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Abstract - A number of different measures of complexity have been described, discussed, 

and applied to the logistic map. A classification of these measures has been proposed, dis- 

tinguishing homogeneous and generating partitions in phase space as well as structural 

and dynamical elements of the considered measure. The specific capabilities of particular 

measures to detect particular types of behavior of dynamical systems have been investi- 

gated and compared with each other. 

1. INTRODUCTION 

1.1 Complexity 

‘The notion of complexity has been object of numerous and extensive studies since it has become clear 

that the exact sciences, in particular physics, can no longer afford to disregard the behavior of systems 

which cannot be treated simply. A simple treatment has always been assumed to be possible either il 

only few degrees of freedom are involved or if central limit theorems can be applied in case of man> 

degrees of freedom. These assumptions cannot be maintained for nonlinear dynamical systems in general. 

In such systems, complex (in contrast to simple) behavior can occur with only few degrees of freedom, 

and central limit theorems are not always applicable. 

.4 very clear and suggestive illustration of a basic issue arising in the context of defining complexity is 

due to Grassberger [l]. It is reproduced in Figure 1 and it shows three patterns corresponding to a 
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‘;v\.eral authors studying notions of complexity that are in the spirit of the latter approach have f’ouuti 

iudications that complexity becomes maximal whenever a system’s control parameter passes a \AII~ at 

\vhich the behavior of the system switches between regular and chaotic. It has even been suspected t.hnt 

complexity at those “phase transitions’ diver;es in the thermodynamic limit. At phase transitions. t ht’ 

itlformation processing (computational) capablilties of a dynamical system are regarded to be very hish. 

III (irassberger’s terminology, this corresponds to the capabiiity to master a meaningful task of very I~i:ll 

rlc,<ree of difficulty [A]. From a thermodynamic point of view, a system produces a maximum amount 

of fluctuations at a phase transition or. respectively, at an instability, if non-equilibrium systems AL’( 

r.,,ncerned. 

1.2 Basic Concepts 

,\lthough there is already a basic distinction between complexity b la Kolmogorov-Chaitin (algorithmic 

complexity) and complexity according to the intuitive notion presented above. the large and still in- 

creasing number of complexity measures calls for a more detailed scheme into which these measures ma! 

be categorized. In the present section such a scheme will be introduced. It is explicitly built upon the 

ant.inomies of structural versus dynamical properties of point sets and of homogeneous versus generatin. 

partitions on their support. The basic types of support considered here are phase space and position 

space. 

l Homogeneous partitions (PH) are partitions into cells (boxes, balls, etc.) of identical volume with 

respect to the Lebesgue-measure. This kind of partition corresponds to a homogeneous concept 

of space, and it is practically easy to handle. Apart from these, no additional reasons exist that 

rmght favor the use of homogeneous partitions compared with any other, arbitrarily chosen inhomo- 

geneous partition. A homogeneous partition implies an appeal of universality, since each measure 

derived within a corresponding partition is independent of (context-free with respect to) any specific 

properties of the system concerned. 

. Generating partitions (P”) are partitions into cells whose boundaries are generated by the propertics 

(in particular by the dynamics) of the system under investigation. The most important feature OI 

this type of partition is that boundaries between cells are always mapped onto themselves during 

the evolution of the system. This means that any generating partition is a Markov partition (but 

not vice versa). The payoff for this advantage is that a generating partition has to be constructed 

for each system individually and requires knowledge of the dynamical laws governing its evolution, 

In this sense it turns out to be system-specific, hence context-dependent in contrast to universal. 





11 P” Dynamical measures based on a generating partition. 
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abstract structures. Phase space coordinates are different from position space coordinates in :I 

formal and in a conceptual sense. 

2H Dynamical measures based on a homogeneous partition. 

‘These measures refer to dynamical. but abstract properties of a system in terms of a parameter tini<’ 

t which is used in order to define rates of change. e.g.. velocity as the temporal change of (rsternal I 

position. Parameter time t is abstract insofar as it is not object to direct perception in estc‘rll;ji 

position space. Any measurement of time t is based on an observation of concretely perceivai)it> 

positions, e.g., of the pointers of a clock. In this sense, t can be understood as an external. 1,111 

abstract concept of time. It is crucial for all types of unitary dynamical laws. and correspontls to 

the point of view of temporal reversibility. 

In contrast, concrete dynamical properties of a system can be characterized by the concept oi 

an internal time 7. In an illustrative manner, notions like age, memory, and related phenomena 

of decaying correlations between quantities defined locally in phase space fall into this category. 

For instance, intrinsically instable systems with positive Kolmogorov-Sinai-entropy li possess an 

“intrinsic” correlation time given by K-‘. (This does not contradict the existence of longer. non- 

“intrinsic” correlation times, e.g., due to memory effects.) Direct operational access to 7 seems to 

be possible only from the interior perspective of the system itself. In this perspective, internal time 

is responsible for all types of phenomenological arrows of time, hence emphasizes the point of view 

of temporal irreversibility. 

The preceding characterization entails the antinomies of internality and externality (endo/exo) as well 

as Iof abstraction and concreteness. the latter one coinciding with that of the descriptive level of models 

nnd the observational level of systems. For more details on a formal treatment of these antinomies and 

their relationships with each other, we refer to a more detailed discussion given elsewhere [20, 211. 

1.3 Organization of the Article 

Section 2 of the present paper is devoted to the notions of structural and dynamical measures of comples- 

ity, to their definition, and to the assignment of specific existing complexity measures to both of these 

categories. For instance, concepts like algorithmic complexity, generalized information, and information 

gain will be classified as structural measures. In contrast, concepts based on fluctuation of information 

gain. as well as on machine complexity belong to dynamical measures. An inexhaustive, but hopefully 



2. QUANTIFICATION OF COMPLEXITE 

BY STRUCTURAL AND DYNAMICAL MEASURES 

2.1 General Definitions 

I ‘it~il d t(~rnpornllv cliscrrtr~. spatlailv c-untinuuus r11ap i3 .~~jmboizc d!ync~rr~~~~czi ,~qstcrn I'~LII t)tl <c'IIc~I;~I,~ 

,ILL ,Ldditionai discretization of the state space A i2ij. If the state space A of a dynamical 5; il,.,!. 

