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INTRODUCTION

Machine learning (ML), a subset of artificial intelligence, refers
to methods that have the ability to “learn” from experience, enabling
them to carry out designated tasks. Examples of machine learning
tasks are detection, recognition, diagnosis, optimization, and pre-
diction. Machine learning can also often be used in different areas
of complex systems research involving identification of the basic
system structure (e.g., network nodes and links) and study of the
dynamic behavior of nonlinear systems (e.g., determining Lyapunov
exponents, prediction of future evolution, and inferring causality
of interactions). Conversely, machine learning procedures, such as
“reservoir computing” and “long short-term memory”, are often
dynamical in nature, and the understanding of when, how, and why
they are able to function so well can potentially be addressed using
tools from dynamical systems theory. For example, a recent conse-
quence of this has been the realization of new optics-based physical
realizations of reservoir computers. In the area of the application
of machine learning to complex physical problems, it has been
successfully used to construct and recover the complex structures

and dynamics of climate networks, genetic regulatory systems,
spatiotemporal chaotic systems, and neuronal networks. On the
other hand, complex systems occur in a wide variety of practi-
cal settings, including engineering, neuroscience, social networks,
geoscience, economics, etc. Since complex systems research and
machine learning have a close relationship between each other, they
provide a common basis for a wide range of cross-disciplinary inter-
actions. Hence, exploring how machine learning works for issues
involving complex systems has been a subject of significant research
interest. With the advent of machine learning, it has become pos-
sible to develop new algorithms and strategies for identification,
control, and data analytics of complex systems, thereby promoting
the application of machine learning in many fields.

The main focus of this Focus Issue is on the new algorithms,
strategies, and techniques with machine learning applied to com-
plex systems and on applying complex system techniques to lever-
age the performance of machine learning techniques with high-
efficiency. This Focus Issue provides a platform to facilitate inter-
disciplinary research and to share the most recent developments
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in various related fields. The specific areas represented include
reservoir computing, modeling of complex systems, prediction and
manipulations of complex systems, data-driven research, control
and optimization, and applications.

For the Focus Issue, 58 papers were accepted for publication.
In the following, we will divide the editorial into the following
five parts, including reservoir computing, model of complex sys-
tems, prediction and manipulations of complex systems, data-driven
research, control and optimization, and applications.

Reservoir computing

Reservoir computing is a type of machine learning in which
an input u drives a dynamical system (the “reservoir”). The reser-
voir state vector r is then linearly mapped by a matrix Wout to an
output v, v = Wout r [or v = Wout r

′ for r
′
= f(r)]. The reservoir

state vector r is high dimensional in the sense that its dimension is
large compared to the number of output variables (the dimension
of the vector v). The goal is to adjust (“train”) the output weights
(matrix elements of Wout) so that a desired functional relationship
of v upon u is accurately achieved, and this is commonly found to be
possible for large enough dimensions of r provided that a condition
called the “echo state property” applies. For example, in the case of
supervised learning, the desired functional dependence is specified
through many examples of specific inputs u, along with the desired
output v for each example. The key feature of reservoir computing
is that only the output weights are trained, while parameters of the
input couplings and the reservoir are held fixed. Thus, due to the
linearity of the output mapping, the training can be done as a linear
regression. The simplicity of the reservoir computing scheme is an
attractive feature, for example, often enabling computationally rapid
training and the possibility of flexibility in physical implementation.
As a result, reservoir computing has attracted considerable atten-
tion as an alternative machine learning approach for tasks to which
it can be applied. Thus, as described below, several of the papers in
this special issue of Chaos concern reservoir computing, e.g., treating
topics including physical implementation, principles of operation,
and reservoir structure and optimization, as well as applications to a
variety of different important tasks, etc.

The paper entitled “Machine learning based on reservoir com-
puting with time-delayed optoelectronic and photonic systems” by
Chembo1 presents a review of research on the physical imple-
mentation of reservoir computing devices focusing on the use of
time-delayed optoelectronic and photonic technologies. A basic
idea highlighted in the review is that, by using a single time-delay
nonlinear dynamical component, the required high dimensional
reservoir dynamics can be achieved. These general types of devices
appear to hold great promise for advantages in size, weight, power
consumption, speed, and cost.

