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Abstract - A number of different measures of complexity have been described, discussed,
and applied to the logistic map. A classification of these measures has been proposed, dis-
tinguishing homogeneous and generating partitions in phase space as well as structural
and dynamical elements of the considered measure. The specific capabilities of particular
measures to detect particular types of behavior of dynamical systems have been investi-

gated and compared with each other.

1. INTRODUCTION

1.1 Complexity

The notion of complexity has been object of numerous and extensive studies since it has become clear
that the exact sciences, in particular physics, can no longer afford to disregard the behavior of systems
which cannot be treated simply. A simple treatment has always been assumed to be possible either if
only few degrees of freedom are involved or if central limit theorems can be applied in case of many
degrees of freedom. These assumptions cannot be maintained for nonlinear dynamical systems in general.
In such systems, complex {in contrast to simple) behavior can occur with only few degrees of freedom,
and central limit theorems are not always applicable.

A very clear and suggestive illustration of a basic issue arising in the context of defining complexity is
due to Grassberger [1]. It is reproduced in Figure 1 and it shows three patterns corresponding to a
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P'hree patterns used 1o demonstrate that the partern that cnentuitvely would cadl the most cotngles v

i cne with highest Shannon information (and algorithmic complexaty) 1} nor the one with Jowest (g, Reprodnoe

Cirassherger {1] with kind pernussion of the anthor

dilferent degree of complexity. Iigure La shows a completely regular, ordered structure, Frenre i
onl ;T lisordered structure. and Fiesure 1h represents d mstiure of order and diso .
o u).npwtely random. disordered structure. anc 1gure Ih represents a mmxture of order and disoo.n

regularity and randomness. From an intuitive point of view. the latter pattern will quite natura

considered most complex by most people. This intuitive judgment, however. contradicts the historico:

carliest formal measure of complexity as suggested by Kolmogorov in 1965 [2]. 1t is called algoriiiin
complexity and has been further developed by Chaitin [3]. The algorithmic { Kolmogorov-(haitin
plexity of a pattern 1s essentially given by the length of the shortest algorithm capable of reprodicing
pattern. As such, it would assign highest complexity to Figure lc instead of 1h. Algorithmic comples it
'In many. but not in all cases) a measure of randomness like Shannon information ur dvnamical i
not of complexity in the intuitively appealing sense.

Presently a bunch of different definitions of complexity and corresponding measures of complexity -
[xcellent overviews considering the state of the art up to 19833 have been wiven by Grassherger

well as by Lindgren and Nordahl [3]. Main current concepts are due to Hoperoft and Ullman i

and Lempel [7], Rissanen [3. 9]. Wolfram [10]. Yao [11]. Bennett [12. 13 Grassberger 141 Lo
and Atlan [14], Lloyd and Pagels [13]. Crutchfield and Young [16], Langton '17]. Huberman and ..
{13]. Bates and Shepard [19]. While complexity according to references [6] to (11} is more o

measure of randomness as algorithmic complexity. the remaining approaches represent different aito,
toward a definition of complexity as suggested by the intuitive notion sketched above. Within this o
complexity is not monotonically related to dynamical entropy (or Shannon information) but 1s a gloia:

convex function of it. Complexity is low for minimum and maximum entropy (information}. ai.d

high at intermediate entropy (information) values.
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Several authors studying notions of complexity that are in the spirit of the latter approach have found
iudications that complexity becomes maximal whenever a system’s control parameter passes a value at
which the behavior of the system switches between regular and chaotic. It has even been suspected that
romplexity at those “phase transitions” diverges in the thermodynamic limit. At phase transitions. the
information processing (computational) capabiiities of a dynamical system are regarded to be very high.
[ Girassberger's terminology, this corresponds to the capability to master a meaningful task of very high
degree of difficulty [4]. From a thermodynamic point of view, a system produces a maximum amount
of fluctuations at a phase transition or, respectively, at an instability, if non-equilibrium svstems arc

concerned.

1.2 Basic Concepts

Although there is already a basic distinction between complexity a la Kolmogorov-Chaitin (algorithmic
complexity) and complexity according to the intuitive notion presented above, the large and still in-
creasing number of complexity measures calls for a more detailed scheme into which these measures mav
be categorized. In the present section such a scheme will be introduced. It is explicitly built upon the
antinomies of structural versus dynamical properties of point sets and of homogeneous versus generating
partitions on their support. The basic types of support considered here are phase space and position

space.

e Homogeneous partitions (PH) are partitions into cells (boxes, balls, etc.) of identical volume with
respect to the Lebesgue-measure. This kind of partition corresponds to a homogeneous concept
of space, and it is practically easy to handle. Apart from these, no additional reasons exist that
might favor the use of homogeneous partitions compared with any other, arbitrarily chosen inhomo-
geneous partition. A homogeneous partition implies an appeal of universality, since each measure
derived within a corresponding partition is independent of (context—free with respect to) any specific

properties of the system concerned.

o Generating partitions (PY) are partitions into cells whose boundaries are generated by the propertics
(in particular by the dynamics) of the system under investigation. The most important feature of
this type of partition is that boundaries between cells are always mapped onto themselves during
the evolution of the system. This means that any generating partition is a Markov partition (but
not vice versa). The payoff for this advantage is that a generating partition has to be constructed
for each system individually and requires knowledge of the dynamical laws governing its evolution.

In this sense it turns out to be system-specific, hence context—dependent in contrast to universal.
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o Structural measures (.51 of a svstem are measures of those of its properties which do not exp
Contain mformation about its dyvnamics. he formal basis of & measure tor such properies
probabilities p, to tind a puint in a given cell (state) of the chosen partition. Fhe aiiens
“neasure” of a pont set. Lesa probability distribution, is a prototvpe of such a stenctaral tieas
For example, the set of Renyvi dimensions as well as the set of Renvientroptes are structural sueass
o1 thns sense.

o Dynamical moasures 0D ol aosvstem are measures ot tiose of its properties which contonn g

Sion about its dvnamies. Their formal basis i< given by the transition probabilities p, o Dotwes
L snccessive thine steps. Dhes consuder the denanicad nehavior of ¢ svstemin teris o st
Cvolintion. Practically speaking, imeasures contanmuny transition probabifities witfionsn s

e of an nnderlving probability distribution are not known. ino thos senses dvnamnear gienss
complexity appear to be useful oniyv i combination with structiural components, Some corpie
measures {for example information gain. mutual information) are defined by transition proba

itles. which can formally be reduced to state probabilities. These measures will Le cousideres:

structural measures.

Combining these four separate criteria of classification. four different classes of measures of comple:
can be obtained. Subsequently they are listed together with aspects of their suggested interpretation: .

applhication.

~ P! Structural measures based on a homogeneous partition.
[ hese measures are suggested for use with respect to structural properties of systerus s
are directly and concretely observable in usual (external) position space k. They are based
a homogeneous partition into cells of 1dentical size. This type of partition s relevant, if &
set is considered independent of the underlving creating dyvnames (e.g. for a given distriins
ol points without knowledge of the dynamics). [t van be justiied as well by the assnmptios
‘ocal homogenetty of space. which enables that applications to smali scale svstems appeas

scasonable.

Structural measures based on a generating partition.

s
—

\s mentioned above. these measures are suitable with respect to the characterization ot strier

properties of svstems as they are represented in phase space. but they require knowledge o

dynamics by which the structure has been generated. Once the dynamics is known, the contextina:

of the generating partition enables a unique definition of its own history. In contrast to the cone:

relevance of structures in external position space. structures in phase space can be regardeq
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abstract structures. Phase space coordinates are different from position space coordinates in a

formal and in a conceptual sense.

PH Dynamical measures based on a homogeneous partition.
These measures refer to dynamical. but abstract properties of a system in terms of a parameter time
t which is used in order to define rates of change, e.g., velocity as the temporal change of (externali
position. Parameter time t is abstract insofar as it is not object to direct perception in external
position space. Any measurement of time ¢ is based on an observation of concretely perceivable
positions, e.g., of the pointers of a clock. In this sense, ¢ can be understood as an external. but
abstract concept of time. It is crucial for all types of unitary dynamical laws, and corresponds to

the point of view of temporal reversibility.

D P Dynamical measures based on a generating partition.
In contrast, concrete dynamical properties of a system can be characterized by the concept of
an internal time 7. In an illustrative manner, notions like age, memory, and related phenomena
of decaying correlations between quantities defined locally in phase space fall into this category.
For instance, intrinsically instable systems with positive Kolmogorov-Sinai-entropy K possess an
“Intrinsic” correlation time given by K~'. (This does not contradict the existence of longer, non-
“intrinsic” correlation times, e.g., due to memory effects.) Direct operational access to 7 seems to
be possible only from the interior perspective of the system itself. In this perspective, internal time
is responsible for all types of phenomenological arrows of time, hence emphasizes the point of view

of temporal irreversibility.

The preceding characterization entails the antinomies of internality and externality (endo/exo) as well
as of abstraction and concreteness. the latter one coinciding with that of the descriptive level of models
and the observational level of systems. For more details on a formal treatment of these antinomies and

their relationships with each other, we refer to a more detailed discussion given elsewhere [20, 21].

1.3 Organization of the Article

Section 2 of the present paper is devoted to the notions of structural and dynamical measures of complex-
ity, to their definition, and to the assignment of specific existing complexity measures to both of these
categories. For instance, concepts like algorithmic complexity, generalized information, and information
gain will be classified as structural measures. In contrast, concepts based on fluctuation of information

gain, as well as on machine complexity belong to dynamical measures. An inexhaustive, but hopefully



~hresentative number of corresponding examples will be discussed. The investigated measires o

Jexity together with their behavior i the limiting vases of periodic and stochastic behavior will &
“e snmmarized.
“ection 3 applies the measures as treated in Section 2 10 the example of the logistic map. fn pario

i

e behavior of those measures 1s stadied n the periodie regime. ot the onser of chaos cacennsay

comt i at band merging, in the period-3 window. and at fully developed chaos. Iro1s shown tha aathere
peasures are indicators of ditferent quality far ditferent kinds ot depararcad behavior. 4 sutnnarng

snparison of these differences 1 given.

cotion b oeoncludes the paper and relates its content to the ongoing and controversal Jiseissa
deaning. Together with the significance of context. the notion of meaning J might <erve to anderat,
Srplexity as an extension of the simplitving framework of purely universai - context-freer princioies
Carely svntactic (semantic-freei descriptions.

