [12] 

Solar ? 3.8 + 0.3 3.7 + 0.3 3.5 -5_ 0.3 
record 

intermediate r (fig. 4a). The dependence of the 
slope D2(m) on the embedding dimension is drawn 
in fig. 4b. D 2 reaches a saturation limit beyond 
m = 4. The results of our dimension measurements 
are summarized in table I. We can conclude: 

1) The surprising agreement between the esti- 
mated and the known dimension of the models b 
and c supports the idea that the structure of the 
attractor can be analyzed even if the available 
data lengths are rather short (cf. [20, 21]). 

2) There is a low-dimensional attractor underly- 
ing the observed solar pulsations. 

3) The differences between the various di- 
mensions suggest that the attractor is relatively 
inhomogeneous. 

Returning to the AR-5 model, we notice that 
the log vs. log plot in fig. 4c is entirely different to 
fig. 4a. A linear increase is missing in fig. 4c, this 
again indicating the structural differences between 
the solar record and the stochastic AR-models. 

5.1. Maximum Lyapunov exponent 

Lyapunov exponents X~ are defined by the be- 
havior of infinitesimal deviations from the trajec- 
tory [2]. If we take at time t -  0 an infinitesimal 
hypersphere centered at an attractor point x o it is 
transformed into an ellipsoid with the semi-axes 

b i ( t )  -~ bi(O ) exp (X,t). (7) 

Therefore, the growth of the distances of nearby 
points has to be studied [23]. First, we discuss a 
simple procedure which determines a lower limit 

of the maximum Lyapunov exponent Xmax; we 
then apply the algorithm proposed by Wolf et al. 
[14]. 

1st method: We choose all pairs of nearby points 
in a pseudo-phase space satisfying 

ro J, = I x j -  xkl < (8) 

and compute the distances of these points which 
belong to the trajectories after n steps, 

r~ j'k) = Ixj+n - xk+,l. (9) 

In this way, we obtain a stretching factor from 
any pair of adjacent points 

d~J. k) = r~ j'k) 
ro j, . (10) 

5. Is the attractor chaotic? 

The non-periodicity and the correlation decay 
are not necessarily caused by stochastic forces. 
They may be related to a deterministic chaos [2]. 

Besides the dimension we, therefore, discuss the 
stability of trajectories and the Kolmogorov entro- 
py. A positive Lyapunov exponent reflects the 
orbital instability, and the Kolmogorov entropy 
measures how rapidly the information about the 
initial state region is lost as time increases [22]. 

Averaging leads to 

1 
L ( n )  = -~ ~_, lnd~ j'k). (11) 

j , k  

For small n the L(n)  oscillates (reflecting the 
inhomogeneous growth of the distances [17]). 
Otherwise r, ~j' ~ should be smaller than the attrac- 
tor size. In view of these restrictions we have 
chosen n = 8 in table II. This method necessarily 
leads to an underestimation of h m~ due to the 
fact that not only the direction of maximal expan- 
sion is taken into account. However, a positive 
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Table II 
Estimates of the maximum Lyapunov exponent 

Da ta )t m a x  Z ~ max 

Periodic 0 - 0.002 0.0003 

signal 

Lorenz 0.91 0.75 0.85 
model [12] 

Solar ? 0.01 0.08 
record 
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Fig. 5. a) Dependence of the estimated maximum Lyapunov 
exponent on the evolution length T. X - L o r e n z  model; 
o - solar record, b) Same as fig. 5a, but for the AR-5 process. 

(see table II) implies a positive Lyapunov expo- 
nent. 