PI\.IGI~Y~ into .V cells .-1, rhat arr non-empty with respect to the Lebesguca Ineasure of’ tht: systrr~. ‘,,+ I 

I lie collection of ail cells is called a partztzon I’ = J, .A, }:L, If the ‘-1, arr mutually disjoint and tile I,:,,/‘/. 

01 .I, reproduces the state space: U;‘:, .,I, = A. 

13~ labeling each element of the partition 1’ = (.I,};“=, with it svmboi ol. rhe t~mr 1~x’ol1ltlciii ; f;:, 



Classification of complexity measures 139 

(Ivnamical system (i.e., its discretized trajectory) can be expressed by a symbol sequence S = scsi::z.. 

Tliis sequence is constructed such that after each time step i the state of the system r‘t is assigned to 

the corresponding symbol s,. This symbol is determined by the cell A, that is met by the trajectory at, 

I ime i. The set of all possible symbols S, E {as, ai,. a,~_,} is called an alphabet of cardinality :Y. The 

resulting symbolic dynamical system is defined as 

;~ich that each symbol in the sequence S satisfies the condition si+i = S: = >~(s,). 

Xr- is the space of all admissible symbol sequences. Admissible sequences are sequences that are induced 

I,y the dynamics of the system F for all initial states 1s E A at time step i = 0. The operator C~.P is 

c,alled the shift operator on C,V and describes the dynamics generated by F in the space S.P of symbol 

sequences. The length L of a symbol sequence S is defined by 5’ = {s;}f=ii. In principle. the theory of 

symbolic dynamical systems deals with sequences of infinite length (L = co). For practical purposes. 

ILowever, L is often regarded as a finite number. 

The symbolic dynamical system (Eq.(2)) 1s constructed in a way that leaves it topologically equivalent 

to Eq.(l) [24]. This implies a well-defined assignment of trajectories to symbol sequences that represent, 

the topological properties of the underlying dynamical system F (e.g., the number of periodic points of 

the system) faithfully. 

_+is indicated in section 1.2, different kinds of partition can be utilized in order to discretize the state 

space A. 

1) A homogeneous, context-free partition P H into cells Af’ of identical size: PH = {A~}~~, where 

NH is the number of states (cells) in the state space A. 

2~) A generating partition PG, or P,“, generated by the dynamics of the system: PG = {A~}~~. lZrc is 

the number of cells (states) in A. If necessary to avoid misunderstanding, an index n will be added 

to P,“, ,V,“, or AC t,nr respectively, characterizing the number of time steps considered to generate 

the partition. This index n is also called the order of refinement of the generating partition. MOW 

details will be given later. A generating partition PG creates arbitrarily small cells as the order n ot 

refinement goes to infinity. Given trajectories can be assigned to corresponding symbol sequences 

in a well-defined manner [25]. 

2h) Based on some alphabet {ao,al,. . . ,a~:_~}, the set P,“* of all possible subsequences (words) of 

length n out of a symbol sequence S represents the total set of “trajectories” with respect to all 



- Z
. i _.
 

2 -E
 

c a 

__
 

; 
z.

 
. . 

_ 
I-

 
_.

 
_-

 

..-
 . ._
 

=
 

P
 

-5
 

=
 

-.
 

=
 E
 

1
 

- L a-
 : 

- 

; ” : 

c 

; . .
 . 

- _.
~

 
r.

 
;. 



Classification of complexity measures 141 

p,-, := F is the conditional probability for the transition to a given state .A, from its 

predecessor .4,. 

The probabilities pi-1 and p,,, can be repesented using a transition matrix, whose rows sum up 

to one. 

In case of P,“‘? both transition probabilities are defined for sucessive time steps if the states 

are represented by At”(, = sksk+l.. .~l;+~...l and 4” = S&+lSk+z.. .~k+,, for all possible k. ‘ ,.n 

k E {O.. , L - n}, of the symbol sequence 5’. 

linder the assumption that the various kinds of possible dynamical behavior of a system (periodic. 

chaotic. uniformly stochastic, and doubly stochastic) can be resolved in the coarse-grained partition of 

st.nte space. they can be characterized in terms of these probabilities. 

l Periodic behavior of period p, y < N: 

Without restrictions upon generality let p; # 0 V i = 1, . , p for the following. In case of periodic 

behavior with period p, p 5 N and i,j E { 1,. . . , p}, we have pi = l/p for the state probabilities 

and P,-, = 1 for the transition probabilities. All remaining state and transition probabilities for 

i,j E {{l,..., N} X {l,... , N}Ip;,j # 1) have to vanish. Periodic behavior is undetectable if the 

number of states N is smaller than the period 63 of the system. 

As an alternative criterion, a periodic point x of period p satisfies the condition Fp(x) = I, where 

Fe(x) = z,FP(x) = F(FP-l(x)). A n o al g ously a symbol sequence of period 63 satisfies s;+~ = S, 

V i=O,... , L - p. The least positive g for which F“(x) = x or .xs~+~ = si holds is called the prime 

penod of x or 5’. 

. Uniformly stochastic behavior: 

Uniformly stochastic behavior is characterized by an equi-distribution of the probabilities pi = l/S 

(i E {l,.. . , N}) of all possible states on the space A with respect to some arbitrary, but fixed 

refinement of the partition. Transition probabilities are not considered in this context. 

l Doubly stochastic behavior: 

For doubly stochastic behavior [27] we require pi = l/N as well as pi+, = l/N’ with N’ 5 ;\r 

for all i,j E (1.. . , N}. N is again the number of states on A. N’ is the number of transitions 

with nonvanishing transition probabilities for each cell Ai, i = 1,. . . , N. (Note that N’ = :\:r, 

respectively N’ = 2 for a binary alphabet.) 

Stochasticity in this sense is characterized by uniformity of state probabilities and transition prob- 

abilities, thus motivating the notion of doubly stochastic behavior. 