2. QUANTIFICATION OF COMPLEXITY
BY STRUCTURAL AND DYNAMICAL MEASURES
2.1 General Definitions

It this paper we consider one-dimenstonal dynamical systems wn discrefe tume, given by a map I {ro

“losed interval A onto itself:

Fo A—A s [ r)

v = A is called state of the system. the range of r € K represents the parameter space of the systens. |
corresponding set of dynamical systems is characterized by discreteness in time but continuity 1 tai
-pace. ln case of dynamical systems with continuous time as. e.g.. any kind of differential equations. ..
1

Criatertrat oo 1Yo vovariiiie et bl Yo gt b . i
transiormation into )V VATIULS THELILOAS T HOINCATE SECLIOIS. ~LTOD oS

maps 220 23]).
[rom a temporally discrete. spatially continuous map a symbolic dynamical system can be generate
an additional discretization of the state space A [24]. [f the state space A of a dynamical svster

civided into ¥V cells A, that are non-empty with respect to the Lebesgue measure of the systeni. tiny

the collection of all cells is called a partition F = {4,117, if the A; are mutually disjoint and the umo.
. N
oi -l reproduces the state space: |J;L, A, = A.
N

3y labeling each element of the partition £ = {4,}, with a symbol «,. the time evolution «; -

t
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dvnamical system (i.e., its discretized trajectory) can be expressed by a symbol sequence 5 = sgs152. . .
This sequence is constructed such that after each time step : the state of the system z; is assigned to
the corresponding symbol s;. This symbol is determined by the cell A; that is met by the trajectory at
{ime i. The set of all possible symbols s; € {ag,ai,...an-1} is called an alphabet of cardinality V. The

resulting symbolic dynamical system is defined as
Sr—=3Sp, S—ap(S) =5 (2

such that each symbol in the sequence S satisfies the condition siy, = si = dp(s:).

¥ is the space of all admissible symbol sequences. Admissible sequences are sequences that are induced
liv the dynamics of the system F for all initial states zo € A at time step ¢ = 0. The operator op 15
called the shift operator on Lp and describes the dynamics generated by F' in the space Ty of symbol
scquences. The length L of a symbol sequence S is defined by S5 = {s; L=l In principle, the theory of
symbolic dynamical systems deals with sequences of infinite length (L = oc). For practical purposes.
llwwever, L is often regarded as a finite number.

The symbolic dynamical system (Eq.(2)) is constructed in a way that leaves it topologically equivalent
to Eq.(1) [24]. This implies a well-defined assignment of trajectories to symbol sequences that represent
the topological properties of the underlying dynamical system F (e.g., the number of periodic points of

the system) faithfully.

As indicated in section 1.2, different kinds of partition can be utilized in order to discretize the state

space A.

1) A homogeneous, context-free partition P¥ into cells A of identical size: PH = {AEANY where

NH is the number of states (cells) in the state space A.

2a) A generating partition PC@, or PE, generated by the dynamics of the system: PC = {A?}f\g NCis

the number of cells (states) in A. If necessary to avoid misunderstanding, an index n will be added

to PS

n

NG, or AZ | respectively, characterizing the number of time steps considered to generate
the partition. This index n is also called the order of refinement of the generating partition. More
details will be given later. A generating partition P creates arbitrarily small cells as the order n of

refinement goes to infinity. Given trajectories can be assigned to corresponding symbol sequences

in a well-defined manner [25].

26) Based on some alphabet {ao,a1,...,ans_1}, the set PG* of all possible subsequences (words) of

length n out of a symbol sequence S represents the total set of “trajectories” with respect to all
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nossible initial states over a time interval of 2 fime steps. This set can be understout .

o

1

= ) e
culinder-induced partition P07 = { A7 17 where A

P ’,‘\k«*x,-ﬁ

ix called a word of length . l?‘” defines the partition corresponding 1o 27 the space o =

wcquences Yo For agenerating se-cviinder-induced partition £ the numbper of adnmssiple v

Ut the sequence S nereases with o aneh that there s aswell-detined assignment of tragec,
i X \ e !
Sconstdered over ootne Steps) To o words 1!

For o given aiphabet aod o erven order o of relinement. the wanber A Ooadinsside o

tength i equad to the number of cells VU7 e A with non vandshing natural measure. it oo
1o, for the natural measure on 27 and /7 o this sense batte partitions, 7777 ol
cquivalent. but certain complexity measures require /77 for their constraction

peid

ceneral, different partitioning procedures as detined above produce dditferent partitions /
However, there are exceptional cases inowhich the resulting partitions are sdentical. For mstance
‘ Gy 4]
chtams PH = PY for the svmumetric tent map {261

e generating partition P is a Markov partition. since it has the fundamental property:
FAAD AT #41 = a0 oA v k=0 v

I'his implies that boundaries between cells are mapped onto themselves: they are kept invariant i

I

Ce dvnamical evolution of a system. if the cells are constructed by a generating partition

f 2 homogeneous partition 2! boundaries between cells are in general uot invanant with respect .

Jdvnamics of the svstenw

Vo analyze the dynamics generated by F.. we now define some probabilistic quantities nsed to character

sivens states ALt = oo 00 N Note that Y can refer to AN o

The state probability p; i1s the probability that a trajectory on state space A visits hoxw 1|
defined by the natural weasure o op,oo= oo =10 0\
In case of P7* this is equivalent to the probability that a given word A of length » appen:-

the symbol sequence S

" Using the joint probability p,; that cells A, and -, are visited by the system m 1wo suceessive

steps we define the transition probabilities p,_., and p,_., (. = ... V&
po.. 1= =245 the conditional probability for the transition from a given state {ceflt 41

successive state A,
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Piey = 5;—')1- is the conditional probability for the tranmsition to a given state A; from its
predecessor A4;.

The probabilities p;—; and p;._; can be repesented using a transition matrix, whose rows sum up
to one.

In case of P, both transition probabilities are defined for sucessive time steps if the states

are represented by Am = S$k8k41---Skan—1 and 4}‘; = Sk418k42---Sgan for all possible k.

ke{0..... L — n}, of the svmbol sequence 5.

Under the assumption that the various kinds of possible dynamical behavior of a system (periodic.
chaotic, uniformly stochastic, and doubly stochastic) can be resolved in the coarse-grained partition of

state space, they can be characterized in terms of these probabilities.

o Periodic behavior of period p, p < N:

Without restrictions upon generalitylet p; 0 V 1 =1,..., p for the following. In case of periodic
behavior with period g, ¢ < N and 1,5 € {1,...,p}, we have p; = 1/p for the state probabilities
and p;_; = 1 for the transition probabilities. All remaining state and transition probabilities for
i, € {{1,....,N} x {1,...,N}|pim; # 1} have to vanish. Periodic behavior is undetectable if the
number of states N is smaller than the period p of the system.

As an alternative criterion, a periodic point z of period p satisfies the condition F?(z) = z, where
F%z) = z,F®(z) = F(F® '(z)). Analogously a symbol sequence of period g satisfies s;y, = s,
YV i=0,...,L—p. The least positive p for which F'®(z) = « or s;+, = s; holds is called the prime

period of z or S.

e Uniformly stochastic behavior:
Uniformly stochastic behavior is characterized by an equi-distribution of the probabilities p; = 1/N
(z € {1,...,N}) of all possible states on the space A with respect to some arbitrary, but fixed

refinement of the partition. Transition probabilities are not considered in this context.

o Doubly stochastic behavior
For doubly stochastic behavior [27] we require p; = 1/N as well as p;—; = 1/N' with N/ < N
for all 2,7 € {1,...,N}. N is again the number of states on A. N’ is the number of transitions
with nonvanishing transition probabilities for each cell A;;, ¢ = 1,...,N. (Note that N' = N,
respectively N’ = 2 for a binary alphabet.)
Stochasticity in this sense is characterized by uniformity of state probabilities and transition prob-
abilities, thus motivating the notion of doubly stochastic behavior.

For N = N’ doubly stochastic behavior is equivalent to a coin-tossing process, which implies total
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¥y = d . Nt rhis case. ail possibie

cndependence of successive states: p, = pi,

e adpmssible. White norse is an example for snch a completely random process. whereas

notse 1s not doubly stochastic in general.

semarked 1 the tntroduction The definitions of <ome measures of tvpe S 20~

mtormation gam. mntual imformation. and eifective measure complexity depend on s

abnlities p o which van be redineed to state probainbitiess o this case i equ-cistribataon
NN

ion probabilitios diie 1o doubly stochastic behavior noplies an cani-disiribntion
Jotle aspect= can be tsed o deton

Bilities py ot e step e and of pyoat thne step

~tochastie hehavior,

o liaatie bediacior
.
npon the probabilistic measures dise s

TesSTrictlons

behavior does not nmply ang
-

and p._, can veenr as fong as the general normahzation ot

Chiaotn

Aoy distribution of p,

far.
s heronecker ™= el

5

b Onu where o,

N
probabilities are satistied: 3 p = 1 and
= )

2.2 Structural Complexity Measures: ~/’

it

stems this subsection describes

Bused on the tramework of the formalism of symbolic dynamical s
Lo ol selected measures 1o charactenze the complexity of a system in terms of its structurad propert
liis 15 to say that spatial properties will be cousidered whereas the expheit dynamical behavior o)

di-recarded. Depending on the mmvestigated probleni. either structures o position space or in phase

1

Vo

e relevant. In the lirst case. the notion of conerete stoictiures is appropriate. whereas the <

. \
il

qse obviously deserves to be denoted as abstract,

2.1 Algorithmic Complexity

)

(RN

o nistorically earliest and probably most popular measure ot complexity has been introduced

rogorov in 1965 [210 1t s called algorithmic complerity, and it is detined as the number of bits o
nortest algorithm {e.g.. computer program | which is capable of reproducing a given syvmbol sequernc
« practical realization of this theoretical approach has been proposed by Ziv and Lempet

e Ziv-Lempel-algorithm is otten applied as a convenlent method to compress data stringes ~
' i
‘1;?711 "“1'2‘411 : S Tha

e procedure is 1o divide the sequence S into subsequences (words)

sken..,—1 15 the shortest word that cannot be copied from the subsequen

I qH S_—

[T
b G e lin, g

e Tk B
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To give an example. the sequence S =1101001111010010... of length L  splits
jnto (1)(10)(100)(111)(1010010).... providing a number ¢(L) = 5 of resulting words 41”,1 of different
length n;. For a symbol sequence consisting exclusively of totally independent symbols, ¢(L) takes s

maximum value according to the relation (logarithms are always binary logarithms):

Jim (C(L) Y] log Nf’) =0 (h

I"sing this maximum as a normalization factor, the algorithmic complexity (', is given hy:
. log L o
CQ—I}LH;OC(L)W ()

where N is the cardinality of the underlying alphabet.

