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We present conditions for the local and global synchronizations in coupled-map networks using the matrix
measure approach. In contrast to many existing synchronization conditions, the proposed synchronization
criteria do not depend on the solution of the synchronous state and give less limitation on the network
connections. Numerical simulations of the coupled quadratic maps demonstrate the potentials of our main
results.
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Synchronization, as one of the most remarkable phenom-
ena that arise in many fields of sciences, ranging from natu-
ral to social systems, has attracted a lot of attention in a few
coupled subsystems but recently also in networks with com-
plex topology �1–13�. It has been shown that the topological
properties of coupled dynamical systems affect crucially the
synchronizability of subsystems in a network �3,6,12�. These
topological properties include the small-world �14� property
and scale-free �15� nature of the connectivity distribution,
typical for many real world networks. Random small-world
and scale-free networks are generally better synchronizable
than regular networks �3�. Moreover, systems with a homog-
enous connectivity are better synchronizable than heteroge-
neous ones. Until now, many criteria for network synchroni-
zation have been derived �e.g., �16–19��.

Pecora and Carroll �3� proposed the master-stability-
function �MSF� method to study complete synchronization of
coupled dynamical systems with complex network connec-
tions. Its main idea is to transform the stability of the syn-
chronous manifold into the stability of the corresponding
master-stability equation. It is valid for small perturbations
around the synchronous state. Another choice to derive syn-
chronization conditions is the Lyapunov direct method by
which one can construct a Lyapunov function and then ana-
lyze the local or global synchronization �12,20–22�. Re-
cently, the connection-graph stability was proposed in �13�
to provide global synchronization conditions by combining
graph properties.

The previous results obtained by these methods, to some
extent, have their limitations. The MSF method requires that
the Laplacian matrices are diagonal or block diagonal. Some
of the existing local stability criteria �such as �22�� are based
on the prerequirement of a synchronous state. Here we de-
velop local and global synchronization conditions for much
wider applications, especially without assuming that the cou-
pling matrix is non-negative and diagonal. By means of the
matrix measure approach �8,9�, we achieve synchronization
criteria independent of the uncoupled solution of the syn-
chronous state.

We study the following coupled-map networks:

xi�t + 1� = f�xi�t�� + ��
j=1

N

Wij�f�xj�t�� − f�xi�t��� �1�

for 1� i�N, where f�xi�t�� is a continuously differential
function governing the dynamics of the individual nodes,
often chosen to be a chaotic map. W= �Wij�N�N�RN�N de-
scribes the coupling configuration: if there is a connection
between node i and node j, then Wij�0; otherwise Wij =0.
Here W is not restricted to be completely symmetric and
non-negative. The network becomes synchronized if
limt→��xi�t�−xj�t��=0 for all 1� i , j�N , i� j. In this
case, each node evolves in the same manner, i.e., s�t+1�
= f�s�t�� and x1�t�=x2�t�= ¯ =xN�t�=s�t�. Denote S= �x
= �x1 ,x2 , . . . ,xN�T ,xi�R ,xi=xj , i , j=1,2 , . . . ,N� be the syn-
chronization manifold. Without loss of generality, let x1�t� be
the reference synchronized direction. Then we define the sta-
bility of the synchronization manifold as follows: �i� system
�1� is said to be locally synchronized if there exists a constant
��0 such that if 	xi�t0�−x1�t0�	�� for 1� i�N, then for
arbitrary 	�0, there exists a constant T� t0 such that 	xi�t�
−x1�t�	�	 for all t
T and 1� i�N and �ii� system �1� is
said to be globally synchronized if for arbitrary 	�0, there
exists a constant T� t0 such that 	xi�t�−x1�t�	�	 for all
t
T and xi�t0��R ,1� i�N.

Denote by X1i�t�=xi�t�−x1�t�, then

X1i�t + 1� = f�xi�t�� − f�x1�t�� + ��
j=1

N

Wij„f�xj�t��

− f�xi�t��… − ��
j=1

N

W1j„f�xj�t�� − f�x1�t��…

for 2� i�N. Define the matrix Sw,
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Sw = 

− �W12 + �

j�2
W2j� W23 − W13 ¯ W2N − W1N

W32 − W12
− �W13 + �

j�3
W3j� ¯ W3N − W1N

] ] � ]

WN2 − W12 WN3 − W13 ¯

− �W1N + �
j�N

WNj� 
 .