For N = N’ doubly stochastic behavior is equivalent to a coin-tossing process, which implies total 



2.2 Structural Complexity Measures: ,’ 1’ 

‘J ” 1 Algorithmic Complexit> _.k. 
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.lO give an example. the sequence S = 1101001111010010.. of length L splits 

iuto (1)(10)(100)(111)(1010010~.... p roviding a number c(L) = 5 of resulting words A!::, of different 

l,:ng,th n,. For a symbol sequence consisting exclusively of totally independent symbols. c(L) takes it i 

Illaximurn value according to the relation (logarithms are always binary logarithms): 

pm ( c(L) - & log.V,G‘ = 0 
) 

I 

~-sjng this maximum as a normalization factor, the algorithmic complexity C’, is given by: 

log L 
C, = iimWc(L)------- 

L log Ail” 

where _Vf is the cardinality of the underlying alphabet. 

For periodic behavior with period 9, the relation c(L) < p provides vanishing complexity C’,. In ca>(’ 

of a sequence of totally independent symbols, Eq.(5) leads to C, = 1. Between these limiting cases. 

algorithmic complexity may take values in the range 0 5 C, < 1. 

Algorithmic complexity C, is a non-probabilistic measure. For this reason, it cannot directly be catego- 

rized into the scheme introduced above. Nevertheless it may be assigned to the class SPG of complexit! 

measures, since the number of words c(L) within a symbol sequence is primarily a structural, and def- 

initely not a dynamical system property. Moreover, the symbol sequence is generated by an alphabet 

based on PG, which suggests to classify C, as SPG-measure. Under the aspect that words of different 

length n are considered, C, can be classified as SPG*-measure, as well. The fact that C, approaches the 

IX-entropy A’(‘) for an infinite sequence [7] confirms this assignment 

2.2.2 Generalized Informations and Related Complexity Measures 

Algorithmic complexity shares basic properties with information measures & la Shannon [29]. These 

measures can very elegantly be captured by a formalism introduced by Renyi [30]. This framework uses 

the concept of a generalized information I(q) on some partition P as it is defined by: 

For q + 1 the generalized information of order one is given by: 

I(‘) = lirnItq) = _ epi log pi 
P-+1 i=l 

where N is the number of cells Ai, i = 1,. . . , N, for a given partition PH, PG, PG’, and p; = p(A;). 



. III the uniformly stochastic case 1I(qt is given by. 

,QrPj Z ._ firn ~ = j 
log i\/, 

1-11 lOg,E 

for l-dimensional maps. As in the periodic case. it 1s constant as a iunctron of q 
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Il) The second alternative is a generating partition P,” or P,“*, respectively, which provides generalized 

entropies K(S) [33]. Therefore the entropies Ktq) represent a structural measure (in an abstract sense). 

although they are usually (and correctly) characterized as dynamical invariants of dynamical systems. 

For a given initial uncertainty in state space, Z<(q) measures the temporal spread of the distribution 

of admissible trajectories along the attractor. It can be interpreted as a rate of internal information 

Iproduction of the system [34, 351, corresponding to the rate of information loss of an external observer. 

l{(P) = lim !Z! 
n-m n i!)i 

/I;?) is the information of a dynamical system F on a refined partition P,” (or P,“*) of order n. Since 1”’ 

2nd PG* are generating partitions. Ii(q) is the supremum sup I(q) 
P 

e with respect to all possible partitions 

P. ‘Then K(‘J) is the dynamical entropy of order q. For q = 1. one obtains the Kolmogorov-Sinai entropy. 

a fundamental invariant of dynamical systems. 

The partitions P,” and P,” are equivalent for given n, since the natural measures of corresponding states 

:iFn E P,” and Am E P,“* are identical (p(Ay) = p(Ay) = p; for all i = I,. . , IV). As a consequence. 

determination of K(q) on the basis of PG and on the basis of PG* provides identical results. 

Similar to the generalized dimensions in homogenous partitions, the generalized entropies are given by: 

l Ktq) = lim w = 0 in the periodic case. n-m n 

l I{(q) = lim !sQ!% for an equi-distribution of state probabilities for all n (n --+ 00, and with 
n-m n 

N,, = N:, respectively N,, = Nr). Th us if the limiting value exists, doubly stochastic behav- 

ior is marked. 

In case of (for instance) Pp all possible words of length n are admissible, which leads to N,, = (N,)” 

and therefore K(q) = log Ni. (Consider, e.g., a 2 : l-map. Then the number of cells (states) grows 

with N,, = 2”, which provides Kc*) = 1.) 

There is a unique relation between D(q) and the f(a)- spectrum [36] as well as between K(q) and the 

g(A)-spectrum [37]. It is therefore not necessary to discuss these spectra (which are often used for an 

appropriate characterization of multifractals) in detail here. 

2.2.3 Local Slopes and Related Complexity Measures 

Dynamical entropies K(q) as defined above can be considered as asymptotic slopes of It) as a function 

of n. Numerically, this limit is most easily accessible from the “local” slopes [38, 1): 

hp) := I$ - I?‘, /$) := $4 
1 



.-\ I .-III important way to characterize thfa complexity of dynamical systems is baed on the z~~o~~~~~~L:~~~~~ 

i,iiiI, I;,, (often called Kullhack informatioIl [‘lo]). 11 represerlts the inforrnatlon required to stblrcl C/ -’ ,(I~ 

I of Its preceding state ,A* is g~vcxri. 

. t*‘or periodic behavior there are strictly dc~tcw~lirif~d trnnsitlons !JJ,__, .~~ ((I. i } 7 _; / 

:md the mean information gain vamshes for ail periods of order $.I. Kiwi <as a measuw 01. c orrli)~t~s~t: 

f, 2 is therefore ody capable to discriminate periodic from nowpf‘riodic behavior. It ~l(,~-. ‘,. 

/)rovidr information about Ihe period by Itself. 
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. < G > is defined for I(‘) at two successive time steps n.n + 1 (Eq. 13). In order to characterize 

uniformly stochastic behavior, it is appropriate to consider I(‘) itself. 

. In case of doubly stochastic behavior (p, = p, = l/N,p,,, = l/iv’) one has < G >= log * = 

1ogN’. For a totally random, statistically independent process for which N’ = Iy. this implies 

< G >= log1V. 