Moving from physical implementation of reservoir computing,
several papers in this issue consider reservoir computing principles
of operation and applications to various kinds of significant tasks.
We notee that, unlike Chembo’s paper,1 all these other papers (to
be described below) consider reservoirs implemented as recurrent
neural networks simulated on digital computers.

Several papers consider training-data-enabled, model-free
prediction tasks for chaotic systems, including both short-term

prediction of system states, as well as long-term prediction replicat-
ing the system’s ergodic properties. For example, the paper entitled
“Forecasting chaotic systems with very low connectivity reservoir com-
puters” by Griffith et al.2 uses Bayesian optimization to search for
good reservoirs for prediction tasks. Somewhat surprisingly, they
find that the best results are often obtained for reservoir networks
with very low connectivity. Similarly, the paper entitled “Good and
bad predictions: Assessing and improving the replication of chaotic
attractors by means of reservoir computing” by Haluszczynski and
Räth3 also considers prediction performance variation for differ-
ent random reservoir network realizations, hyperparameters, and
network topologies. One interesting result is that reservoir net-
works with scale-free topology display worse performance than
other topologies tested. While the two papers just described con-
sider prediction tasks for low dimensional chaotic systems (like the
Lorenz ‘63 and Roessler systems), the paper entitled “Combining
machine learning with knowledge-based modeling for scalable fore-
casting and subgrid-scale closure of large, complex, spatiotemporal
systems” by Wikner et al.4 is concerned with the task of machine
learning applied to forecasting the state of very large, complex, spa-
tiotemporally chaotic systems (e.g., a weather forecasting system).
In this case the key issue is scalability, i.e., how can a machine learn-
ing system be configured so that performance of prediction of such
large complex systems is practically possible? Wikner et al.4 pro-
pose and demonstrate that scalability is promoted through a scheme
that combines parallel operation of many reservoir computer units
hybridized with a conventional global knowledge-based model.

The papers of Zhu et al.,5 Cunillera et al.,6 Banerjee et al.,7

and Krishnagopal et al.8 illustrate the use of reservoir computing
to readily extract from data generated by unknown chaotic systems
seemingly hard to obtain dynamical and system properties. In the
case of the paper entitled “Detecting unstable periodic orbits based
only on time series: When adaptive delayed feedback control meets
reservoir computing” by Zhu et al.,5 the goal is to find unstable peri-
odic orbits embedded in a chaotic attractor—a task that could enable
control of the system and is useful for basic understanding of chaotic
attractors. Their method is to first use the reservoir computing to
obtain a replication of the chaotic dynamical system generating the
data and to then extract the unstable periodic orbits from this repli-
cation by using a technique that they call “adaptive delayed feedback
control.” For a situation where only a subset of the state variables of a
dynamical system are measured, the paper entitled “Cross-predicting
the dynamics of an optically injected single-mode semiconductor laser
using reservoir computing” by Cunillera et al.6 considers the problem
of inferring the unmeasured state variables from the measured state
variables. They give a machine learning method for doing this and
test its application to the case of an optically injected single-mode
semiconductor laser which has three state variables, two of which are
difficult to measure, while the third is much easier to measure. The
paper entitled “Using machine learning to assess short term causal
dependence and infer network links” by Banerjee et al.7 considers
the problem of using state variable time series data to infer causal
dependence between state variables of a continuous time dynam-
ical system that is known to be of the form dx(t)/dt = F(x(t)) but
is otherwise unknown. Banerjee et al.7 approach this problem by
first using a reservoir computer to replicate the dynamics of the
unknown system dx/dt = F(x) and then applying the “automatic
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differentiation” ability of machine learning to obtain an estimate of
the Jacobian matrix of partial derivatives of F(x) following the orbit.
Testing their method on an application to network link inference
(for related work, see Refs. 9–11 in this issue), the authors present
encouraging results of tests of their method, including the effects
of dynamical noise (which can dramatically improve the results)
and of observational noise (which degrades the results). The paper
entitled “Separation of chaotic signals by reservoir computing” by
Krishnagopal et al.8 considers a situation where one is presented
with a signal formed as a linear combination of two component sig-
nals, where each of the two component signals is a state variable
time series originating from one of two different chaotic dynam-
ical systems. The goal is to separate the presented signal into its
two components based on training data time series of the sepa-
rated components. Krishnagopal et al.8 show that their nonlinear
machine learning method is significantly better than the optimal
linear method (the Weiner filter), especially when the frequency
spectra of the component signals overlap.