For periodic behavior with period g, the relation ¢(L) < ¢ provides vanishing complexity C,. In case
of a sequence of totally independent symbols, Eq.(5) leads to C, = 1. Between these limiting cases.
algorithmic complexity may take values in the range 0 < C, < 1.

Algorithmic complexity C, is a non-probabilistic measure. For this reason, it cannot directly be catego-
rized into the scheme introduced above. Nevertheless it may be assigned to the class SP® of complexity
measures, since the number of words ¢(L) within a symbol sequence is primarily a structural, and def-
initely not a dynamical system property. Moreover, the symbol sequence is generated by an alphabet
hased on PY, which suggests to classify C, as SP%measure. Under the aspect that words of different
length n are considered, C, can be classified as SP%*-measure, as well. The fact that C, approaches the

K-S-entropy KV for an infinite sequence (7] confirms this assignment.

2.2.2 Generalized Informations and Related Complexity Measures

Algorithmic complexity shares basic properties with information measures & la Shannon [29]. These
measures can very elegantly be captured by a formalism introduced by Renyi [30]. This framework uses

the concept of a generalized information I'9 on some partition P as it is defined by:

1
l—gq

N
19 = log 3" p! (6)
=1

For ¢ — 1 the generalized information of order one is given by:

N
IV = lim 19 = —> pilogp;

g—1

~1
—

=1

where N is the number of cells A;, i = 1,..., N, for a given partition PH, PG PC* and p; = u(A;).
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Some inportant properties of [ are:

e /"5 a monotonically decreasing tunction of ¢

o (1 case of pertodic behavior tp, = 1700 prime pertod. and o N rone gerss [P oo
agiven pertod yoas resolved i a given partition. then the generalized intormation /70 = imdene o
ol its order 4

o In the untformly stochastic vase o N bt deads to /Y g N e e

diverges for arbitrarily fine partitions (v 0

e Ou the basis of the concept of generalized wtormations U is inipossible 1o diserininate
stochastic from doubly stochastic hehavior. since [ does neither depend on transition proto

.

nor on state probabilities (pop,, 1 tor successive relinements (1.«
Applications of generalized information have been studied with respect to partitions of 1vpe £

1" In general, 19 depends on the particular choice of the partition and its respective refincmen: =
| I F

the following, complexity measures will be discussed that are based on 27" icase A) and on P77 fcase

b

At Focussing on homogeneous partitions P! one can specify a number of additional quantities for
acterizing the complexity of a system in terms of its structural properties.
The generalized dimensions D9 [31. 32]. measures of type S P are defined as the scaling exponeni- ..

the generalized information of order ¢ with respect to the size = = [/NV7 of colls A7 0 5

'

tlie partition:
Jla}

DY = i
=0 ]ng

e

In contrast to ['%). the dimensions D% offer sensitive discrimination of periodic from uniformiy stocnas

behavier because they are defined for an infinitesimally tine partition (¢ -- ).

e lor periodic behavior in case of discrete |-dimensional maps. the dimension of order 12 o

given by:
, oo lug
DW= - im —BY
=0 log £

D'? is indeperdent of the order ¢. The speed of convergence for a given refinement i< depenis

log . i.e. on the period.

e ln the uniformly stochastic case D7 is given by:

for 1-dimensional maps. As in the periodic case. it is constant as a function of q.
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B3) The second alternative is a generating partition PZ or PS*, respectively, which provides generalized
entropies K@ [33]. Therefore the entropies A'(¥) represent a structural measure (in an abstract sense).
although they are usually (and correctly) characterized as dynamical invariants of dynamical systems.
For a given initial uncertainty in state space, K9 measures the temporal spread of the distribution
of admissible trajectories along the attractor. It can be interpreted as a rate of internal information
production of the system [34, 35], corresponding to the rate of information loss of an external observer.

Jla)
K9 = |im = (9)

n-—oo0 73

It is the information of a dynamical system F' on a refined partition P¢ (or PS*) of order n. Since P%
and P are generating partitions, K% is the supremum sup l(';:ﬂ with respect to all possible partitions
P. Then K9 is the dynamical entropy of order q. For ¢ = llj one obtains the Kolmogorov-Sinai entropy.
a fundamental invariant of dynamical systems.

The partitions PE and PZ* are equivalent for given n, since the natural measures of corresponding states
AZ € P and AY, € PS" are identical (u(AF) = u(A¥) = p; forall i = 1,...,N). As a consequence,
determination of K9 on the basis of P and on the basis of P%* provides identical results.

Similar to the generalized dimensions in homogenous partitions, the generalized entropies are given by:

o K@ = lim 82 = 0 in the periodic case.

n—oo

o K@) = ’}Lrg 1—°§‘—N—" for an equi-distribution of state probabilities for all n (n — oo, and with
N, = NE, respectively N, = NY). Thus if the limiting value exists, doubly stochastic behav-
ior is marked.

In case of (for instance) P,°* all possible words of length n are admissible, which leads to N, = (NV;)*
and therefore K9 = log NV;. (Consider, e.g., a 2 : 1-map. Then the number of cells (states) grows

with N, = 2", which provides K9 = 1.)

There is a unique relation between D@ and the f(a)- spectrum [36] as well as between K@ and the
g(A)-spectrum [37]. It is therefore not necessary to discuss these spectra {which are often used for an

appropriate characterization of multifractals) in detail here.

2.2.3 Local Slopes and Related Complexity Measures

Dynamical entropies K9 as defined above can be considered as asymptotic slopes of I'% as a function

of n. Numerically, this limit is most easily accessible from the “local” slopes [38, 1]:

e (10)
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Ihev specify the amount of additional information needed to predict the snccessive state at time
siven the state at time step 2. For a generating partition 2%, P9* the local slopes A9 approxnnaie
sreneralized entropy such that AW == ‘11_{11 A7 Tor Markov processes of order v (sometimes denoted
= e 39

setmory ) the asvmptotic value is reached for n -

Veasres as information gain tease Aj. mutual miormation (case B and effective meastre compion

e O are related to these local slopes. They are adl vonsidered as strictural measures hecanse o

fepend either on state probabilities tlocal slopest exclusivelos or ou fransition probabihities,

dncable to state probabilities via local siopes.

Fhe ocal slopes /Y 10 Egualun are dertved from the distribution of state probabilities ar two swecrs

i

mesteps n and n+ 1. Hence, the dvnamical aspect of transition probabilities is replaced by rhe diffor

Setween structural measures at different instants of tine.

i principle these measures are applicable 1o anv partition 2% P9 PY qud therefore classitied
measures in general, 1.e. without a priori specification of a particular partition. However. anv dvnanica

measure based on transition probabilities should be detined on P“. since the dynamics of the systen

nmquely related to generating partitions only. [n this sense measures related to homogeneous partition:
retlect a more or less abstract point of view,

A1 An important way to characterize the complexity of dynamical systems is based on the informatie

guar (4, (often called Kullback information [40]). [t represents the information required to select a 1t

AL its preceding state A 1s given.
(r, = —~logp._,

I'he mean information gain < (4 >, 1.e. the average of the information gain over all possible transition

s .15 defined as:
N
(5 o Z piflae, o - }_:p,‘, logp, .,
S :

(r >= ‘ iy fog

['he dependence of < (4 on transition probabilities can be reduced 1o

“opddogp,. U the second term 3 p; log py corresponds to the information - (1 at tine s then tne qpee

' o . . Y . . 1 L . . o
crin describes the information /., at time » + 1. Thus. on a partition of retinement s, . (12 leais 10
¢ 7/*.1* 7/41> Jib
[ | W

e lor periodic behavior there are strictly determuned transitions (p,_., = {01} 7+ ;- |

and the mean information gain vanishes for all periods of order . Uised as a measure of complex:ts

(+ 15 therefore only capable to discriminate periodic from non-periodic behavior. It does

provide information about the period @ itself.
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o < (G > is defined for IV at two successive time steps n,n + 1 (Eq. 13). In order to characterize

uniformly stochastic behavior, it is appropriate to consider ) itself.

e In case of doubly stochastic behavior (p; = p; = 1/N,p,—; = 1/N') one has < G >= log ‘\{Qn‘ =

log V'. For a totally random, statistically independent process for which ¥ = N. this implies

<G>=logN.

13) The interdependence of two different states A;, A; can be quantified by the measure of mutual infor-

mation:
M;; = log P (14)
pip;
[n stochastically independent cases p;; = pip;, one has M;; = 0 and the two states A;, A; can be

considered to be mutually independent in the sense that information about one of them does not depend
on information about the other one.

The mean mutual information is defined by:

N N o
<M >= Z png;j = Z Pij lOg Pi; (13)

ij=1 =1 pip;j
which provides, using Eqs.(7),(12),(13):
<M>=1IV-<G>=20 -1 (16)
Mutual information < M > is therefore categorized as SP%-measure (or SP%*-measure, respectively).

e In periodic cases where < G >= 0, Eq.(16) yields < M >= I{!) = log p. Hence mutual information

is capable of distinguishing between different periods g.