11) The interdependence of two different states il,. A, can be quantified by the measure of mutual lr~jor- 

mation: 

l%f = log pi, 13 i l-41 
PiP, 

In stochastically independent cases p,, = p,p,, one has lM,j = 0 and the two states ‘4,. A, can bc 

considered to be mutually independent in the sense that information about one of them does not depend 

on information about the other one. 

The mean mutual information is defined by: 

(IS) <M >= $J PijMij = 5 pi,log$ 
i,j=l l,JXl 

which provides, using Eqs.(7),(12),(13): 

< M >= I& < G >= 21;’ - I$, (16) 

hIutua1 information < M > is therefore categorized as SPG-measure (or SPG*-measure, respectively). 

l In periodic cases where < G >= 0, Eq.(16) yields < M >= 12) = log p. Hence mutual information 

is capable of distinguishing between different periods p. 

l Evaluating Eq.(16) for the doubly stochastic case where < G >= log N’, the mean mutual infor- 

mation is obtained by: < M >= log fi 1 0. 

As a consequence, N = N’ implies < M >= 0. This applies if the corresponding process is statis- 

tically independent (like coin-tossing). 

C) ‘CTsing the concept of “local” slopes for Q 

complexity EMC [l]. 

EMC = 

= 

= 1, Grassberger has introduced the efective measure 

$“) - IO) (1s) 

&I( IF) - n Id’)) (19) 



2.3 Dynamical Complexity Measures: iii’ 

2.3.1 Fluctuation Complexity 
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that a system has lost about a preceding state A, after it has entered the successive state A,: 

!V .V 

< L >= c P,,L, = - 1 P,, logp,+, 
,.)=I a.,=1 

‘1‘11~: net information gain TII of a system is then expressed by: 

149 

I”:!, 

r,, = Gi, - L,, = log i i’-‘::i 

Due to the normalization Cp,_, = 1. the mean net in/ormation gazn vanishes: < I >= Cp,,TL, = 0. 

During the evolution of a &tern, I 
1.1 

,J may fluctuate about its mean value and therefore may have a I~OII- 

\.anishing mean-square deviation c:. This quantity can be understood as ~~ct~ation in net ~nfornzat~or~ 

gnzn. It has been introduced as a complexity measure by Bates and Shepard [19]: 

0; = <P>-<r>i il’l! 

= 5 P,,(l% ;I” (X) 
i,jZl 3 

Fluctuation complexity CT; is a dynamical complexity measure since its definition includes both state 

probabilities and transition probabilities explicitly and irreducibly. It has originally been introduced on 

a partition PH, but more adequate use can be made of it, if it is applied to a generating partition P’; 

(see [41]). 

. In case of periodic behavior fluctuation complexity vanishes independent of the prime period $3. 

In order to detect periodic behavior, sufficient resolution is necessary only with respect to state 

probabilities, not with respect to transition probabilities (see section 3.3.1). 

l ui? depends on transition probabilities pi-j only if the state probabilities are not equi-distributed. 

In uniformly stochastic as well as in doubly stochastic cases, i.e., in case of any equi-distribution of 

state probabilities (pi = p, V i,j = 1,. . , N), fluctuation complexity vanishes: &? = 0. Therefore 

fluctuation complexity does not distinguish uniformly stochastic from doubly stochastic behavior. 

2.3.2 Complexity of E-Machines 

The idea to use automata for a definition of complexity goes back to Kolmogorov [2] and led to the concept 

of algorithmic complexity. It is based on a deterministic automaton and represents, loosly speaking, a 

measure of randomness. Crutchfield and Young [16] suggested to apply stochastic automata, which they 

call e-machines. The determination of the complexity C, of an e-machine can be divided into four main 

steps. 



l l‘he complexity of the t-machine with minimal A is dehned as the* r-c-olnple.uity of I/it> q1vc211 ii ;;I!,~~ 

.triWC. 
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Il~g. 2. An intelligible example to illustrate the procedure of calculating c-complexity for the periodic sequence 
.Y = 001001001001.. ._ It is assigned to the binary tree of length II = 6 (a). By definition of the equivalence classes 

(subtrees of length 12 = 3) (b) the corresponding automaton (c) is derived. 

Fig. 3. Automaton for doubly stochastic behavior. 

e-complexity belongs to the class of dynamical measures, but the reason is not as easy to verify as for 

fluctuation complexity. For c-complexity it is essential that it is defined on the level of a model, not 

on the level of the data themselves. The representation of the data (symbol sequence) by a model (the 

t-machine) requires a mapping of states of the symbol sequence onto automaton states, which is not 

injective in general (for E > 0). Although c-complexity is simply based on state probabilities on the level 

of the automaton, it refers to both transition probabilities and state probabilities on the level of the 

symbol sequence. Since the mapping between both levels is not injective, e-complexity is not reducible to 

state probabilities on the level of the symbol sequence, hence it is characterized as DPG*. (On the model 

level. t-complexity would simply be a structural measure, since it is identical with I(‘)). More technical 

(letails on C, are given in [42]. 

l In case of periodic behavior with period M: C, = log p, if p 5 12. 

An intelligible example illustrating how the concepts of binary trees and equivalence classes are 

used to determine e-complexity is given for the periodic sequence S = 00100100100100.. . . This 

sequence can be assigned to a binary tree according to Figure 2a. By definition of the equivalence 



:‘,. STRUCTURAL .4ND DYNAMICAL COMPLEXITY FOB THE LOGISTIC’ 1l:\I’ 
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Fig. 4. bifurcation diagram for the logistic map in the parameter regime P E (3.5.41 

3.1 The Logistic Map 

One-dimensional discrete dynamical systems can show chaotic dynamics if they are noninvertible. :\ 

well-known example is the logistic map: 

[O, I] ---* [O, 11, z H F,(z) = rs(l - z) (2i) 

For r E (0,4] Eq. (27) IS a map on the unit interval I := [0, l] [43]. For r > 4 the iteration of Eq. (27) 

diverges for almost all initial values, which induces chaos on a Cantor set [44]. In this paper we consider 

the parameter regime r E [3.5,4]. 

The critical point of the logistic map is I, = 0.5. It is associated with a maximum value of F,(O.5) = i. 

