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Alternating Locking Ratios in Imperfect Phase Synchronization
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In periodically driven chaotic dynamical systems with a broad distribution of intrinsic time scales,
perfect phase synchronization cannot be reached. Long segments of evolution during which the phase
of a chaotic variable follows the phase of the driving force are interrupted by short segments of phase
drift. We demonstrate that this drift is another short-lived synchronized state; its onset is caused by the
passage near the long unstable periodic orbits whose frequencies are locked by external force in ratios
different from 1:1. [S0031-9007(99)09190-5]

PACS numbers: 05.45.Xt

Synchronized processes are widespread in nature ampdemented by the dependence of return time on the
in technical applications [1]; in recent years it has beercoordinates along the Poincaré surface. We denote the
understood that coupling can synchronize not only peripart of the orbit between two returns onto the surface as
odic, but also chaotic systems. Depending on the typéorbit turn” and introduce the mean frequency of returns
and strength of the coupling, several stages of chaotic syras v = 27 limy—. N(T)/T, where N(T) is the number
chronization can be distinguished. The strongest one isf returns within the timg’. The next step leads to phase
the complete synchronization when the states of coupled: each new orbit turn should adtt to ®. For the
systems converge, irrespective of the mismatch in initialong-time effects, details of the phase evolution within a
conditions [2]. In a wider context, the state of the drivensingle turn are of little importance, and interpolation is
system is a function of the state of the driving one (“gen-often sufficient. A finer definition would relate the in-
eralized synchronization” [3]). stantaneous phase to the Hilbert transform of the chaotic

Among the forms of chaotic synchronization, phasevariable [4,8], with instantaneous frequency being the
synchronization is at the closest to the literal meaningime derivative of this phase; as recently checked [5], in
of the word: syn + chrénos= (sharing the) common situations typical for chaotic synchronization, application
time. This relatively weak form does not assume that thef both definitions leads to practically the same results.
amplitudes of motions in the interacting subsystems get In many cases the variation of return times along the
locked; intrinsic time scales of subsystems, however, bePoincaré surface is modest; examples are provided by
come commensurate [4]. In case of a periodically forcedttractors originating from the period-doubling scenario,
chaotic system, phase synchronization adjusts charactdike the Rdssler attractor. Here, a relatively weak forc-
istic times of the chaotic motion to the force period; ining with period close to the mean return time of the au-
previously studied examples it was observed as a perm@#snomous system suppresses the variations and imposes
nent locking between the force phase and the suitably dgserfect phase synchronization so that the phase of the
fined phase of the chaotic motion [5,6]. To enable suctthaotic motion follows the phase of the force [9,10].
dynamics, the range of intrinsic time scales should be nar- One can expect a different picture in systems with large
row. However, in a natural system these time scales cavariations of return times; these are inevitable, e.g., when
differ strongly; this impedes maintainment of the constantan attractor of an autonomous system includes a saddle
phase locking. Recently, studies on a human cardioresppoint. The latter situation is known from problems of
ratory system provided an example in which locking ra-optics (Raman scattering, lasers with saturable absorbers,
tios changed in the course of time [7]. In this Letter, weoptothermal devices [11]), thermal convection in certain
describe the mechanism which enables the phase of tleenfigurations [12,13], or reductions of weakly dissipative
driven system to switch back and forth between differentl- and 2-dimensional complex Ginzburg-Landau equa-
locking ratios. Analysis by means of unstable periodictions [14]. Our example is the archetype of deterministic
orbits shows that the seeming phase jumps are in fact seghaos: the Lorenz equations [15]

ments of different kinds of synchronized motion, whose x=a(y — x), y=rx —y—axz,
alternation is caused by the overlap of Arnold tongues )
with different winding numbers. z =xy — bz + EcoqQ1)

Since in phase space the attracting sets of dissipativeerturbed by a periodic external force with amplitule
dynamical systems are bounded, a typical trajectory reand frequency}; here,o = 10, r = 28, andb = 8/3
peatedly returns to any selected region of the attractoare the original parameter values from [15].