¢ Evaluating Eq.(16) for the doubly stochastic case where < G >= log N’, the mean mutual infor-
mation is obtained by: < M >=log % > 0.
As a consequence, N = N’ implies < M >= 0. This applies if the corresponding process is statis-

tically independent (like coin-tossing).

C) Using the concept of “local” slopes for ¢ = 1, Grassberger has introduced the effective measure

complexity EMC [1].

EMC = Y n(hll — ) (17)
n=1
n=0

= lim(IV —n.KW) (19)

n—co
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[V deseribes the behavior of the jocal difference 489 11 converges toward the dyvnamical enit o

dhe dyvnamical svstem. ¢ Lhe convergenece of £V does not alwayvs tollow from converaing loca

nis depends on thetr precise convergence behavior 1o smiadl tharge s 77V O carresporids to -
cavergence, fo MO based oo the coneept of {ocin slopes atid Therelorne cepresent< o tucasie
CUvor NPT pespectuivelvi o can also e wrinten as o averaee hoalibacek siormoation, S
s ol conditional probabilities. s aenmonstraied 1
o Consider pertodie behavior of period o whineh nophies 40 S oo o
Vil
. . . 0
IBRY A ity RUILEN
For a constant svinbol sequence 1o = Lo MO saushes
e Jor doubly stochastic behavior one has 1177 < oo N tor all o wnere sndicates the i

steps considered. Since mna given alphiabet of cardinadice Ny adl adiissible words of leneth

i the sequence . the relation =3 = g N orespectively N YRR TR

F MO according to Lg. (171 can be reformulated as:

LM

2.3 Dynamical Complexity Measures: i//’

{ ‘vy[]w‘x;'_r

Measures considered in this section are dynamical measures in the sense that thev depend vu bori

-tion probabilities and state probabilities. (1o contrast to measures treated i section 2.2
Lo reduced to structural measures by expressing transition probabilities in terms of state probabilitioe

ditfferent instants.) They are in principle applicable with respect 1o anv of the presented tvpes of parting

31 ilt“‘» ‘

S PY L PYr Therefore they gualify as L P-measures wn general. However. analogons to S P mceasn

refated 1o local slopes. DPH-measures reflect an abstract point of view: thev entail transition probs

res between cells that are independent of the conerete dvnamies of the svstem. Generating part .

i

!

complexity measures are used.

2.3.1 Fluctuation Complexity

\ualogous to mean information gain. detined in section 2.2.3. the mean information loss

ax thie average of information loss L,, over all possible transitions + «— ;. /, determines

1
1

" take this concrete dynamics mto account. and should therefore be preferred whenever dviaag

e rnfori:

Lo e
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that a system has lost about a preceding state A; after it has entered the successive state A;:
N N
<L>= 3% pisLi =~ ) pijlogpi, (22)
1.7=1 i.3=1

The net information gain ['; of a system is then expressed by:

o
N

f-'j=Gu-Lo=log& (2

b;
Due to the normalization ¥ pi.; = l. the mean net information gain vanishes: < I' >= ¥ p;;I';; = 0.
J i
During the evolution of a system, [';; may fluctuate about its mean value and therefore may have a non-

vanishing mean-square deviation of. This quantity can be understood as fluctuation in net information

gain. It has been introduced as a complexity measure by Bates and Shepard [19}:

of = <TI?>_— <I>? (21)
N
Pi N
= Y pi(log =)* (25)
ig=1 p;

Fluctuation complerity o is a dynamical complexity measure since its definition includes both state
probabilities and transition probabilities explicitly and irreducibly. It has originally been introduced on

a partition P¥, but more adequate use can be made of it, if it is applied to a generating partition P%

{see [41]).

¢ In case of periodic behavior fluctuation complexity vanishes independent of the prime period .
In order to detect periodic behavior, sufficient resolution is necessary only with respect to state

probabilities, not with respect to transition probabilities (see section 3.3.1).

e of depends on transition probabilities p;_; only if the state probabilities are not equi-distributed.
In uniformly stochastic as well as in doubly stochastic cases, i.e., in case of any equi-distribution of
state probabilities (p; = p; V 4,7 =1,...,N), fluctuation complexity vanishes: 6% = 0. Therefore

fluctuation complexity does not distinguish uniformly stochastic from doubly stochastic behavior.

2.3.2 Complexity of e-Machines

The idea to use automata for a definition of complexity goes back to Kolmogorov (2] and led to the concept
of algorithmic complexity. It is based on a deterministic automaton and represents, loosly speaking, a
measure of randomness. Crutchfield and Young [16] suggested to apply stochastic automata, which they
call e-machines. The determination of the complexity C. of an e-machine can be divided into four main

steps.
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Construction of a tree: A binary tree /7= VL ) of length {0 with atinite set 1of vernees
Bl Vol edges. and an onigin o o Vol [ assigned to a eiven svimbol sequence. [his
describes the probability distribution of 270\ conditional probainlity o= o0 assienes
cach edae o= oe LT ST

Search tor cquivalent suntrees: From this tree 1ot feneth £ i sntirees o1 fenuti,

constdered, Within the set of cubtrees an cqivadence relation oo <innlarity s Getined

iy two subtrees are equivalent. i the difference ot the probabiiinies assigned 1o nen ccoes

i~ stoaller than oo p, = 0 -

Construction of random autvmaton: Fhe condition ., = p, Coeenerates a ciassthoaing

“he set ot subtrees. Fach equivalence class s regarded as o ~tate of the autonaton. cre o

cdee hetween the origins ol two subtrees represents an edge helween Dwo <tates of the aigon of
I'he transition probabilities between different states i this automaton are deternuned snen e

the original sequence is reconstructed in an o-sinular manner. Inereasing & and 7, vesuns

mcreasing resolution of the dynamics.

i, c-complexity: The e-complexity (', is defined as the Shannon information of the state probabiiitie.

of the automaton.

Far the construction of an e-machine for a given symbol sequence Crutehfield and Young suggested
procedure to determine an “optimum’” value of «. However. their procedure does not guarantee thi -
civen sequence is optimally reproduced by the corresponding automaton. For this purpose. the toliowine

technique estimating suitable tree parameters (y. (. ¢ 1s proposed.

o For a given binary string the probabilities p; of states 4! of the n-evlinder parution 207

calculated.

o The construction of cach ¢-machine depends on aw certam combination of tree length 0 <

., and . The state probabilities p,; of the r-cvlinder partition P00, e tor the sinine

length !
sequences obtained from the corresponding c¢-machine are compared with the state probabilities

of the original partition P~ by calculating the Buclidian distance:
= i 1 VAR
AP PET) = [Z(p, Nk e

e The complexity of the e-machine with minimal A\ 1s defined as the e-complexity of the given svinbo

String.
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Fig. 2. An intelligible example to illustrate the procedure of calculating e-complexity for the periodic sequence

o
£.

S =001001001001.... It is assigned to the binary tree of length [/, = 6 (a). By definition of the equivalence classes

(subtrees of length I = 3) (b) the corresponding automaton (c) is derived.

Fig. 3. Automaton for doubly stochastic behavior.

¢-complexity belongs to the class of dynamical measures, but the reason is not as easy to verify as for
fluctuation complexity. For e-complexity it is essential that it is defined on the level of a model, not
on the level of the data themselves. The representation of the data (symbol sequence) by a model (the
e-machine) requires a mapping of states of the symbol sequence onto automaton states, which is not
injective in general (for € > 0). Although e-complexity is simply based on state probabilities on the level
of the automaton, it refers to both transition probabilities and state probabilities on the level of the
symbol sequence. Since the mapping between both levels is not injective, e-complexity is not reducible to
state probabilities on the level of the symbol sequence, hence it is characterized as DP®*. (On the model
level, e-complexity would simply be a structural measure, since it is identical with I)). More technical

details on C, are given in [42].

o In case of periodic behavior with period p: C, = log p, if p < .
An intelligible example illustrating how the concepts of binary trees and equivalence classes are
used to determine e-complexity is given for the periodic sequence S = 00100100100100.... This

sequence can be assigned to a binary tree according to Figure 2a. By definition of the equivalence
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3. STRUCTURAL AND DYNAMICAL COMPLEXITY FOR THE LOGISTIC N1AP

fii this section a variety of different features of structural and dvnamical kind, generated by the foee
riap. 1s characterized by different complexity measures as thev have been discussed in section 70!
fasie ntention of the present section s to show that and how ditferent properties of ditferent compio,
ceasures are of different value in detecting different features. In a more fundamental sense this inten
seflects an attempt to justify the non-universal and non—unique variety of existing complexity teasi,
1

v the non-universal and non-unique variety of purposes for which they. respectively, mav prove s

-imitable. or even well-adapted.
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1.5 36 3.7 38 r 3.9 1.0

Fig. 4. bifurcation diagram for the logistic map in the parameter regime r € 3.5, 4].

3.1 The Logistic Map

One-dimensional discrete dynamical systems can show chaotic dynamics if they are noninvertible. A

well-known example is the logistic map:
0,11 = [0,1], =z~ F(z)=rz(l —2) (27)

For r € [0,4] Eq. (27) is a map on the unit interval [ := [0,1] [43]. For r > 4 the iteration of Eq. (27)
diverges for almost all initial values, which induces chaos on a Cantor set [44]. In this paper we consider

the parameter regime r € [3.5,4].

The critical point of the logistic map is z. = 0.5. It is associated with a maximum value of F;(0.5) = L.
Thus Eq. (27) defines a surjective map only for r = 4. In case r < 4, the map is injective on the intervals
[0,0.5],[0.5,1], respectively. F, is a unimodal map, which is monotonically increasing for z < 0.5 and
monotonically decreasing for £ > 0.5. Because the Schwarzian derivative is negative on I, F, has only
one attracting periodic orbit at most.