While machine learning has been spectacularly successful, it
seems fair to say that a sufficient understanding of the reasons
for this success remains lacking. Three papers in this special issue
address questions related to this problem in the context of reservoir
computing. The paper entitled “Collective dynamics of rate neurons
for supervised learning in a reservoir computing system” by Maslen-
nikov and Nekorkin12 considers a reservoir configured via feedback
to act as a temporal pattern generator. Specifically, the reservoir is
presented with a periodic function of time, and, by “listening” to
it for a while, is able to learn weights that result in the reservoir
feedback system replicating the presented time function. To gain
insight into how the reservoir accomplishes this task, the authors
examine the time dependence of the individual hidden variables
(nodal state values) within the reservoir network before, during,
and after training. They find that, through the training process, the
state variation of individual nodes evolves to a situation where each
nodal state varies periodically at the period of the presented signal.
These individual orbits, however, all have different time variations,
but, when linearly combined by the output weights, the desired sig-
nal is replicated. The paper entitled “The reservoir’s perspective on
generalized synchronization” by Lymburn et al.13 explores reservoir
computing with respect to the nonlinear dynamics concept of gen-
eralized synchronization (GS). The GS concept applies to attractor
dynamics, where there are two identifiable subsystems, one with
state x and one with state y, which are coupled together resulting
in a functional relationship [H(x,y) = 0] between x and y. When
this relationship is smooth, “strong GS” is said to apply; when it
is fractal, “weak GS” is said to apply. Lymburn et al. use reservoir
computing to attempt reconstruction of a representation of a sup-
posed GS relationship between x and y, thereby determining either
the nonexistence of GS, or the existence of weak or strong GS. Fur-
thermore, they also discuss the importance of the GS concept for
basic understanding of reservoir computing itself. The paper enti-
tled “Dynamics of analog logic-gate networks for machine learning”
by Shani et al.14 focuses on the continuous-time dynamics of net-
works implemented on field programable gate arrays (FPGAs) and
use these FPGA networks as ultrafast machine-learning processors,
using the technique of reservoir computing. Shani et al. study both
the undriven dynamics and the input response of these networks,

as we vary network design parameters and relate the dynamics to
accuracy on two machine-learning tasks.

Model of complex systems

The reconstruction of system structure from data is a basic
problem in complex network science and its various applications
because some variables as well as possible connections among the
nodes are often unavailable or even unknown.

The paper entitled “Robust and optimal sparse regression for
nonlinear PDE models” by Gurevich et al.15 addresses the question
how models of spatiotemporal dynamics in the form of nonlinear
partial differential equations can be identified directly from noisy
data. By combining sparse regression and a weak formulation and
employing the fourth-order Kuramoto–Sivashinsky equation for
illustration, the authors show that their methodology is superior
than existing techniques in the limits of low and high noise.

The paper entitled “Discovering mean residence time and escape
probability from data of stochastic dynamical systems” by Wu et al.16

learns the mean residence time and escape probability from data
by a combination of machine learning and stochastic dynamics
tools. They demonstrate that this algorithm is effective and robust
by reproducing known dynamics and evaluating errors for several
prototypical stochastic dynamical systems with Brownian motions.