It is often helpful to replace a continuous flow by the Without forcing E = 0) a typical trajectory wanders
Poincaré map which the flow induces on an approprialong two symmetric lobes of the attractor: large loops
ate surface of section; dynamics of this map is com-around two saddle-focus points alternate in an irregular
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pattern. Chaotic orbits come arbitrarily close to the locala chaotic orbit and allows us to view the corresponding
stable manifold of a saddle point at the origin, and thestates as “nearly” or “imperfectly” phase synchronized.
return times on a Poincaré plane can be arbitrarily high. We explain the mechanism of this imperfection with
An indication of phase synchronization would be thethe help of unstable periodic orbits. Embedded into
vanishing difference between the mean frequencgnd chaotic sets as a kind of “skeleton,” these orbits allow
the frequency of the driving forc€) within the range one to resolve fine details of dynamics [18,19], not only
of the values of() [4]. Indeed, a certain plateau in in explicitly given maps and flows, but also in noisy
the plot of w — Q vs Q appears (Fig. 1; hergy = 6);  experimental data [20] and spatiotemporal patterns [21].
however, this plateau is neither horizontal nor lies at Also the distribution of return times can be character-
zero. (For comparison we show the perfectly horizontalzed in these terms. For the orbit which has the petiod
plateau centered arourdd = 24.92, calculated forr =  and closes aftet returns onto the Poincaré plane (we call
210, E = 3. At high values ofr the attractor of the n the “orbit length,” as in [9]), its individual frequency is
autonomous Lorenz equations does not include a saddtiefined asv; = 27n/7.
point [16], return times are confined within a narrow gap, In the presence of weak forcing, each periodic state can
and dynamics can be easily synchronized already by wedhke viewed as an individual periodically forced oscillator:
forcing [17]). trajectories wind on the invariant 2-torus born from the
Similar approximate plateaus are observed for the otherlosed curve of the autonomous system. Since the latter
values of the amplitud& > 2.4. According to numerical is unstable, the torus in the weakly driven system is also
data, here in the chaotic orbit long segments, in whictunstable. In the parameter space, phase-locking regions
its phase follows the phase of the force, alternate witi{Arnold tongues) correspond to rational ratios between the
short intervals where the two phases go apart. Typicatlriving frequency() and the individual frequency; of
evolution of difference between the phases of the systerthe periodic orbit; often only the main tongye = w;
and the force is presented in Fig. 2. The “staircase” builis relevant for the applications. Inside the tongue, two
of long “stairs” connected by abrupt “jumps,” summarizesclosed orbits coexist on the surface of the torus: the
12 300 orbit turns. Each stair corresponds to a phaseattracting “phase-stable” one and the repelling one; on
synchronized state; departures from horizontal lines causdtie edges of the tongue they disappear via the tangent
by crudeness in determination of phase annihilate in the ndtifurcation. Outside the tongues the trajectories are dense
effect. Transitions between the stairs look like occasionabn the torus; the motion is not synchronized.
phase slips. At the start the system and the force share If the frequenciesw; for different periodic orbits of
the same phase value; within the first stair they remaithe autonomous system are close to each other, the main
roughly in-phase; within the second stair the force has @&rnold tongues of these orbits overlap. If a domain
phase lag o2, or, in other words, of one period; within common to all tongues exists, all periodic motions are
the third stair the time lag makes two periods of the forceJocked there by the force in the same ratio; the per-
and so on. In the course of time, not ordy jumps but fect phase synchronization occurs. On their way over
also the rareds jumps are observed. Each transitionthe attractor, chaotic orbits repeatedly visit the neighbor-
is preceded by a sharp decline downwards; this meansoods of tori. There they approach the respective phase-
that just before it the phase trajectory rotates slowly. Instable solution and move along it until the instability of
the rough assumption that a transition happens within #e torus repels them to another torus. Just outside the
single turn,e = |o — Q|/Q vyields a ratio of the number overlap domain, synchronized motions are interrupted by
of nonsynchronized turnd, to that of the synchronized phase slips, in a kind of intermittency which has been
turnsN;: ¢ = N,/N,;. Smallness ot inside the plateau called “eyelet,” since each violation of synchrony owes
confirms the prevalence of synchronized segments within
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FIG. 1. Perfect and imperfect phase synchronization; solicchaotic motion27N(T) and the phase of driving forc@T;
line: r = 28, E = 6; dotted line:r = 210, E = 3. ) =829, E=6.
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to a precise hitting of the small vicinity of a nonlocked orbit turns. A long interval between two returns onto the
torus [6]. Poincaré plane at the very start of the transition indicates