If one state of an orbit coincides with the critical point (z. = 0.5), then the derivative is vanish-
ing, %F:(Oﬁ) = 0, and the orbit is called superstable. The functional dependence of superstable or-
bits on the control parameter r is represented by supertrack functions s;(r) [45]. In case of the lo-
gistic map, supertrack functions are continuous polynomials in r. They are recursively defined by
so{r) = 0.5, si(r) = F;(0.5) = I, si(r) = F(siz1) = rsi-1(l — siy) for all ¢ = 1,2,3,... The bi-
furcation diagram in Figure 4 shows these functions 3;(r) as dark lines. They are caused by the fact that

iterates of z. correspond to singularities in the natural measure of F,.
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\= a function of r. the orbits of the Jogistic map provide different kinds of structural and dviomes
Lehavior as it 1s reflected by the bifurcation diagram (Figure 4) as well as by the Ljapunov expones:
Below the so-called accumulation point v = 3.569. .. the Ljapunov exponent A does nol exeeco o
Phis indicates period doubling behavior for r < . . Starting from a stabic period-4 cvere
senod-doubling bifurcation at ra = 3541, leads to a stable period-s ortnt et This bifurcaton
wavio ends at the accumulation point » where the dynamics is periodic with period o Dy
assoclated attractor 1s given by a Cantor set.

tevoud 1. the Ljapunov exponent A mcreases to positive values charactenzing chaotic regne

odie windows with basic period & anse imntermittently and separate these regimes. wienever

nerate of FLohas & stable fixed poimnts. The ouset of periodic windows o0 o wiih fuon
god A is detined by spirer = ospotre, . Succeessive bifurcations generating harmonies wirle ceers
oo ko = 00t fowe Ao are found within cach window. [ hev are self-simuiar 1o i

furcation scheme observed in the range r < r. Period-doubling cascades of a A-periodic window enet s
thie accumulation point ry ., with r o= ..

At certain values 7. the dvnamical behavior of the map changes discontinuously and qualitativei
sich a way that the attractor 1s suddenly reduced from & subintervals 10 only one single interval « <o
I'igure 4). This transition from chaos to chaos, known as interior crists 16}, 1s caused by the “coliision
of the attractor with the corresponding unstable k-periodic orbit and defines the upper bound «i i
window. ['he period-3 window (k = 3) has been used to investigate the transition between chiaos .
order in detall. Here the third iterate of F; has 3 stable fixed points. Periodic behavior with perio

v =k =4 starts at rq, = | + V'8, where the supertrack functions sy and s intersect. The correspondin:

period-doubling behavior terminates at the accumulation point 74, == 3.8349. ... As shown 1 Figun-
an attractor consisting of k£ = 3 subintervals is created. ‘The interior crisis at 7. = 3.357 . [25] defines

thie upper bound of this period-3 window.

e qualitative behavior of the logistic map as a function of r within the period-3 window 1s selt-<iiie
1o all other windows with r € [r... 4] and with basic periods & = 3.1,5,

[ the range r > 7. a so-called reverse bifurcation sequence describes the changing structure of 1
attractor of the logistic map. Any attractor in this range consists of 2* subintervals (bands). and an ajpe
riodic orbit meets these 2* subintervals successively in a “bandperiodic™ way. (A bandperiodic orbir witn
period 2* falls into the same subinterval after 2* time steps .) At band merging pointsry ., u = 1.2, L
any existing 2* bands join pairwise into 2*~! bands. Band merging points are defined by the interser

tion of supertracks: s3.u-1(Ty.) = s4.2u—1 (7). For example there is band merging from 4 to 2 hands .
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2. = 3.592..., band merging from 2 to 1 occurs at ;. = 3.678.... (For convenience, 7. := 7. in the
following.) The decreasing sequence {r,.}7, converges geometrically toward the accumulation point 7.

period doubling sequence.
r had hadel 1

For r = 4 the logistic map is surjective. The complete interval I is covered by the iteration points of [7.

The corresponding behavior is called fully developed chaos or exterior crisis.

3.2 Partitions

This section describes how the partitions P, P P and the corresponding state probabilities as well

as transition probabilities are numerically generated in case of the logistic map.

3.2.1 Homogeneous Partition: P

For an investigation of structural complexity measures of the logistic map, the unit interval I is divided
into N¥ = 1024 bins of equal length ¢ = 1/N¥ providing the homogeneous partition PH = { AF}1024,
Using topological conjugacy of the tent map, the natural measure for the logistic map at r = 4 can be
obtained analytically as u(AF) = Jan p(z)dz, where the probability density is given by p(z) = :Tl_\/(T-z—)
For arbitrary r € [3.5,4], 4 can be determined by numerical evaluation of the map for N, iterations (after
transients have died out) and plotting the result as a histogram. The normalized histogram becomes
basically independent from a further increase of N;; at a ratio of %&} = 104, indicating a fairly good
approximation. For a step width Ar = 0.001 of the control parameter r, N¥ = 1024 is chosen as a
suitable compromise between required CPU-time and numerical accuracy due to coarse—graining. Under
these conditions the partition P# = {Af}1924 a]lows to resolve periodicities up to p = 16.

By construction, P¥ is homogeneous in state space but inhomogenous with respect to time. Therefore
it does in general not represent a Markovian partition in the sense of the discussion in section 2.1.
Nevertheless, abstract transition probabilities between states A¥, AJH can be defined from the geometrical

properties of the map. It is useful to keep in mind that these transition probabilities do not reflect the

concrete intrinsic dynamics of the system.

3.2.2 Generating Partition: P¢ and P%*

Using generating partitions, structural and dynamical complexity measures of type SP¢, DPC | respec-

tively SPS*, DPY*, can be investigated by discretizing the attracting state space in a manner designed
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v the dvnamics of the svstem. Therefore. generating partitions are different for different systein

iis sense they account explicitly for the precise context of the dynamical system considered: thes

ontextual.

ihe partteon 70 which will be nsed mothe following, s generated witts respect 1o the decision

00 separating the wmt nterval into twao subimtervals of equal width, here are two motivatno-
choosing < in thas wave T o 000 s the entical poinn o the map and theretore separates 1w s
21 For the example of » = 3.7 ¢ rutchbeld and Pockara 40

wth different topological properties. 2)

irmwonstrated that the mformation production rate as a lunction ot - maxiunal for o = o

Setermining the metric entropy A
Ve partition P77 offirst order 12 = Fiis detined by the set £, L b N refimement of ths Zoceil poe
I~ constructed by successive calculation of the premmages F770d of 0 i tins way, 4 relineine::

: {l'ff/l(d)‘ d F7Ndy ). where the second e

order 7 = 2, denoted as P}, is generated by the set [,
- correspond to the prelmage r < . or £ > &, respectively. In general. a n-th order refinement /-

=1
sowiven by D, = U DyU{F N FoHdId € Doy v Dasa

=1
Since the logistic map is a surjective 2:1 map only for r == 4. a n-th order retinement of the unit interval
t.o 1t s easily recognized that a first orde:

mto No= 2% cells provides an upper it of N for »

partition PY, dynamically generated, is identical with a N¥ = 2 cell partition of type 1

The natural measure on the partition P @ u{AVi, 7 = 1. ..V“. can numerically be derived fronm i

tneasure on the partition P such that a cell AY is represented by an appropriately defined union .
cells A Because of discretization effects precise results require N9 < V4

In contrast to P a generating partition P is Markovian in the sense that boundaries between ceils ar
kept invariant by the dynamics of the system. This implies that the dyvnamics is considered with respect
o homogeneous tlow of internal time. which results in an externally inhomogeneous distribution .

‘olls. Therefore transition probabilities based on P refer to cells of different size.

I'he transition matrix, which determines the transition probabilities from state AY to state AV .

derived analytically. as follows.

o Since any cell AY = [a.bj is dynamically mapped onto the subinterval (£ (a), F.(b1 created by i
Markovian generating partition. it can be considered as a union of two adjoint cells of /7 <
Gl . .. T _dengtho AY L

Al A% L. Then the transition probability is given by pi,—.,, = F T and Pig o1 =

o Asillustrated in the bifurcation diagram (Figure 4}, the attractor of F; is bounded by the supertrach

functions sy({r) and s,(r). Consequently. the attractor is a subset of the unit interval /. wheneve
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r < 4. The transition matrix is therefore calculated in a way that excludes empty (with respect to

the natural measure} cells outside the attractor.

e In periodic situations and in the interval ro, < r < r. there are cells A? with vanishing measure
on the interval [F;(%), ). In those cases where u(A$) # 0 and for instance u(AS) = 0. the “true”

transition probabilities p;,_,;, = 0 and pi;;—j,+1 = 1 are taken into account.

In the following, complexity measures based on P are calculated for a constant order n = 6 of refinement.

producing a symbolic description of the logistic map. The cardinality N of the resulting partition

varies as a function of r, since u(A¥) > 0 Vi = 1,..., NG (This is, for instance, of influence for the
lotermination of the tonalozical entrony K0 = lim 28NS Y moeba oo of the following annlication:
UGCLClilillatlVll Ui LT bu)}ulusl\,ax <. IUIUPJ FaY == Mlllk .} 1uvl v yuL PUDC Ul LT 1ULIUWIL 15 G.PPIILG/UJUI b

number of cells N€ is equal to the number of cells N for given n and for partitions PE, PG*.
Basically, all complexity measures considered (with the exception of fluctuation complexity of, which

will in detail be discussed later) are not sensitive to small variations of n.

B) The n-cylinder induced partition PS* is required for measures of the complexity of explicit symbol
sequences, e.g. for sequences of words of a language. Examples are algorithmic complexity, effective
measure complexity, and e-complexity. The basic partition PE on the logistic map defines a binary
alphabet such that the symbol 0 is assigned, if the iterated value of Eq. (27) falls into the interval [0, 0.5].

NG« 1 .
13

Th o covrn 1 ic asqionad if 11 A PRSI PG, PR T . Sy R |
Lii 1 Jy lJ- A f-lyllladcel lliauccu paliivion rn 01 oraer

< ayluu()} PO ) aaalsucu 1
n is then obtained by all words (substrings) AY (i = 1,..., NF) of length n that are generated by the
map. PS* and PY are equivalent insofar as their natural measure and their transition probabilities are

the same. They are different insofar as PS* acts in the space T of symbol sequences, whereas P acts

in the space of states of the map.