By adapting a data-driven information-theoretic measure, the
paper entitled “How entropic regression beats the outliers problem
in nonlinear system identification” by AlMomani et al.17 proposes
a nonlinear system identification method. The method, referred
as Entropic Regression, which shows robustness toward noise
and outliers, is tested on various chaotic systems, including the
Lorenz System, the Kuramoto–Sivashinsky equations, and the Dou-
ble Well Potential, and compared with current state-of-the-arts
methods.

The paper entitled “Model reconstruction from temporal data
for coupled oscillator networks” by Panaggio et al.18 demonstrates
that, using sufficient observational data on the transient evolution of
each oscillator, machine learning can restore the network and iden-
tify the intrinsic dynamics. Particularly for systems that synchronize,
this paper designs an appropriate form of invasive perturbation to
temporarily disrupt the synchronization and then realizes the net-
work restoration by using the generated asynchronized transient
data.

The paper entitled “On learning Hamiltonian systems from
data” by Bertalan et al.19 develops a data-driven, model free machine
learning method to restore the Hamiltonian dynamics based on the
observational data. This method trains jointly two neural networks,
viz., an autoencoder neural network to approximate the transforma-
tion from observations to the phase space of a Hamiltonian system
and a neural network to estimate the Hamiltonian function on this
constructed space.

The paper entitled “Coarse-scale PDEs from fine-scale observa-
tions via machine learning” by Lee et al.20 introduces a data-driven
machine-learning-based methodology for dynamical system iden-
tification. In particular, employing Gaussian Processes, Artificial
Neural Networks, and/or Diffusion Maps, identification of coarse-
scale partial differential equations (PDEs) from microscopic obser-
vations has been documented, and a relation between the relevant
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macroscopic space fields and their time evolution has been provided.
The methodology is illustrated with macroscopic, concentration-
level PDEs for reaction/transport processes resulting from fine-scale
observations, obtained from simulations of a Lattice Boltzmann
mesoscopic model.

The paper entitled “Cluster synchronization: From single-layer
to multi-layer networks” by Ma et al.21 focuses on the cluster syn-
chronization of an isolated network when it is influenced by an
external network. The paper explores how the topology and the con-
nection between the two layers impact the cluster synchronization
of the layer of interest. The authors take three different patterns
of connection into consideration, including typical positive corre-
lation, negative correlation, and random correlation and find that
they all have a certain influence.

The paper entitled “Inferring causal relationship in coordi-
nated flight of pigeon flocks” by Chen et al.22 proposes a causal
inference method based on information theory to reveal individual
intelligence and interagent interactions and the causal relationship
among individuals. Particularly, they calculate mutual information
by using a data mining algorithm named “k-nearest neighbor” and
subsequently induce the transfer entropy to obtain the causality
entropy quantifying the causal dependence of one individual on
another subject to a condition set consisting of other neighboring
ones.

Prediction and manipulations of complex systems

Machine Learning (ML) algorithms have provided great conve-
nience in terms of analyzing and predicting the dynamics of chaotic
and complex systems. Notably, the prediction of a complex system
is of great significance in that it is the foundation of the subsequent
manipulations and improvements.

By using a novel type of neural networks known as
“attention-based sequence-to-sequence architecture,” the paper
entitled “Sequence-to-sequence prediction of spatiotemporal systems”
by Shen et al.23 proposes an efficient model-free prediction of high-
dimensional complex systems from spatiotemporal systems. Among
others, this technique enabled predict the evolution of solitary
waves.

For various applications in engineering, climate, physiology,
or epidemic, the early prediction of extreme events is a chal-
lenging task. The paper entitled “Early detection of thermoacoustic
combustion oscillations using a methodology combining statistical
complexity and machine learning” by Hachijo et al.24 conducts an
experimental study on early detection of thermoacoustic combus-
tion oscillations using a method combining statistical complexity
and machine learning, in particular, a support vector machine and
the k-means clustering method. The so constructed feature space
in the complexity-entropy causality plane enables them to detect a
precursor of combustion oscillations.