Figure 3 shows the frequency distribution for unstablea very slow turn. Several very short intervals follow; they
periodic orbits embedded into the attractor of autonomousot only compensate the phase lag caused by the initial
Lorenz equations. Among all the orbits of lengththe  slowdown but transport the system upwards to the next
highestw; is attained by the orbit which performs one stair. This scenario reminds us of the periodic orbits from
large turn on one of the attractor lobes and- 1 turns  the upper branch of the frequency distribution (Fig. 3),
on the opposite lobe. During the former, the orbit slowswith their hoverings near the saddle origin, their fast
down in the region of the saddle point; from here, it isrotations around the saddle foci, and their high individual
reinjected relatively close to the saddle-focus point wherdrequencies.
the rate of rotations in the phase space is especially high. This guess is supported by the structure of the Poincaré
Fast rotations counterbalance the initial slowdown, andection of the attractor; an appropriate coordinate is the
the return time averaged over the orbit remains low. value of the force phas# at the moment of intersection

The values ofw; are bounded from above by the with the Poincaré plane [9]. Sinc® is cyclic, one
imaginary part of the Jacobian eigenvalues at the saddigbserves, in general, either an unbounded drift aldng
foci; this bound is unreachable for periodic orbits sinceor, for the state of perfect phase synchronization, a pattern
the saddle foci themselves lie outside the attractor. Thécalized inW [6,9,10]. In our case (Fig. 4 shows several
lowest w; can be arbitrarily small: an infinitesimal shift 27-periods of the pattern), the system spends most of the
of a parameter leads through the countable number dfme in densely populated central stripes; at times, it drifts
homoclinic bifurcations [16], and the periods of closedalong the diffuse “whiskers” downwards.
orbits born from these bifurcations can be arbitrarily large. To elucidate this drift, we identify inside the pattern
However, the proximity to bifurcations makes these orbitsseveral phase-stable periodic orbits: the squares correspond
extremely unstable and hardly relevant: the contributiorto one of the orbits of length 7, locked by external
of a periodic orbit into dynamics is inversely proportional force in the ratio 1:1, the circles denote the orbit of
to its positive Lyapunov exponent [19] which diverges atlength 15, and the crosses show the orbit of length 20.
the homoclinicity. As for the relevant periodic orbits of The two latter orbits stem from the upper branch of the
short and moderate length, the band of their frequencies idistribution (Fig. 3); theiw; in the autonomous case equal
bounded from below. Nevertheless, the variations amon§.978 and 9.028, respectively. Under the valuesof
w; are strong: the distance between the extrama and  corresponding to imperfect synchronization, these orbits
wmin €Xxceeds 12% of the mean value= 8.365... (the are locked by the force in the ratio 14:15 and 18:20,
latter estimate is an average ovdl’ turns of a chaotic respectively. Calculation of further periodic orbits has
orbit). This broad scattering of intrinsic times of the shown that the stripes are crowded by phase-stable orbits
autonomous system hampers synchronization by externidcked in the ratio 1:1, whereas the whiskers are populated
forcing. by phase-stable orbits locked in the other ratios.

Let us magnify a vicinity of a phase “jump” (Fig. 2
inset). Here, crosses denote intersections of the orbit with
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FIG. 3. Individual frequencies of unstable periodic orbits

embedded into the Lorenz attractor at= 28; dashed line:

mean frequency of autonomous chaotic motion. FIG. 4. Unstable periodic orbits embedded into the attractor
4230 of the forced systemf) = 8.29, E = 6.
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