Thus Eq. (27) defines a surjective map only for r = 4. In case r < 4, the map is injective on the intervals 

[0,0.5], [0.5,1], respectively. F, is a unimodal map, which is monotonically increasing for z < 0.5 and 

monotonically decreasing for I > 0.5. Because the Schwarzian derivative is negative on I, F, has only 

one attracting periodic orbit at most. 

If one state of an orbit coincides with the critical point (2, = 0.5), then the derivative is vanish- 

ing, $-F,!(O.5) = 0, and the orbit is called superstable. The functional dependence of superstable or- 

bits on the control parameter r is represented by supertrack functions si(r) [45]. In case of the lo- 

gistic map, supertrack functions are continuous polynomials in r. They are recursively defined by 

so(r) = 0.5, So = F,(O.5) = i, si(r) = Fr(si-1) = rsi_l(l - s;_*) for all i = 1,2,3,... The bi- 

furcation diagram in Figure 4 shows these functions si(r) as dark lines. They are caused by the fact that 

iterates of 2, correspond to singularities in the natural measure of F,.. 



!:I the range 7‘ > I’~. a so-called reverse bz~~rcatzon ~eguence describes the changing structure .,t is 

.it~ractor of the logistic map. Any attractor in this range consists of 2” subintervals (bands). anti ;I:> ,ii,i’ 

r iudic orbit meets these 2” subintervals successively in a “handperiodic” icay. (.A bandperiotiltr ort>ir 11 i: 1, 

i”xriod 2” falls into the same subinterval after ‘2” t,ime steps .) .-\t band rnerqzny poznts T,,,., L( ~~ i._! 

any existing 2” bands join pairwise into T-’ bands. Band merging points are defined bv thp lntt’r’-t‘i 

1 ion of supertracks: s 3 2y-~ (rU,. J = s4,2.-t (T,,..). For example there is band merging from -1 to :! !J;~I~~I.. ,, 
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r2 ,. = 3.592.. ., band merging from 2 to 1 occurs at rr,. = 3.678. . . (For convenience, r,,* := T, in the 

following.) The decreasing sequence {ru,*}~=r converges geometrically toward the accumulation point T,~. 

analogous to the increasing period doubling sequence. 

For r = 4 the logistic map is surjective. The complete interval I is covered by the iteration points of &. 

The corresponding behavior is called fully developed chaos or exterior crisis. 

3.2 Partitions 

This section describes how the partitions P H, PG, PG* and the corresponding state probabilities as well 

as transition probabilities are numerically generated in case of the logistic map. 

3.2.1 Homogeneous Partition: PH 

For an investigation of structural complexity measures of the logistic map, the unit interval I is divided 

into NH = 1024 bins of equal length c = l/NH providing the homogeneous partition PH = {Ay}!J!:“. 

Using topological conjugacy of the tent map, the natural measure for the logistic map at r = 4 can be 

obtained analytically as p(Ay) = /A~ p( )d 5 z, where the probability density is given by p(z) = -_L.-- 
Z_’ 

For arbitrary r E (3.5,4], p can be determined by numerical evaluation of the map for N;, iterations (after 

transients have died out) and plotting the result as a histogram. The normalized histogram becomes 

basically independent from a further increase of Nit at a ratio of 3 = 104, indicating a fairly good 

approximation. For a step width Ar = 0.001 of the control parameter r, NH = 1024 is chosen as a 

suitable compromise between required CPU-time and numerical accuracy due to coarse-graining. Under 

these conditions the partition P H = {Ag}i!:4 allows to resolve periodicities up to p = 16. , _ 

By construction, PH is homogeneous in state space but inhomogenous with respect to time. Therefore 

it does in general not represent a Markovian partition in the sense of the discussion in section 2.1. 

Nevertheless, abstract transition probabilities between states AH, A: can be defined from the geometrical 

properties of the map. It is useful to keep in mind that these transition probabilities do not reflect the 

concrete intrinsic dynamics of the system. 

3.2.2 Generating Partition: PG and PG* 

Using generating partitions, structural and dynamical complexity measures of type SPG, DPG, respec- 

tively SPG’, DPG’, c an be investigated by discretizing the attracting state space in a manner designed 



I lita r ransition matrix. which determines the transition probabilities Iron] itat,e A: to srat.t, ,,I’,’ ,‘I _ 

ilt,i.ix-rd anaiytically. <a2 follows. 

l hs illustrated in the bifurcation diagram [Figure 4), the attractor of F: ix bounded by the supt~:~r~, !, 

fllnctions Y,( r/ and s2(r). (‘onsequently. the attractor is a subset I,!’ t11e tInit Interv,aI I. ‘+v~i<.~it’:t~ 
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r < 4. The transition matrix is therefore calculated in a way that excludes empty (with respect to 

the natural measure) cells outside the attractor. 

l In periodic situations and in the interval T, < r < r. there are cells A: with vanishing measure 

on the interval [F,(i), i]. In those cases where p(Al;d) # 0 and for instance p(AE) = 0. the “true” 

transition probabilities piO_+~O = 0 and plO_JO+l = 1 are taken into account. 

In the following, complexity measures based on PG are calculated for a constant order n = 6 of refinement. 

producing a symbolic description of the logistic map. The cardinality NG of the resulting partition 

varies as a function of r, since ,u( A:) > 0 VJ’i = 1, . , NG. (This is, for instance, of influence for the 

determination of the topological entropy h ‘co) = lim u.) For the purpose of the following applications. n-co n 
!\G will subsequently be considered as the number of cells A: with nonvanishing measure. Then the 

number of cells N,” is equal to the number of cells N,” for given n and for partitions P,“, P,“*, 

Basically, all complexity measures considered (with the exception of fluctuation complexity a;, which 

will in detail be discussed later) are not sensitive to small variations of n. 

B) The n-cylinder induced partition PG* is required for measures of the complexity of explicit symbol 

sequences, e.g. for sequences of words of a language. Examples are algorithmic complexity, effective 

measure complexity, and c-complexity. The basic partition PIG on the logistic map defines a binary 

alphabet such that the symbol 0 is assigned, if the iterated value of Eq. (27) falls into the interval [0,0.5]. 