The paper entitled “Machine learning algorithms for predicting
the amplitude of chaotic laser pulses” by Amil et al.25 critically com-
pares the predictive power of basic methods in machine learning,
namely, deep learning, support vector machine, nearest neighbors,
and reservoir computing for output signals of semiconductor lasers
which generate a particular dynamical regime that can show ultra-
high intensity pulses, reminiscent of rogue waves. This way the

forecast of the laser amplitudes is possible with high accuracy even
for extreme events and substantial stochastic contributions.

The paper entitled “Using machine learning to predict extreme
events in the Hénon map” by Lellep et al.26 applies an artificial neural
network possessing classification function to predict extreme events
in a typical chaotic dynamical system. This paper performs system-
atic analyses, illustrating that machine learning framework with an
appropriate use of the mechanisms of dynamical systems could be
beneficial to phase-space separation and dynamics prediction.

The paper entitled “Predicting slow and fast neuronal dynamics
with machine learning” by Follmann and Rosa27 employs reser-
voir computing to predict the neuronal activities produced by the
physiological model of neurons. Numerical simulations show that
although the reservoir computing model after training has a high
predictability for tonic and bursting states but a low predictability
for chaotic dynamics, it still has a high fidelity in recovering the
bifurcation scenario of the neuronal model.

Link prediction plays a significant role in various applications
of complex networks. The paper entitled “Network embedding for
link prediction: The pitfall and improvement” by Cao et al.9 compares
structural similarity algorithms in network domain and network
embedding algorithms in the field of machine learning and explores
the intrinsic relationship between them, and studies the shortcom-
ings of network embedding algorithms. Particularly, to address the
pitfall of network embedding, a method which supplements net-
work embedding algorithms with local structural information is
proposed.

The paper entitled “A novel complex network link prediction
framework via combining mutual information with local naive Bayes”
by Chen et al.10 utilizes local naïve Bayes, mutual information and
an adjustable parameter to better quantify and balance the contri-
butions caused by common neighbors and the interactions between
neighbor sets. Furthermore, in order to improve the accuracy of pre-
diction, the mutual information-based local naïve Bayes algorithm is
proposed.

The paper entitled “Generative dynamic link prediction” by
Chen et al.11 presents a novel generative dynamic link prediction
(GDLP) method, which is inspired by the widespread applications
generative adversarial network in generating fake images. The model
contains a generator and a discriminator. The main difference
between the proposed GDLP and other DLP methods is to model
the link prediction task as a network generation process.

The paper entitled “Detecting network structures from measur-
able data produced by dynamics with hidden variables” by Shi et al.28

discusses and compares three reconstruction methods to solve the
hidden variable problem, especially statistical characteristics of hid-
den variables, linearizable hidden variables, and white noise injec-
tion. Furthermore, the validity of theoretical derivations and the
robustness of these methods are fully verified through numerical
results.

The paper entitled “Spectral forecast: A general purpose predic-
tion model as an alternative to classical neural networks” by Gagniuc
et al.29 describes a general-purpose prediction model and suggests a
nonlinear model for the prediction of the occurrence of a disease.
The approach is illustrated by showing that photon-pixel coupling
data can be employed to indicate the predisposition to a disease, in
particular, diabetes.
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Data-driven research

Recently, machine learning and deep learning has taken part
in the competition with traditional feature methods in complex
networks and many deep learning based methods have achieved bet-
ter results due to the plenty of data. Besides, the combination of
traditional methods and deep learning techniques gradually received
attention and some works in this part take advantage of them to
obtain a breakthrough.

The paper entitled “A recurrence network-based convolutional
neural network for fatigue driving detection from EEG” by Gao et al.30

develops a two-stage machine learning framework integrating the
recurrence network with the convolutional neural network. Using
this framework, this paper successfully shows its exceptional efficacy
in fatigue driving detection based on the EEG data set.

The paper entitled “Network physiology in insomnia patients:
Assessment of relevant changes in network topology with inter-
pretable machine learning models” by Jansen et al.31 describes the
human body as a complex network of interacting organ systems
and applies the idea to determine topological changes in different
sleep stages. In this paper, artificial neural networks (ANNs) are
applied to build different models for the classification of insom-
nia and have been trained with 59 patients and age and gender
matched controls. Feature relevance evaluation is employed for all
methods.