Then, we get one compact form,

X̄�t + 1� = �IN−1 + �Sw� f̄�x�t�� , �2�

where X̄�t�= �X12�t� ,X13�t� , . . . ,X1N�t��T and f̄�x�t��
= � f̄1�x2�t�� , . . . , f̄N−1�xN�t���= �f�x2�t��− f�x1�t�� , . . . , f�xN�t��
− f�x1�t���T.

We first introduce the concept of matrix measure. Let C
denote the field of complex numbers; the matrix measure of
a complex square matrix B�Cn�n is defined by �23�

��B� = lim
h→0+

	In + hB	 − 1

h
, �3�

in which 	 · 	 is a matrix norm and In is the identity matrix.
For the matrix norms 	B	1=maxj�i=1

N �bij�, 	B	2=��max�BTB�,
and 	B	�=maxi� j=1

n �bij�, we obtain the matrix measure �23�:
�1�B�=maxj�Re�bjj�+�i=1,i�j

n �bij��, �2�B�= 1
2�max�BH+B�,

and ���B�=maxi�Re�bii�+� j=1,j�i
n �bij��, respectively, where

�max� · � denotes the maximum eigenvalue of a complex ma-
trix and BH is the complex-conjugate transpose of a complex
matrix. Note that BH=BT if B is a real square matrix.

To obtain the condition for local synchronization, we con-
sider small perturbations 
i�t��1� i�N−1� near the refer-
ence direction of the synchronization manifold. Then

f̄ i�xi+1�t�� can be approximated by

f̄ i�xi+1�t�� = f��x1�t��
i�t� , �4�

where f��x1�t�� is the derivative at the reference synchro-
nized direction. Then Eq. �2� is rewritten as


�t + 1� = f��x1�t���IN−1 + �Sw�
�t� , �5�

where 
�t�= �
1�t� ,
2�t� , . . . ,
N−1�t��T. Next we construct a
non-negative function,

V�t� = 
T�t�P
�t� , �6�

where P is an arbitrary positive definite matrix. Clearly,
V�t�
0 and the equality holds only if all components of 
�t�
are equal to zero. That is, the synchronization errors with
respect to the reference direction will disappear as V�t� con-
verges to zero. Note that P can be decomposed into P
=MTM, where M is an �N−1�� �N−1� nonsingular square
matrix. Then

V�t� = 
T�t�MTM
�t� = f��x1�t − 1��2
T�t − 1�MT

��M−T�IN−1 + �Sw�TMTM�IN−1 + �Sw�M−1�M
�t − 1� .

�7�

We introduce U=M−T�I+�Sw�TMTM�I+�Sw�M−1. Then

V�t� � f��x1�t − 1��2���U�V�t − 1�

= �
k=0

t−1

�f��x1�t��2���U��V�0� , �8�

where ���U� is the matrix measure of U �23� and �
� �1,2 ,��. Thus if

lim
t→�

�
k=0

t−1

�f��x1�k�������U� = 0, �9�

then

lim
t→�

V�t� = lim
t→�


T�t�MTM
�t� = 0.

Accordingly, the synchronization error 
�t� can be asymp-
totically stable. Hence Eq. �9� holds if

lim
t→�

1

t
log�

k=0

t−1

�f��x1�k�������U� = 0, �10�

that is,

log����U� + lim
t→�

1

t
�
k=0

t−1

log�f��x1�k��� = 0. �11�

Then a sufficient condition for local synchronization is

���U� � e−2�f
, �12�

where � f =limt→�
1
t �k=0

t−1 log�f��x1�k��� is the Lyapunov expo-
nent of the map f . For a chaotic map, the Lyapunov exponent
can be calculated. Therefore, the upper bound of the matrix
measure can be determined in Eq. �12�. Further, the proposed
condition can be used to evaluate the stability of the synchro-
nization manifold of coupled-map networks.