The symbol 1 is assigned if it falls into the interval )0.5,1). A n-cylinder induced partition P,“* of order 

II is then obtained by all words (substrings) Ayn(i = 1,. . , IV:) of length n that are generated by the 

map. P,” and P,” are equivalent insofar as their natural measure and their transition probabilities are 

the same. They are different insofar as P,” acts in the space CF of symbol sequences, whereas P,” acts 

in the space of states of the map. 

In order to describe the natural measure pi = p(Ai”(,) by the relative frequencies of words A,: in the 

finite symbol sequence S in a reliable manner, very long sequences are needed. The necessity for verl 

long sequences is mainly due to the fact that the number of possible words increases exponentially with 

n in general. Of course, the structure of the symbolic sequence also influences the necessary sequence 

length L. 

. Algorithmic complexity: Sequences of _L = lo5 turned out to be sufficient. 

. EMC: Sequences of length L = lo6 have been choosen to guarantee reliable results. 

. e-machine: Sequences up to lengths of lOa have been used. 



3.3 Measures of Complexity for the Logistic Map 

3.3.1 Periodicity 

\\;a start with the behavior of different complexity measures in case of periodic behavior. Struc.t,liSii 

,ILeasures as Ifur. LYq)\ IC(q) are capable of indicating periodic behavior, if the periodicity 1s resoivczcl KII !I 

r<,spect to the state probabilities p, = p(A,). 1 ‘;~r structural nleasures as * f; 2. s’ .tl ,>_ 1~‘~blC ’ i :I ‘!I! I. 

,1rc8 formalized as depending on p,_,) and for dynamical measures of tvpc‘ I)PG. III”“. 4 t <,i_rc3!,, )!jl/ 

,116 resolution with respect to the transition probabilities is required in addition. This rrlrans t,hat : ill) 

linderlying partition must be fine enough to descrihv the “true“ system bt,havior in an Ideally ass11 I I a+-: 

~.i)ntinuous state space. 

. .Alyonthmzc complexity C‘,, vanishes for periodic behavior as it is shown in Figllre .5 
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Fig. 5. Algorithmic complexity for sequences of length L = 10’. The general shape of this curve IS qualitatively reproduced 

already for L = 104. 
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Fig. 6. Renyi-dimenaiona D(q) vem the control parameter r for 4 = -10 (a) and p = 1 (b). A partition P” = {Ay}t’J:4 

is wed, and alla with p(AF) < lo-’ are not considered. 
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Fig. 9. Mutual information < A4 > calculated for Pg. 
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I’ig. 10. Effective measure complexity calculated for Pz. EMC vanishes for P = 4 and is given by logp for periodic 

behavior. 

2.0 t......‘..“....“““’ .,.“““““‘.‘l i 

Fig. 11. Fluctuation complexity IJ~ for the logistic map as a function of r, calculated for PeG. It Mnishes for regular behavior 

and for P = 4. The peaks at r < 3.56, r - - 3.8, r % 3.95 correspond to unresolved periodic behavior in the distribution of 

state probabilities. 

3.5 3.6 3.7 3.8 r 3.9 4.0 

Fig. 12. c-complexity calculated for P$’ and for the parameter combination 1, = 1,2, . ,8; 11 = 21,; c = 0.02,0.04,. ,0.2. 
The small complexity values in the parameter range (3.80,3.83] are caused by the relative small lengths (II, 12) of trees and 

subtrees. 



. .\lfnrL znfonncltzon gazn: 111 contrazt to the complexity Irlea.surt‘s c~drc~scd so far. : hr* illfurrl;,,i /(:l 

<ailk < i: > depends on transition probabilities ?I,_~. If 11le periodic. behavior is resolved 1~~. 1 i 

r ransitlon probabilities. it is characterized b>- c f; ;,= 0, indepcxndent of period 1.1 (set: l”lglir~~ * 

l ,llutual infonr~utzon: III ort1t.r to tjc xrnsitive to periodicity. the I-urrrasponding p~~r~o~i 1111; -: 

rchsolved by both. p, and p,-.,. If this requirement is fulfilled, the mutual information c d! -\ L~~c I 

AS shown in Fiqurc, !4. 

. Fi~~ctuat~on complezzty: If periodicity IS resolved in the partltlon. tllen ~7; = o indeprrltlc,rll ot /)<‘I it I 

,) IS-F l:igure 11). If periodicity is not r~‘solv~d in t.he partitiorl L:i’. then CT; stluw-; ,L IIP~I,. 

1s llnderstandable. since the corresponding “artificial” rlorl-uriifornlit~ 11i the distribilt,lorl 01 .! ,, I 

probabilities produces an “artificially” small number of c~c~lls wlt,h IIUU vanishing mea.surC TJ, =: 11 I i 

;~r~ci p, f i. As a consequence. the trrm log E in Eq.(‘241 increases arid leads to PC large \‘;tiii<’ /I 

fluctuation complexity. 
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. c-complezity: Periodic behavior is indicated by non-vanishing values of complexity C, = log ~ZJ. if 

the considered length of the subtrees I* > p (Figures 2 and 12). 

Although different complexity measures are sensitive to periodicities in a different way, periodic behavior 

is basically detected by all of them. 

3.3.2 Accumulation Point: Onset of Chaos 

l>ue to the finite discretization of the used partition (n < XX), none of the complexity measures considered 

is capable of fixing the accumulation point (p = 03) at r, = 3.569. exactly. This corresponds to the fact 

t.llat a finite partition does not permit the sensitivity of complexity measures to periodicities of arbitrarii?- 

high order. Therefore, the precise value of the complexity measure in question depends strongly on tllc 

refinement n, respectively E, of the partition. This is consistent with the observation that the memory L-J 

of a corresponding Markov process is very large at rW (as well as ~k,~). 

. C,: As can be recognized in Figure 5, C, vanishes for r < r,, and the behavior for r > T, ih 

characterized by a rapid and considerable increase of C,. 

. D(q): A similar increase applies to the generalized dimensions as shown in Figures 6a and 6b. The 

structure of the attractor of the logistic map at rm is that of a Cantor set. Numerical estimates 

for its Hausdorff dimension, information dimension, and correlation dimension, repectively, provide 

D(O) = 0.538.. ., DC’) = 0.518.. ., and DC’) = 0.501.. . [47, 48, 491. These values are identical for 

all accumulation points rk,oo of the logistic map. 

l K(q): In Figure 7, r, is indicated by a stop of the step-wise increase of I<(‘) as a function of T. A 

theoretical determination of the metric entropy K 0) based on non-chaotic orbits for r = r,, yields , 

K(l) = 0 [l, 39). 

l < G >: Mean information gain < G > indicates r, as the transition from < G >= 0 to a finite 

positive value (Figure 8). 