The paper entitled “Bayesian framework for simulation of
dynamical systems from multidimensional data using recurrent neu-
ral network” by Seleznev et al.32 develops a new method for build-
ing data-driven dynamical models from observed multidimensional
time series based on a recurrent neural network. Such a recurrent
neural network enables the joint reconstruction of both a low-
dimensional embedding for dynamical components in the data and
an evolution operator. Specially, the key link of the method is a
Bayesian optimization of both model structure and the hypothesis
about the data generating law, which is needed for constructing the
cost function for model learning.

The paper entitled “Convolutional autoencoder and conditional
random fields hybrid for predicting spatial-temporal chaos” by Her-
zog et al.33 introduces an algorithm for the data-driven predic-
tion of high-dimensional chaotic time series generated by spatially
extended systems. The approach employs a convolutional autoen-
coder for dimension reduction and feature extraction and a proba-
bilistic prediction scheme operating in the feature space, consisting
a conditional random field. Besides, the future evolution of the spa-
tially extended system is predicted using a feedback loop and iterated
predictions.

The paper entitled “Identification of chimera using machine
learning” by Ganaie et al.34 describes an approach using several
machine learning techniques to characterize different dynamics and
identify the chimera state from given spatial profiles of different
underlying models for the identification of chimera. The experi-
mental results demonstrate that the performance of the classification
algorithms varies when different dynamical models are applied. It is
notable that the presented work provides a direction for employing
machine learning techniques to identify dynamical patterns arising
in coupled non-linear units on a large-scale and for characteriz-
ing complex spatiotemporal phenomena in real-world systems for
various applications.

The paper entitled “Learning epidemic threshold in complex
networks by convolutional neural network” by Ni et al.35 articu-
lates a machine learning framework to learn the epidemic threshold
in complex networks by utilizing the structural information and
the dynamical information of finite states into the learning proce-
dure. This framework, integrating the convolutional neural network
with supervised and unsupervised learning schemes, is validated by
synthetic and empirical network data sets.

The paper entitled “Classification of close binary stars using
recurrence networks” by George et al.36 uses the recurrent neural
networks to learn different dynamics based solely on the observa-
tional time-series of light curves of close binary stars. Based on the
characteristics of the trained network, this paper uses supervised
and unsupervised classification methods to classify close binary stars
into semidetached, overcontact, and ellipsoidal binaries.

The paper entitled “Reconstructing directional causal networks
with random forest: Causality meeting machine learning” by Leng
et al.37 proposes a framework, inspired by the idea of decision tree,
to realize causal network reconstruction based on the time-series
from network systems. This framework, reducing the computational
cost significantly, is validated by using the data sets produced by
representative network systems.

The paper entitled “Supervised chaotic source separation by a
tank of water” by Lu et al.38 provides a framework where the sources
are chaotic trajectories from independently evolving dynamical sys-
tems. The paper shows that the chaotic source separation problem
can be considered as a nonlinear state-observer problem and pro-
poses a model-independent, supervised framework to successfully
solve this problem without knowing the explicit equations of the
source systems.

The paper entitled “Solving Fokker-Planck equation using deep
learning” by Xu et al.39 develops a novel machine learning method
to solve the general Fokker–Planck equations based on deep neural
networks. Here, penalty factors are introduced to overcome the local
optimization for the deep learning approach. It is shown for paradig-
matic model systems that machine learning techniques outperform
the corresponding classic methods.

Control and optimization

The following works address the consensus problem of the con-
trol and optimization in complex systems, which is a challenge issue
in complex systems since they are multi-objective or high-dynamic.
Besides, the game between the whole and the individual must be
taken into consideration to achieve a satisfactory result.

The paper entitled “Toward optimizing control signal paths in
functional brain networks” by Yao and Li40 proposes a control sig-
nal path of the network and a local control centrality of the nodes
to measure the efficiency of network structural control. Applying
the designed iterative algorithms for searching the control signal
path with maximal efficiency to the brain data set ADHD-200, the
usefulness of the proposed measurement is fully demonstrated.