In order to describe the natural measure p; = p(A,V":,) by the relative frequencies of words AY in the

finite symbol sequence S in a reliable manner, very long sequences are needed. The necessity for very

long sequences is mainly due to the fact that the number of possible words increases exponentially with
n in general. Of course, the structure of the symbolic sequence also influences the necessary sequence

length L.
o Algorithmic complexity: Sequences of L = 10° turned out to be sufficient.
e EMC: Sequences of length L = 10° have been choosen to guarantee reliable results.

o c-machine: Sequences up to lengths of 10® have been used.
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3.3 Measures of Complexity for the Logistic Map

['his section presents how different complexity measures. as introduced in section 2 reflect spectiie 1

'

of dvnamical and structural features of the logistic map. The maim features concerned are pertodio

. onset of chaos (o, band merging {r. ). period-3 window ir, -+ 7« rapand fully deveinpon
chaos (0 = 4). Some of these features are investigated in those regimes where the necessary resoivin.
i 7 is a minimum. Due to the self-similarity of the bifurcation diagram of the logistic map. thev van
principle be found at infinitely many locations in parameter space.
Daring the following discussion it will be necessary to refer repeatedly to a set of tigures that illustrate- -
Lehavior of the various complexity measures investigated. It is therefore most reasonable (and comfortani
‘or the reader}. to present these figures as a complete set. not distributed over the entire section
diaerams show complexity as quantified by the respective measure as a function of the control paramerc
» of the logistic map. In detail. Figure 5 indicates algorithmic complexity (', as an example of & 1o
probabilistic structural measure. Figures 6a and 6b represent the Renyi dimensions DY g e
as structural measures of type SPf. Figures 7. 3, Y. and 10 show the metric entropy A the e
information gain < (& >, the mutual information < M >, and the effective measure complexity £ 31"
.

J'hey are structural measures of type SP®. SP%*. The fluctuation complexity of shown in Figure i1 i

a dynamical measure DPY¢, DP*. The results for e-complexity are given in Figure 12.

3.3.1 Periodicity

We start with the behavior of different complexity measures in case of periodic behavior. Structurai
measures as 199, DU {9 are capable of indicating periodic behavior, if the periodicity is resolved with
respect to the state probabilities p; = p(A;). For structural measures as < (7 > < M > EMC il thes
are formalized as depending on p;_,) and for dynamical measures of type DP, DP%  a corresponii
g resolution with respect to the transition probabilities is required in addition. This means that the

nnderlying partition must be fine enough to describe the “true” system behavior in an ideally assunicd

continuous state space.

o Algorithmic complerity C, vanishes for periodic behavior as it is shown in Figure 5.
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t.0 T T T T

| YT

Fig. 5. Algorithmic complexity for sequences of length L = 10°. The general shape of this curve is qualitatively reproduced
already for L = 10%.

Fig. 6. Renyi-dimensions D(%) versus the control parameter r for ¢ = —10 (a) and ¢ = 1 (b). A partition P¥ = {AH})024
is used, and cells with #(Af) < 10~* are not considered.
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a

['ig. 7. Metric entropy for the logistic map calculated on PY for 4 < n < 7. The ratio '—:— converges to the metric entrop

A7 as a function of increasing n

<G> Y

| o 0

e e etk bk

b
0. L - -t -
15 16 17 3is 3.9 40
Fig. 8. Information gain < G > calculated for PF
S . . . .
N e
< M >t ]
2 ! 1
3 ]
0 . . - .
3.5 38 37 38 39 40

Fig. 9. Mutual information < M > calculated for PE.
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ig. 10. Effective measure complexity calculated for P&*. EMC vanishes for »r = 4 and is given by logp for periodic

behavior.

l W
3.6 3.7 3.8

Fig. 11. Fluctuation complexity o} for the logistic map as a function of r, calculated for PE. 1t vanishes for regular behavior
and for r = 4. The peaks at r < 3.56,r =~ 3.8,r & 3.95 correspond to unresolved periodic behavior in the distribution of
state probabilities.
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Fig. 12. e-complexity calculated for P{* and for the parameter combination i3 = 1,2,---,8; I = 2l3; ¢ =0.02,0.04,---,0.2.
The small complexity values in the parameter range {3.80,3.83] are caused by the relative small lengths (I1,12) of trees and
subtrees.
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o Henyi-dimensions: Figures 6a and 6b present the Renvi-dimensions D' for ¢ = 1 ithe so caite
information dimension) and for ¢ = —10. For an infinttely tine partition (= — 0. DU vanishie
anv periodic case. For the fintte partition PYois = 1710210, DY indeed tends to zero for o

as well as within the penodic windows of the map. Moreover. a finite resolution i~ pecessars

order to distinguish periodicities of ditferent period o, <ince Y1 rl‘){&\iq for anv aiven

[herefore. period doubling can be detected by discrete steps in Figires Gat,

For gy o< 00 O quantifies the scaling behavior of an “anticorrelation nncuon. 10 .

0 is determined by pin o AN oA a1 NI the nadural measure Honee

14 with small natural measure g A7 £ 0 provide the main contribution for moderatety e

values of ¢. The plots shown in Figures ta and b indicate an essentiaily sdentical behavior.

o Metrie entropy: Since KU = 1‘45-‘; s onlyv an approximation tor finite nin = 6. <maii vab.
Nt correspond to small periods . For periodic behavior with prime period o, the expectea
K'Y = 0 is obtained in the limit n — ~c. Comparing the behavior of K'Y as a function oo
different periodic windows (Figure 7). a clear dependence of the speed of convergence on the pers

v 15 observed.

o Mean information gain: In contrast to the complexity measures adressed so far, the informario
gain < (; > depends on transition probabilities p;_.,. If the periodic behavior is resolved Ly 11

transition probabilities. it is characterized by < (7 »>= 0, independent of period ¢ (see Figure ~

o Mutual information: ln order to be sensitive to periodicity. the corresponding period mu«
resolved by both, p; and p;_.,. If this requirement 1s fulfilled, the mutual information < M »= ioe

as shown in Figure 9.

o Effective measure complerity: As discussed in section 2.2.3, KM = log ¢ (Figure 105, Fairiy iare
complexity i1s obtained for periodic behavior of high period. siuch that a clearcut distinction i

chaotic behavior becomes difficult.

o Fluctuation complexity: If periodicity is resolved in the partition. then of = 0 independent of peri

v tsee Figure 11). If periodicity is not resolved in the partition P~. then of shows a peak. i1,

15 understandable. since the corresponding “artificial” non-uniformity of the distribution of <1

probabilities produces an “artificially” small number of cells with non-vanishing measure p, = u1 i

and p; # é As a consequence, the term log ;iL i Eq.(24) increases and leads to a large vaiue oo
b

fluctuation complexity.
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o e-complezity: Periodic behavior is indicated by non-vanishing values of complexity C'e = log g, il

the considered length of the subtrees I; > p {Figures 2 and 12).

Although different complexity measures are sensitive to periodicities in a different way, periodic behavior

is basically detected by all of them.

3.3.2 Accumulation Point: Onset of Chaos

Due to the finite discretization of the used partition (n < 20), none of the complexity measures considered
is capable of fixing the accumulation point (p = o) at ro = 3.569. .. exactly. This corresponds to the fact
that a finite partition does not permit the sensitivity of complexity measures to periodicities of arbitrarily
high order. Therefore, the precise value of the complexity measure in question depends strongly on the
refinement n, respectively ¢, of the partition. This is consistent with the observation that the memory v

of a corresponding Markov process is very large at ro, (as well as 74 ).

s C,: As can be recognized in Figure 5, C, vanishes for r < 74, and the behavior for r > r, is

characterized by a rapid and considerable increase of C,.

o DW: A similar increase applies to the generalized dimensions as shown in Figures 6a and 6b. The
structure of the attractor of the logistic map at r, is that of a Cantor set. Numerical estimates
for its Hausdorff dimension, information dimension, and correlation dimension, repectively, provide
D©® =0.538..., DM =0.518..., and D® = 0.501... [47, 48, 49]. These values are identical for

all accurnulation points ry o, of the logistic map.

e K@: In Figure 7, ro is indicated by a stop of the step-wise increase of KV as a function of r. A
theoretical determination of the metric entropy K (!}, based on non-chaotic orbits for r = r, yields

KM =9 [1, 39].

¢ < G >: Mean information gain < G > indicates r., as the transition from < G >= 0 to a finite

positive value (Figure 8).

e < M >: For periodic behavior mutual information is given by < M >= logp. This leads to an

infinite value of complexity for p — oo; it is indicated by a maximum value at r = r, in Figure 9.

o EMC: Accumulation points of period-doubling cascades are characterized by maximum values of
E MC-complexity. For finite resolution (n = 16 in Figure 10) this maximum value is finite, whereas

it becomes infinite in the limit n — oo [1].
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. ’71;‘? I'luctuation complexity 17]'1 vanishes for periodic behavior ot any resolved period. | he

positive values for - ¢ deternnnes the acenmuiation point F1oure ).
o Cc-complexity takes a maxinunn value at oo as shown 1 Fieare 12 Due to theoretica
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Nevertheless, e difference hetween cven ana odd values o o oofers o sensi

erging, since the alternation gradually disappears as two bands of o, atlractor @ oo
1o 1llustrate this is obtained by plotting the difference of fluctuation complexity for 1o v

. Figure 13b shows such a plot for Aa == 7f(n = 5)—gfin = 61 as a {function of r {he rma

b Ao turns out te correspond exactly o e v Inthe range r o 0 Ao decreases until an
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3.0 T T T T

1S 15 37 38 r 3.3 1 0
1.5 . .
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3.5 386 3.7 3.8 I 3.9 4.0
Fig. 13. a) Dependence of fluctuation complexity around band merging n = 6,4,7,5 (from lowest to high-
est curve). b) Ae = oi(n = 5) — oi(n = 6) as a function of r provides a maximum at the band

merging point r,. Negative values of Ao arise due to unresolved features.

local maximum at r = r,. = 3.592... appears, where 4 bands merge into 2 bands, etc. For r > r..
Ao declines with increasing r as both bands get effectively mixed such that inhomogeneities due to
the refining procedure die out. Thus for a refinement n — oo the alternation of o} with n disappears
immediately, as soon as r exceeds r.. Many subtle effects are associated with the behavior of Ac.
They are discussed in detail in [50].