. < M >: For periodic behavior mutual information is given by < M >= logp. This leads to an 

infinite value of complexity for p --+ co; it is indicated by a maximum value at r = T, in Figure 9. 

l EMC: Accumulation points of period-doubling cascades are characterized by maximum values of 

EMC-complexity. For finite resolution (n = 16 in Figure 10) this maximum value is finite, whereas 

it becomes infinite in the limit n -+ 00 [I]. 
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30 . ..I’. 

4 
u; : 

I 

Fig. 13. a) Dependence of fluctuation complexity around band merging n = 6,4,7.5 (from lowest to tllgh- 

e>t curve). b) Au := u;(n = 5) - c$(n = 6) as a function of P provides a maximum at the hand 

merging point r.. Negative values of Au arise due to unresolved features. 

local maximum at 7- = f~,. = 3.592.. appears, where 4 bands merge into 2 bands, etc. For T > 7,. 

Ag declines with increasing r as both bands get effectively mixed such t,hat inhomogeneities due to 

the refining procedure die out. Thus for a refinement n -+ oc, the alternation of a; with R. disappears 

immediately, as soon as r exceeds T,. Many subtle effects are associated with the behavior of Acr. 

They are discussed in detail in [50]. 

Summarizing, there are well-defined relationships between refinements of order n, the distribution 

of separate bands over the entire attractor, the alternating behavior of u;, and the sensitivity of 

u: to band merging points as r = rr. The same is true around rk,*; for k = 2 this is indicated in 

Figure 13a. 



3.3.4 Period-3 Window 

i 1 sr rhe investigation of the logistic map 111 the prr1o(i-:3 wlndow (3.52 ‘_ r‘ .i.S’i) MI Inc.reased rf’s,iilt 1~~1’ 

‘I 11, = lo-’ in parameter space IS ~isrd. As partlcrllar fcatllrrs within t.tlc I><,rioti-:S wln(io\v. its o~,,t’: : ‘s 

‘“‘rl<)( -3 1 accumulatloll point, the &band attr;tctor. and the feature ot lntcric,r crls~s WIII t,(s c‘ons~(~~~!~~~: 

l Or1.5r t of pcrzotl-3 wndox: .Zt the onset uf Ilit. Ijcrlo&:l window I’! - ! - 1’ ,<I ,I -:L’I;I~I~ ,,I 

p?ak in complexity Is 0nly found using fllicl uation cxJmplexlt!- .\li ot.her coniplrxit:, i~il’.iilli~ 

( I,. II”‘J.li(q).. (; . . c .\I .‘, E,II(‘.C’, itrf’ not iensltivr to t hi,, 1 vpc $)i trarlsitl<,II. I ilr,\ .I:’ 

~‘i?; approach their specific perlodlc limit.. 

The peak of CT{ in Figure 15 at rz,,_ corresponds t,o a highly norl~rlnlform rlistribution ot’ stat<. [~r~~rl,~ 

bilities (measure p( A:)) at the transition from the chaotic state. which exhibits a countablh II~III:II~ 

number of singularities. to the periodic state. which covers exactly 11 
> 

iingularltles. CT? is v~~‘iiiii i ‘, 

this type of non-uniformity. caused by tangent bifurcation at intrrlnlt ten<:? 
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[‘lg. 15. Fluctuation complexity, calculated for PG G, in the parameter regime T E [3.82,3.87] (period-3 window). ‘TII~’ 

rransltions from periodicity to chaos and vice versa are mvestlgated with resolution Ar = 10v4. Positive values of D;, e.g 

in the neighborhood of P = 3.843. correspond to unresolved periodicities in the state probabilities. 

l Accumulation point: 

All considered complexity measures are more or less sensitive to the period-3 accumulation point 

rs,m = 3.849.. . . Slight differences in sensitivity are due to the same kind of problems as already 

mentioned for the accumulation point roe. 

l 3-band attractor: 

For r > rs+, some marginally resolved periodic %ub”windows within the period-3 window are 

characterized by low complexity. 

l Interior crisis: 

The transition “from chaos to chaos” at r3,= = 3.856.. [25] corresponds to a discontinuous increase 

of N, the number of cells A;, with nonvanishing measure. Therefore. all considered complexity 

measures, with the only exception of EMC, increase rapidly as soon as r reaches r3,C. 

Fluctuation complexity increases sharply at r = r3,C and declines for r > r3,=. The increase at 

r = rs f is a consequence of the increase in NG as well as of the extremely inhomogeneous distribu- 

tion of state probabilities for r M r3,c. With a further increase of r, fluctuation complexity declines 

since the measure on the attractor tends to get more uniform. 

Renyi-dimensions for q < 0 show a similar behavior for r 2 r 3,=, since they correspond to “anticor- 

relations” in the natural measure of PH (Figure 6a). 



:!.s..s Fully Developed Chaos 

I Ii& for ~1 ~~ 2 

Ihe discontinuity at ‘I = 2 is a consequence of the non-h~perboll~]~~. of the logistrc IrIap at c ‘f 

and of the fact that this critical point is mapped onto the two values 0 and 1 dy. 1.C’. ttw Il,r~,iii!’ 

tlas two singularities at .r = 0, 1. This situation can be considered as an analog to a thermodynarr~~,~.:! 

phase transition [Sl]. Thus f)‘q’ .- I:, not a strictly decreasing function of ~1. and, In corrtrast to 1 I:~~IJI I’ 

behavior 111 the range r < 4. the attractor IS not a multifractal for I‘ -- t [L5]. 

l 1<(q) : On a generating partition P” the natural measure is uniforrrrly distributeu for 1 : ‘ii,/ 

arbitrary 71: /li.4fn) = i/:V,y = t’-” t/ [ ; 1 .Yz. T‘herrforc-. t he generalized entroljr+., .,i c 

9lver1 bv Ktq = 1 for all (1. ‘I’hus. the phase transitron of the strur trrrnl (,ornplexit.y rnrasurc ij’z’ :I .z 

type ,\‘PHI has no counterpart in the structural complexity measur‘tl h.(q). which IS of type 4 !’ 