The consensus problem of multiagent systems (MASs)
has obtained extensive attention nowadays. The paper entitled
“Sampled-based consensus for nonlinear multi-agent systems with
average graph” by Cui et al.41 discusses the consensus problem
for nonlinear MASs with sampled-data and switched topologies
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and proposes average graph based on the switching frequency. To
guarantee the consensus of the MAS network, a sampled-based
consensus protocol is proposed.

Different from Cui et al.,42 the paper entitled “An iterative
Q-learning based global consensus of discrete-time saturated multi-
agent systems” by Long et al.35 focuses on the consensus problem of
discrete-time multiagent systems (DTMASs). To deal with the input
saturation and the lack of the information of agent dynamics, the
authors put forward a model-free Q-learning algorithm to obtain
the low gain feedback matrices for the DTMASs achieving global
consensus, motivated by the reinforcement learning method.

Moreover, the paper entitled “Learned emergence in selfish col-
lective motion” by Algar et al.43 focuses on the issue of many selfish
individuals simultaneously optimizing their domains in order to
reduce their personal risk of predation. Through an echo state net-
work and data generated from the agent-based model, the authors
demonstrate that this selfish movement can be learned with an
appropriate representation of input and output states.

The paper entitled “Heterogeneous cooperative leadership struc-
ture emerging from random regular graphs” by Rong et al.44 inves-
tigates the evolution of cooperation, the emergence of hierarchi-
cal leadership structure in random regular graphs. Additionally,
directed game-learning skeleton is studied and the authors reveal
some important structural properties, such as the heavy-tailed
degree distribution and the positive in-degree correlation.

Motivated by the goal of enabling greatly improved perfor-
mance for the deep brain stimulation (DBS) therapy for Parkin-
son’s disease, the paper entitled “Reinforcement learning for sup-
pression of collective activity in oscillatory ensembles” by Krylov
et al.45 considers the general problem of controlling an ensemble
of many interacting dynamical units (neurons in the DBS applica-
tion) to suppress unwanted synchronous oscillation of the ensemble.
Their idea is to use reinforcement learning to create a data-driven
method that determines efficient control. They demonstrate suc-
cess of their method in numerical simulations employing globally
coupled limit cycle Bonhoeffer–van der Pol oscillators and bursting
Hindmarsh–Rose neurons.

The paper entitled “Inference of chemical reaction networks
based on concentration profiles using an optimization framework”
by Langary and Nokoloski46 studies and analyzes chemical reaction
networks. In particular, the authors propose an efficient and widely
applicable methodology for inferring the stoichiometric subspace of
a chemical reaction network from steady-state concentration data
profiles obtained from a continuous isothermal reactor. The frame-
work is tested using data from both synthetic reaction networks and
biological models.

Applications

Additionally, neural networks have demonstrated their valid-
ity in solving practical problems, including depth estimation, visual
odometry estimation, autonomous navigation, and so on. Some
novel ideas have also emerged to mine the information in data to
find the inner associations, and feature selection is an important
problem in high-dimensional big data.

The paper entitled “Cycle-SfM: Joint self-supervised learning
of depth and camera motion from monocular image sequences” by

Sun et al.47 presents a self-supervised framework which jointly esti-
mates the monocular depth and camera’s ego-motion from unla-
beled, unstructured, and monocular video sequences. The main
contribution is the novel forward–backward consistency constraint
on view reconstruction to capture temporal relations across adja-
cent frames, which explores and makes full use of the bidirectional
projection information.

The paper entitled “Zermelo’s problem: Optimal point-to-point
navigation in 2D turbulent flows using reinforcement learning” by
Biferale et al.48 designs a reinforcement learning approach to resolve
Zermelo’s problem in a 2D turbulent sea, finding quasi-optimal
solutions for both time-free and chaotically evolving flow configura-
tions. Compared with the continuous optimal navigation protocols
in some typical situation, the designed approach shows more robust-
ness against small changes in the initial conditions and against
external noise.