2nd method: The algorithm proposed by Wolf [13, 
14] includes the search for the direction of maxi- 
mum expansion. The long-term evolution of the 
separation of nearby points is investigated. Al- 
ways after an evolution time T the second point of 
the pair is replaced by a "nearest neighbor" of the 
first, subject to the condition that the orientation 
of the separation vector is most nearly preserved. 
The average rate of the growth of the logarithm of 
this separation is the X m, x estimate in table II. In 
fig. 5a the dependence of Xmax on the evolution 
time T is presented for the Lorenz model and the 
solar pulsation event. We notice in both cases an 
exponential growth over several scales. A compari- 
son of the corresponding plot of the AR-5 model, 
where no plateau can be observed (fig. 5b), is 
rather instructive. We have found equivalent re- 
sults in a study of white noise. Therefore, we 
conclude that the X ~a~ VS. T plot offers a way to 
distinguish between stochastic separation (diffu- 
sion) and chaos [17]. 
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Fig. 6. Values of  K 2 for different m. × - L o r e n z  model; 
o - s o l a r  record; • -  AR-5 process. 
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5.2. Kolmogorov entropy 

Due to the exponential divergence of nearby 
trajectories information is produced by the sys- 
tem. The mean rate of creation of information is 
measured by the Kolmogorov entropy K (cf. [21, 
24]). Grassberger and Procaccia have proposed an 
algorithm leading to a lower limit K 2 of K [11], 
which is obtained from the vertical spacing be- 
tween the parallel lines of the log C 2 vs. log r plot 
in fig. 4a. g2 is presented in fig. 6 for various 
values of the embedding dimension m. We have 
obtained plateaus for the Lorenz model and the 
solar record but not for the AR-5 model (where 
K" 2 increases with increasing m), 

Lorenz model" h'2 = 0.79; 

solar record: K 2 -- 0.04. 

6. Conclusions 

In the present paper we have analyzed a record 
of a solar pulsation event. The data are char- 
acterized by a broad-band power spectrum. There 
is insufficient evidence to prove the existence of 
periodic components expected from the usual 
models. 

We have applied the concept of time series 
analysis concerning the properties of a possible 
attractor structure of the underlying dynamical 
system. 

Due to the short duration of such pulsa- 
tion events in the solar atmosphere, only a rather 
short record is available. The applicability of the 
algorithms to the estimation of dimensions, the 
max imum Lyapunov exponent and the 
Kolmogorov entropy may be questioned with such 
small data samples. Therefore, we have carried out 
calculations with a periodic signal and the Lorenz 
model using the same number of data. The accu- 
racy of the resulting estimates is rather surprising, 
and the qualitative differences from a stochastic 
process are obvious. Such an AR-5 process has 
been constructed with a quite similar power spec- 

trum as the solar record. Calculations for the 
Rossler-hyperchaos system [14], which has a sub- 
stantially higher dimensionality compared to the 
Lorenz model, have provided similar accuracy of 
the estimates. 

The estimated dimensions of the solar time series 
suggest that there exists a low-dimensional attrac- 
tor. A positive Lyapunov exponent as well as the 
positive Kolmogorov entropy estimated from the 
data give some indications of deterministic chaos. 

The quantities describing deterministic chaos 
are interrelated. Particularly, the rigorous in- 
equalities 

K 2 < K <  Z+?~i (13) 

are valid [2] (E + denotes the sum over the positive 
Lyapunov exponents). Furthermore, the decay of 
correlations is often connected with X~a x [25]. 
Hence, our approximations are self-consistent 
since ~ max, K2 and the inverse correlation time of 
about 0.1 are of the same order of magnitude. 

The properties of the attractor deduced from 
the data cannot be explained by a superposition of 
periodic components or by a stochastic AR model. 
Therefore, the application of linearized physical 
models is not admissible. The observed phenome- 
non should be described by non-linear systems 
which are capable of deterministic chaos. Ap- 
proximations using only some modes could work 
successfully due to the low attractor dimensions 

[21. 
Finally, we should like to emphasize that the 

existence of a chaotic attractor is not a well-estab- 
lished fact despite the above indications. The de- 
scription of solar records under this point of view 
is still in its infancy and should be continued by 
modelling the physical processes and further 
analyses of time series. 
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