Summarizing, there are well-defined relationships between refinements of order n, the distribution
of separate bands over the entire attractor, the alternating behavior of of, and the sensitivity of

ot to band merging points as r = r,. The same is true around ry.; for k¥ = 2 this is indicated in

Figure 13a.
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o «-complerity:
[he sensitivity of e-complexity for band merging has first been discussed in [16]. For the paranoeso
ri. the e-complexity is given by ', = A, if the condition 25 <./, holds. At r o~ v the logistie g
provides a sequence N = ls;lsplsalsg.... where s, can take values U or 1 in a random wav -
sequence indicates an alternation between bandl and band2. and it leads to a binary tree of lenur

{; = 6 (see Figure lta). By definition of the equivalence classes the corresponding autoniaton

(Figure 14b) consists of only two states. both with state probability p, = U.5.0 = 1. 2. This proviae

3.3.4 Period-3 Window

tor the investigation of the logistic map 1 the period-3 window (3.32 < r ~ 3.37) an 1ncreased resotition
< Ar = 107* in parameter space is ysed. As particular features within the period-3 window. its onser

seriod-3 accumulation point, the 3-band attractor. and the feature of interior crisis will be considered

o Onset of pertod-3 window: At the onset of the period-3 window r . = 1 = V81 @ sigtohcan:
peak in complexity is only found using tluctuation complexity. All other complexity measure
CoDWORNS e Mo EMOUC, are not sensitive to this tvpe of transition. They <
ply approach their specific periodic limit.

The peak of of in Figure 15 at 3, corresponds to a highly non-uniform distribution of state proba-
bilities (measure u(A¥)) at the transition from the chaotic state, which exhibits a countably intinit.
number of singularities. to the periodic state. which covers exactly 3 singularities. 77 is sensityve s

this type of non-uniformity. caused by tangent bifurcation at intermittency.
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L l

3.82 3.83 3.84 3.85 r 3. 86 3 87

Pig. 15. Fluctuation complexity, calculated for P¥, in the parameter regime r € [3.82,3.87] (period-3 window). The
transitions from periodicity to chaos and vice versa are investigated with resolution Ar = 10™*. Positive values of rf%, e.g

in the neighborhood of r = 3.843, correspond to unresolved periodicities in the state probabilities.

e Accumulation point:
All considered complexity measures are more or less sensitive to the period-3 accumulation point

T30 = 3.849.... Slight differences in sensitivity are due to the same kind of problems as already

mentioned for the accumulation point ro,.

e 3-band attractor:

For r > r3. some marginally resolved periodic “sub”windows within the period-3 window are

characterized by low complexity.

o Interior crists:

The transition “from chaos to chaos” at r3. = 3.856. .. [25] corresponds to a discontinuous increase
of N, the number of cells A;, with nonvanishing measure. Therefore, all considered complexity
measures, with the only exception of EMC, increase rapidly as soon as r reaches 3.

Fluctuation complexity increases sharply at r = r3. and declines for r > r3.. The increase at
7 = r3. is a consequence of the increase in N¢ as well as of the extremely inhomogeneous distribu-
tion of state probabilities for r = r3 .. With a further increase of r, fluctuation complexity declines
since the measure on the attractor tends to get more uniform.

Renyi-dimensions for ¢ < 0 show a similar behavior for r > r3 ., since they correspond to “anticor-

relations” in the natural measure of P¥ (Figure 6a).
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3.3.5 Fully Developed Chaos

t

Vi + = 1 we have the limiting case of random hehavior twith vanishing memory, v = ) an the s
aiterval. Hence. complexity a la Kolmogorov and Chaitin will take its maximum here, whereas complesy

< imroduced according to Figure 1 vanishes, A fook at Figures 5-12 shows that all considered vieas s

cath the exceprion of of 0 and E MO indicare mereasing complexity as a function oi oo s senens
Sondeney fwhich s luterrupted by ranges of small complexity tor regular behaviory. Uomplexity woi
saximum value for # = 1. Thus complexity measures as < 00 - 0 W= KW DWW bagicallv expross

Jeeree of randomness as 1t s the case for algorithimic compiexity,

o (', By detinition algorithmic complexity is the prototype of a measure of randomuness. T masins

¢, = | is obtained for r = 1.

e ' Based on the analyvtical expressions for the natural measure ¢ at r =4, Renvi-dimension
be approximated as:

! for o 2
D) I b 'L

2(7;‘!‘) for ¢ =2

The discontinuity at ¢ = 2 is a consequence of the non-hyperbolicity of the logistic map at «+ i~
and of the fact that this critical point is mapped onto the two values U and 1 only, t.e. the measi
has two singularities at z = 0. 1. This situation can be considered as an analog to a thermodynanica

shase transition [31]. Thus D@ is not a strictly decreasing function of ¢. and, in contrast to chaoti
I 3 {

behavior in the range r < 4, the attractor is not a multifractal for r =1 [25].

e N9 : On a generating partition P the natural measure is uniformly distributed for r = 1 an
arbitrary n: p(AZ) = /NG =277 ¥V ¢ = 1. NY Therefore. the generalized entropies are

given by K9 = | for all 4. Thus. the phase transition of the structurai complexity measure /777" ..

type SPH) has no counterpart in the structural complexity measure A9 which is of type ~ /"

‘

e < (4 >: Since the logistic map shows doubly stochastic behavior with )

for fully developed chaos.

e < M >: For doubly stochastic behavior mutual information is given by < M >=log . 3ecaus
Fy 1s determined by N’ = 2 and ¥V = 2" we obtain < M >=mn - | for this case. As a consequ 1
mutual information vanishes for n = |. In this case the symbolic dynamics of the logistic mian i
equivalent to a coin-tossing process. which is completely random as defined in section 2.1. Ao
all complexity measures considered here. only mutual information can 1dentify a completelv rando:.

process as a specific case of doubly stochastic hehavior.
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¢ EMC: Analogous to the partition PZ the states according to PS* are uniformly distributed for

r = 4. Consequently EMC = (.

¢ of: Fluctuation complexity vanishes for r = 4, since the measure u(A¥) is uniformly distributed
for all subintervals A® € PY. This behavior is similar to the situation at 7 = r., since the dynamics

of F, at r = 4 is selfsimilar to the dynamics of F? at r = r,.

e (.. The dynamics of Fy generates a completely uncorrelated binary sequence. Thus the correspond-
ing binary tree of length {; consists of all combinatorially possible words of length n = ;, providing

exactly one equivalence class and therefore vanishing e-complexity (Figure 3 and 12).

Table 2: Sensitivity of the considered complexity measures for specific types of behavior in case of the logistic map. In
this table theoretically or numerically approximated values of complexity are given with the corresponding references. For
n — 00, C; and K1) coincide. An asterisk (#) in the last column indicates that the given values are only relevant in case

of doubly stochastic behavior.

complexity || periodicity | roo =: 71,00 Te =IT1. T3, r=4
C, o 0 0.5 increase | 1 (%)
I |l log p singular increase | log N
D@ o g=10:0.538 q>0: g<2:1
qg=1:0.518 increase | ¢ > 2: T
qg=12:0.501 g <0
[48, 49] peak
KW 1o 0 [39] 0.5 increase | 1 (*)
<G>0 increase | 1 (*)
<M>|logp singular increase | n — 1 (%)
EMC |[logp singular 0 (%)
gt |0 alternating | peak 0
C. | logp singular 1 0 (%)
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4. SUMMARY

[ he central subject of this paper 1s an attempt to classify various existing complexity measure-

a four-fold scheme based on the dichotomous notions of structure (51 and dynamics (/23 as well
Lomogeneous partitions { P and generating partitions P90 The four classes of measnres resuinin,
from this scheme are denoted as SPHSPY P Gnd DPY Althoueh there is no “host” detig: o
A complexity in a unigque manner. the presented classification scheme = mtended 1o faelitate b
orientation within the huge set of existing complexity measures.

Stractural aspects of a point set are reflected by the appearance of state probabilities p, (with resrn
o the partition) 1 the definition of the measure. Dynamical measures coutatn transition probataiice

g i addition. In some cases 1t turns out that the formal definition of a dvnamical measi

w rephrased such that 1t does no longer contam 1ransition probabilities exphicitly. [lis wssue rinses tin
question of irreducibility in the context of the suggested scheme. Within the given classification. meas

are considered as dynamical measures if transition probabilities in their formal definition are not redicin
to state probabilities. Otherwise. they are structural measures.

Only two measures out of the investigated set are dynamical measures of tyvpe DPY in this sense. i

lnation complexity and e-complexity. Structural measures with reducible transition probabilities /7

are dynamical entropies, information gain, mutual information, and effective measure complexity. Viec
rithmic complexity, generalized informations. and generalized dimensions are structural measures. whose
definition is totally independent of transition probabilities.

It is apparent that classificational ambiguities due to reducibility of dynamical elements appear solelv to
tliose measures defined on generating partitions. The reason is that a generating partition by constructioy
contains the dynamics of a systemn implicitly. For this reason, it is in principle possible to “cover™ particuin
“vnamical aspects by such a partition, thus providing measures of type 5 P“. Nevertheless, there remain
ases of irreducible D PY measures as mentioned above. A well-defined general criterion for irreducibilits
lias not yet been found.

Application of the set of investigated complexity measures to the logistic map shows that particui
measures are required to detect particular features of the map. The specific differences between comnpiesit
measures in this respect are summarized in Table 2. It is also important to note that there are substantiai
discrepancies between homogeneous and generating partitions. In case of the logistic map. this can mo=
clearly be seen at fully developed chaos (r = 4). Refinement of a generating partition in — 2ci doex 11,

general provide measures that are different from those obtained from an identically refined homogencons

partition.
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Complexity measures of type S P assign highest complexity to random behavior. In contrast, measures of
type D P vanish for random behavior. For regular (stationary, periodic) behavior, measures of both types
cither vanish or are given by log p. High complexity according to DP“~ (and some SP%~) measures
corresponds to specific kinds of more sophisticated dynamical behavior, e.g., the onset of chaos.