The paper entitled “Road traffic state prediction based on a
graph embedding recurrent neural network under the SCATS” by Xu
et al.49 represents the traffic road network as a graph and proposes
a novel traffic flow prediction framework named graph embedding
recurrent neural network (GERNN) to tackle the difficulty in the
road traffic state prediction.

The paper entitled “Fundamental aspects of noise in analog-
hardware neural networks” by Semenova et al.50 analyzes the funda-
mental aspects, including management, mitigation, and propagation
of noise, in both recurrent and deep multi-layer networks. This work
not only shows that analog neural networks are robust against noisy
neurons, but also identifies sensitive points of these computational
systems.

The paper entitled “Bayesian consensus clustering in multiplex
networks” by Jovanovski and Kocarev51 combines models from soci-
ology (stochastic block models) with tools from machine learning
(Bayesian consensus clustering) to develop the Bayesian consen-
sus stochastic block model for multiplex networks. The methodol-
ogy provides integrated analysis of heterogeneous (social) relations,
simultaneously addressing uncertainty in model parameters, and
ensuring data-driven strength of relations.

The paper entitled “Efficient community detection algorithm
based on higher-order structures in complex networks” by Huang
et al.52 provides an efficient algorithm as well as stochastic block
models for detecting communities and their relations based on
higher-order structures, including communities that can be detected
via signed, colored, and/or weighted motifs. The algorithm is tested
on the several real-world networks, including Florida Bay ecosystem
food web, E. coli transcriptional regulation network, and friendship
network of Zachary’s Karate club.

The paper entitled “Learning the tangent space of dynamical
instabilities from data” by Blanchard and Sapsis53 utilizes neural
networks to learn “pointwise” mapping from the phase space to
optimally time-dependent space directly from data. The result of
learning process can be viewed a cartography of directions which
is relevant to strongest instabilities in the phase space, and then
the paper discusses the implications for data-driven prediction and
control of dynamical instabilities.

The paper entitled “ChaosNet: A chaos based artificial neu-
ral network architecture for classification” by Balakrishnan et al.54

proposes a chaos based artificial neural network architecture for
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classification tasks, named ChaosNet. In the ChaosNet, a learning
algorithm which exploits the topological transitivity property of the
chaotic GLS neurons is introduced.

The paper entitled “Predicting drug-disease associations with
heterogeneous network embedding” by Yang et al.55 proposes a
method to predict potential associations between drugs and diseases
based on a drug-disease heterogeneous network, named Hetero-
geneous network Embedding for Drug–disease association (HED).
Specifically, with the constructed heterogeneous network based on
known drug–disease associations, HED trains a classifier to predict
novel potential drug–disease associations.

The paper entitled “Measuring similarity in co-occurrence data
using ego-networks” by Wang et al.56 proposes a similarity measure
based on the ego network of each entity, considering the change of
an entity’s centrality from one ego network to another. The pro-
posed index is easy to calculate and has a clear physical meaning.
Meanwhile, the measure by the new index has weak correlation with
those by other methods, providing a different dimension to quantify
similarities in co-occurrence data.

The paper entitled “Percept-related EEG classification using
machine learning approach and features of functional brain connec-
tivity” by Hramov et al.57 uses a machine learning approach to iden-
tify hidden functional within a distributed network. By optimiza-
tion of a feedforward multilayer perception, a substantial dimen-
sion reduction is reached. This way they classify the processing of
ambiguous visual stimuli with an accuracy of 95% which cannot be
distinguished by classic methods as time-frequency analysis.

The paper entitled “Deep reinforcement learning in World-
Earth system models to discover sustainable management strate-
gies” by Strnad et al.58 presents a pipeline to combine deep rein-
forcement learning (DRL) with classical analysis of trajectories in
the World–Earth system. The approach employs an agent that is
generally able to act and learn in variable manageable environ-
ment models of the Earth system based on the concept of the
agent–environment interface.

Finally, we would like to thank all the authors who submitted
their work to this special section. We also would like to express our
thanks to the experts in the field who voluntarily participated in the
review process on a very tight schedule.
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