. ‘ (: >: Since the logistrr rnap shows doubly st.ochastic bchavror \cltir \’ 2. ‘. t r 

for fully deveioped chaus. 

. < .Zf >: For doubly stochastic behavror mutuai information is given by < ,%I >=- log + i$,i, ,/:,.S 

k:, is determined by :V’ = 2 and IV = 2” we obtain < ‘21 >= ,I I IOI rhrs case. As a (.onst~/~~. t/s, ‘. 

mutual information vanishes for n = I. In this case the symbolic dynamrcs of the iogrstrc 1r1.~1) 

equivalent to a coin-tossing process. which IS completely random as detined in section 2.! ,‘\I,:,,:,!, 

;ill complexity measures considered here. only mutual information can Identify a completelv r,:11~ ic ). 

t,rocess ai a specific c’a~t‘ of dorrbl\ stochastrc bc.havror 



Classification of complexity measures 169 

l EMC: Analogous to the partition P,” the states according to P,“* are uniformly distributed for 

r = 4. Consequently EMC = 0. 

l u;: Fluctuation complexity vanishes for r = 4, since the measure p(AF) is uniformly distributecl 

for all subintervals A: E PG. This behavior is similar to the situation at T = r., since the dynamics 

of F, at T = 4 is selfsimilar to the dynamics of F,’ at T = r.. 

. C,: The dynamics of F., generates a completely uncorrelated binary sequence. ‘Thus the correspontl- 

ing binary tree of length 11 consists of all combinatorially possible words of length n = I,: providing 

exactly one equivalence class and therefore vanishing c-complexity (Figure 3 and 12). 

Table 2: Sensitivity of the considered complexity measures for specific types of behavior in case of the logistic map. In 

this table theoretically or numerically approximated values of complexity are given with the corresponding references. For 

n + co, C,, and K(l) coincide. An asterisk (*) in the last column indicates that the given values are only relevant in case 

of doubly stochastic behavior 

complexity periodicity r, =: rt,m r+ =: 7-l.. 7-34 r=4 

c, 0 0 0.5 increase 1 (*) 

I(‘) log p singular increase log N 

LI(*) 0 q = 0 : 0.538 q > 0: q<2:1 

q = 1 : 0.518 increase q~2:& 

q = 2 : 0.501 q < 0: 

[48, 491 peak 

K@) 0 0 [391 0.5 increase 1 (*) 

<G> 0 increase 1 (*) 

< M > logp singular increase n-l (*) 

EMC logp singular 0 (*) 

u; 0 alternating peak 0 

c, logp singular 1 0 (*) 

] 
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4. SUMMARY 

~111<5tion of rrreducibrht~y III tlJr> context of the suggested .schrn~e. LL rtlirir t tic’ q~vrn cla_ssltlc5tl~,ll. :j/(‘,/i/,:’ 

,III’ considered as dynamical measures if transition probabilities in their formal definition are not r~~~frr~ rrBIJ 

:(I itate probabilities. Otherwise. they are structural measures. 

0111y two measures out of the investigated set are dynamical measures 0t tvpc III-“’ j~i 1 tiis w~ihb’ i-,/ 

I 4~;itlorl complexity and c-complexity. Structural measures with rcducibt<~ I ransition prot)abilit r(‘h / ’ i’ 

c!rf’ dynamical entropies, information gain, mutual information, and effective measure complexIt> \ iv.1 

i ,I lrmic complexity, generalized informations. and generalized dimensions are structural rnrasurf>s. iv~~~~-l’ 

~letinition is totally independent of transition probabilities. 

It IS apparent that classificational ambiguities due to reducibility of dynanrical elements appear ~OIPIL /$ I! 

I Irose measures defined on generating partitions. ‘I‘he reason is that a generatrng partition by coustrrr( t I, #:I 

1 e)ntains the dynamics of a system implicitly. For this reason, it is in principle possible to “cover” parttr ~ri.tr 

I,\ rlamical aspects by such a partition. thus providing measures of type ,\‘fI-“’ Nevertheless. there r~‘rr~~l,:l 

.,ws of irreducible llPcJ measures as mentioned above. li well-defined genera1 criterion for rrredrrt lI)iilt 

I 1.1s not yet been found. 

\)~plication of the set of investigated complexity rrreasures to the logistic map shows that t>cilt 1, w,:l 

Irreasures are required to detect particular features of the map. The specific differences between COII~~,L<~~:C!’ 

Irit’asures rn this respect are summarized in ‘I’able 2. It. is also important to note that there <ire srrb\r C~~~~ /,I, 

~iacrepancies between homogeneous and generating partitions. In case of the logistic map. this c irr! :r~~~.: 

( lcarly be seen at fully developed chaos (r = 4). Refinement of a generating partition in ~+ x ) IIO~- II. 

Kc,neral provide measures that are different from those obtained from an identically refined hornogc-~rr~~<~ll-. 

j ,nrtition. 
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Complexity measures of type SPH assign highest complexity to random behavior. In contrast, measures of 

type DPG vanish for random behavior. For regular (stationary, periodic) behavior, measures of both types 

tither vanish or are given by log p. High complexity according to DPG- (and some SPG-) measures 

corresponds to specific kinds of more sophisticated dynamical behavior, e.g., the onset of chaos. 

111 this respect SPH and DPG can be considered as classes of complexity meaSures accounting for the 

IJasic two notions of complexity indicated in the introduction. For measures of type SPG this cleat 

distinction is lost. Some of those measures increase with randomness, others do not. Some of them vanish 

for regular behavior, others do not. 

;\s a final remark, we should like to add a brief comment on the relationship between the concepts of 

complexity and meaning as it has been proposed by several authors [l, 52, 531. In a recent publication 

[41] we have pointed out to some detail, how both concepts might be regarded as corresponding to each 

other conceptually and operationally. Within the classifying scheme presented here, this correspondence 

is restricted to complexity measures of type DP’, in particular to fluctuation complexity 0:. 
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