Iut this respect SPH and DPC can be considered as classes of complexity measures accounting for the
Lasic two notions of complexity indicated in the introduction. For measures of type SP% this clear
distinction is lost. Some of those measures increase with randomness, others do not. Some of them vanish
for regular behavior, others do not.

As a final remark, we should like to add a brief comment on the relationship between the concepts of
complexity and meaning as it has been proposed by several authors [1, 52, 53]. In a recent publication
[11] we have pointed out to some detail, how both concepts might be regarded as corresponding to each
other conceptually and operationally. Within the classifying scheme presented here, this correspondence

is restricted to complexity measures of type DPC, in particular to fluctuation complexity oZ.

Acknowledgementis — We would like to express our thanks for stimulating and helpful discussions with Jim Crutchfield,
Mats Nordahl, and Gregor Morfill. Support concerning computational work has been given by Valentin Demmel and Udo
Schwarz.

Part of this paper has been completed during a research visit of one of us (H.A.) at the Santa Fe Institute. This visit was
based on NATO grant # SA.9-15-04 (RV.910588). It is a pleasure to thank the staff and the members of the Santa Fe
Institute for their hospitality.

This work has been supported by BMFT grant # 05 5SME94A E.

REFERENCES

{1] P. Grassberger, Toward a quantitative theory of self-generated complexity, /nt. J. Theor. Phys. 25, 907-938 (1986),
How to measure self-generated complexity, Physica 140 A, 319-325 (1986)

] A.N. Kolmogorov, Three approaches to the quantitative definition of information, Inf. Trans. 1, 3-11 (1965)

] G. Chaitin, Algorithmic information theory, Cambridge University Press, Cambridge {1987)

] P. Grassberger, Problems in quantifying self-generated complexity, Helv. Phys. Acta 62, 489-511 (1989)

] K. Lindgren, M. Nordahl, Complexity measures and cellular atomata, Complez Systems 2, 409-440 (1988)

] J.E. Hopcroft, J.D. Ullman, Introduction to automata theory, languages and computations, Addison-Wesley, Reading,
Ma., (1979)

[7] A. Lempel, J. Ziv, On the complexity of finite sequences, IEEE Trans. Inform. Theory 22, 75-88 (1976), Compression
of individual sequences via variable-rate coding, IEEE Trans. Inform. Theory 24, 530-536 (1978)

] J. Rissanen, Universal coding, information, prediction and estimation, I[EEE Trans. Inform. Theory 30, 629-636 (1984)

] J. Rissanen, Stochastic complexity and modelling, Annals of Statistics 14, 1080 (1986)

0] S. Wolfram, Origins of randomness in physical systems, Phys. Rev. Lett. 55, 449-452 (1985)

] A.C. Yao, Theory and applications of trapdoor functions, Proceedings of the 23rd IEEE Symposium on the Foundations

of Computer Science, 82-91 (1982)

[12] C.H. Bennett, Dissipation, information, computational complexity, and the definition of organization, in Emerging

Syntheses in Science, Ed.: D. Pines, Addison-Wesley, Reading, Ma., 215-233 (1985)



1)

1
-
e

1B
1]

)

R, WAUKIRBAUH R of off

(1. Bennett, Un the nature and ongin of complexity m discrete homogeneous, locally-interacting systeins. i
Phys. 16, H85-592 (19863
i Koppel, H. Atlan. Program-iength complexity, sophistication. and induction. inform Ser 56, 23338 11001
S. Lioyd, H. Pagels, Complexity as thermodynamice depth, Ann. Phys. (N V0 188 (86-213 (1088
J P Crutchfield. K. Young, Inferring statistical complexity. FPhys Hev. [ett 630 1006108 (19391,
smputation at the onset of chaos, in Complersty, entropy. and the physics of mformation, Ed W Zurek. Nidicas
Weslev, Reading, Ma., 223-269 (19801
S Crutchfield, Inferring the dvnamic. quantifying physical complexity. i Measures of complersty and
N Abraham et al.. Plenum Press. New York 327-338 (19591
¢.GL Langton, Computation at the edge of chaos: phase transitions and cmergent computation. {thysiea 42 1)

BB

i~DBLAL Hubermian, T Hogg, Complexity and adaptauion. Piysica 22 D03T6-354 0 Tt

J.E. Bates, H.K_ Shepard, Information fluctuation as a measure of complexity, University of New Hampshire Doaria
preprint (10V15

H. Atmanspacher. Complementanty of structure and dyvnamies, i (nformation dynamacs. Fdo 1 Atmanspacto s
H. Scheingraber, Plenum Press, New York. 205-220 (1041

It. Atmanspacher, E. Weinberger. Dualities. context. and meaning. in Information dynamees, . 1 AUniana, .
II. Scheingraber, Plenum Press. New York. 343-348 (1991

2] J. Guckenheimer. P. Holmes, Nonlinear vscillations, dynamucal systems and tifurcation of vector ficlds, Springer, -

York {1983)

R. Wackerbauer. (. Mayer-Kress. A. Hiibler, Algebraic caleulation of stroboscopre maps of ordinary, uonlinear il

ential equations, Physica 60 D, 335-35T (1992}

V.M. Alekseev. M.V. Yakobson, Symbolic dynamics and hyperbolic dynamic systems. Phys. Rep. 75, 287-525 ( 1un i
R.W. Leven, B.P. Koch, B. Pompe, Chaos 1n disstpativen Systemen, Akademie-Verlag, Berlin (1989)

E.A. Jackson, Perspectives of nonlinear dynamics, vol 2. Cambridge University Press. Cambridge (1990}

G. Nicolis, C. Nicolis, Master-equation approach to deterministic chaos, Phys. Rev. 38 A, 427-433 (1988).

For another definition of doubly stochastic matrices see D.R. Cox, H.D. Miller. The theory of stochastic processes
(‘hapman and Hall, London (1987)

I Kaspar, H.G. Schuster. Easily calculable measure for the complexity of spatioternporal patterns. Phys. Ker 36 A

342-848 (1987}

(.E. Shannon. W. Weaver, The mathematical theory of communscation, Univ. of [llinois Press, Urbana {1949,

J. Balatoni, A. Renyi, in Selected Papers of A. Renyt, vol I, Akademiai, Budapest. 558 (1976)

P. Grassberger, Generalized dimensions of strange attractors, Phys. Lett. 97 A. 227-230 (1983)

H.G.E. Hentschel. 1. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors
Physica 8 D, 435-444 (1983)

P. Grassberger, I. Procaccia, Estimating the Kolmogorov entropy from a chaotic signal. Phys. Rev. 28 A 25491-25u3
(1983)

R.S. Shaw, Strange attractors, chaotic behavior, and information flow. Z. Naturforschung 36 A. sU-112 (1Ux1;

I1. Atmanspacher and H. Scheingraber, A fundamental link between system theory and statistical mechanics.. Joune

Phys. 17, 939-963 (1987)

T.C. Halsey, M.H. Jensen, L P. Kadanoff, I. Procaccia. B.I. Shraiman. Fractal measures and their singularities: 11
characterization of strange sets, Phys. Rev. 33 A, 1141-1151 (1986)

P. Szépfalusy, T. T¢l. A. Csodas, Z. Kovacs, Phase transitions associated with dynamical properties of chaotic systeins.
Phys. Rev. 36 A, 3525-3528 (1987)

J.P. Crutchfield, N.H. Packard, Symbolic dynamics of one-dimensional maps: entropies, finite precision, and noise, /ni{

!. Theor. Phys. 21, 433-466 (1982)

W. Ebeling, G. Nicolis, Word frequency and entropy of symbolic sequences: a dynamical perspective, Chaos. Solitons
& Fractals 2, 635-650 (1992)

H. Haken, [nformation and self-organssation, Springer, Berlin (1988)



(1)

1)

2

[5
53]

H. Atmanspacher, J. Kurths, H. Scheingraber, R. Wackerbauer, A. Witt, Complexity and meaning in nonhnear dy-
namical systems, Open Systems & Information Dynamics 1, 269-289 (1992)

A. Witt, KomplexitatsmaBe und ihre Anwendungen in der symbolischen Dynamik, Humboldt University, Berlin. FB
Mathematik, Diplomarbeit {1992)

P. Collet, J.-P. Eckmann, lterated maps on the interval as dynamical systems, Birkhauser, Boston (1980)

R.L. Devaney, An introduction to chaotic dynamical systems, Benjamin/Cummings Publishing, Ca., (1985)

E.M. Oblow, Supertracks, supertrack functions and chaos in the quadratic map, Phys. Lett. 128 A, 406-412 (198R)
C. Grebogi, E. Ott, J.A. Yorke, Crises, sudden changes in chaotic attractors, and transient chaos, Physica 7TD. 181-200
(1983}

P. Grassberger, On the Hausdorff dimension of fractal attractors, J. Stat. Phys. 26, 173-179 (1981)

H.G. Schuster, Deterministic chaos, Physik-Verlag, Weinheim (1984)

E. Aurell, On the metric properties of the Feigenbaum attractor, J. Stat. Phys. 47, 439-458 (1986)

R. Wackerbauer, Komplexitatsmafe: Klassifikation und Anwendung in der Theorie dynamischer Systeme, Max-Planck-
i u terrestrische Physik, Garching, Doktorarbeit (1993)

P. Grassberger, R. Badii, A. Politi, Scaling laws for invariant measures on hyperbolic and nonhyperbolic attractors.
J. Stat. Phys. 51, 135-178 (1988)

H. Atlan, Self creation of meaning, Phys. Scr. 36, 563-576 (1987)

J. Casti, The simply complex: trendy buzzword or emerging new science, Bull. of the Santa Fe Inst. 7, 10-13 (1992)