In Ref. �22�, the authors presented a local stability condi-
tion for synchronization in which the norm of the Jacobian is
related to the synchronization trajectory �a solution of the
uncoupled system�. However, it is well known that the syn-
chronization trajectory is unknown in advance, and the cri-
terion is hard to be used in applications. As for the condition
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given by Eq. �12�, the upper bound of the matrix measure is
only controlled by the Lyapunov exponent of the map f
which can be calculated independently. In addition, the con-
dition is less conservative than those in Refs. �17,18� where
the coupling matrices are diagonal or block diagonal. More-
over, the coupling in this Brief Report can be cooperative or
competitive, i.e., Wij �0 or Wij �0. Thus the condition de-
rived from the matrix measure has a wider range of applica-
tion.

The above analysis is based on the linear expansion
around the synchronization manifold, which is valid only for
small perturbations around the synchronization manifold. To
derive a global criterion that guarantees synchronization of
the coupled-map networks for arbitrary initial values, we as-
sume a basic property for f ,

�f�x� − f�y�� � sup�f���x − y� . �13�

A natural way is to choose a non-negative function for Eq.
�2� as

V�t� = X̄T�t�PX̄�t� , �14�

and we can derive a condition under which

V�t� → 0 as t → � . �15�

We get then

V�t + 1� = X̄T�t + 1�PX̄�t + 1�

= f̄ T�x�t���IN−1 + �Sw�TP�IN−1 + �Sw� f̄�x�t��

� ���U� f̄ T�x�t��MTMf̄�x�t�� � ���U�sup�f��2V�t� .

�16�

Then

V�t� � V�0�����U�sup�f��2�t. �17�

Therefore, network �1� globally asymptotically synchronizes
if

���U� �
1

sup�f��2
. �18�

Above criterion �18� allows us to consider any solution x�t�
of Eq. �1�.

To verify our criteria, we took a quadratic map for the unit
dynamics, that is, f�x�=ax�1−x� ,x� �0 1�. The Lyapunov
exponent for this map can be directly calculated for constant
a� �3 4�. As the simplest case, the globally coupled network
with N=100 is considered. The coupling matrix has then the
form

W = 

0 1 1 ¯ 1

1 0 1 ¯ 1

] � � � ]

1 1 ¯ 0 1

1 1 ¯ 1 0

 ,

which yields

S = 

− N 0 ¯ 0

0 − N ¯ 0

] � � ]

0 0 ¯ − N

 .

We take M as the identity matrix �i.e., M = IN� and get U= I
+��Sw

T +Sw�+�2Sw
TSw. From the definition of the matrix mea-

sure �23�, we have

��1,2,���I + ��Sw
T + Sw� + �2Sw

TSw� = ��N − 1�2. �19�

So we choose an �� 1
N such that ��I+��Sw

T +Sw�+�2Sw
TSw�

�e−2�F
. For different scales, the critical points for local syn-

chronization can be found as shown in Fig. 1. Then the con-
dition for local synchronization is obtained. For the case of
global synchronization, we have sup�f��2=a2. Applying the
condition in Eq. �18� we find that the system will globally
synchronize if ��N−1�2�

1
a2 . Further more, we also validate

FIG. 2. The dynamic behaviors of each node in the weighted
network. Here network parameters are N=100, m=5, and �k�=10
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FIG. 1. The matrix measure vs coupling strength in the global
coupled networks for different scales. In this case, a=3.59.
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our results for directed weighted networks by numerical
simulations. In contrast with the case of globally coupled
networks, there is no general expression of the matrix mea-
sure with respect to the coupling strength. For directed
weighted networks, we consider scale-free networks which

are generated by using the Barabasi-Albert �BA� model �15�
with N=100, m=5, and �k�=10. The weight on each connec-
tion in the scale-free networks is given by Wij =1 /ki for all
i , j.

Letting a=3.53 in the map, we take the coupling strength
�=0.4 which satisfies our criteria. From the time series of
each unit in coupled system, it can be seen that all units very
fast evolve in the same oscillating manner, as shown in Fig.
2. This synchronization process can also be detected by con-
sidering the average synchronization absolute error EX�t�
= 1

N−1� j=2
N �X1j�t�� with respect to x1. It is shown in Fig. 3 that

this system rapidly synchronizes to the reference direction.
To conclude, we study synchronization of coupled-map

networks. Conditions for the local and global synchroniza-
tions are derived using matrix measure approach. Comparing
with many existing synchronization conditions, the proposed
criteria do not depend on the solution of the synchronous
state and give less limitations on the network connections.
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FIG. 3. Synchronization absolute errors varying with time in
weighted network with N=100, m=5, and �k�=10.
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