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Abstract

Understanding the functional dynamics of the mammalian brain is one of the cen-

tral aims of modern neuroscience. Mathematical modelling and computational

simulations of neural networks can help in this quest. In recent publications, a

multilevel model has been presented to simulate the resting-state dynamics of the

cortico-cortical connectivity of the mammalian brain. In the present work we inves-

tigate how much of the dynamical behaviour of the multilevel model can be repro-

duced by a strongly simplified model. We find that replacing each cortical area by a

single Rulkov map recreates the patterns of dynamical correlations of the multilevel

model, while the outcome of other models and setups mainly depends on the local

network properties, e.g. the input degree of each vertex. In general, we find that

a simple simulation whose dynamics depends on the global topology of the whole
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network is far from trivial. A systematic analysis of different dynamical models

and coupling setups is required.

1 Introduction

Understanding the functional dynamics of the mammalian brain is one of the cen-

tral aims of modern neuroscience. Apart from developing and improving experi-

mental methods like EEG, fMRI and PET, mathematical modelling and compu-

tational simulations of neural networks can help to understand the dynamical be-

haviour of the brain. While the dynamics of single neurones is quite well conceived

and their dynamical behaviour can be reproduced by differential models [2, 10] e.g.

Hodgkin-Huxley [5] or iterated maps, e.g. Rulkov [14], a systematic exploration

of the impact of connection topology on the dynamical organisation in neuronal

networks is barely beginning [6, 11, 13, 22, 23].

In [2, 24] the authors simulated the resting-state of the mammalian cortex us-

ing different approaches. The models were implemented using the experimentally

known anatomical connectivity of the cat cortex, which consists of a network of

53 cortical areas and 826 long-range fibers connecting them [15, 16]. The first ap-

proach was to simulate cortical areas using a neural mass model [19], which aims

to imitate the dynamics of a population of neurones and is capable of reproducing

EEG-like oscillations. Hence, it promises to be a biologically plausible model for

a brain area. However, it was found that the pairwise correlation between cortical

areas depends on the individual characteristics of the areas (number of inputs) but

further properties of the network topology were irrelevant. The second approach

comprised of a multilevel model (a network of networks) in which each area was

represented by a subnetwork of 200 neurones. While the connectivity between
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the cortical areas remained the same, the internal 200 neurones were connected

by a small-world topology [18] in order to minimally reproduce qualitative obser-

vations of neuronal connectivity [17]. This model displayed biologically plausible

behaviour in the range of weak coupling between neurones, meaning that (par-

tial) synchronisation and dynamical clustering followed the underlying anatomical

topology. Additionally, the mean field signals of the areas showed similarity to

real EEG data. In the strong coupling regime, the dynamics of individual areas

were characterised by well-defined oscillations (as happened with the neural mass

model) and therefore, the patterns of synchronisation did not depend on the un-

derlying topology. One of the drawbacks of the multilevel model is its rather large

computational cost.

The goal of the present work is to investigate how much of the dynamical be-

haviour of the multilevel model can be reproduced by a strongly simplified model

(which is computationally competitive). For that, we have simulated each cortical

area as a single neuron. Using two popular neuron models, the Rulkov map [14]

and the neuron model by Izhikevich [8], the network is simulated and their out-

comes are compared. We find that the network of interconnected Rulkov maps

recreates the patterns of dynamical correlations of the multilevel model, while in

the simulations performed using the Izhikevich model, the dynamics does not de-

pend on the underlying topology. Among other factors, which are discussed below,

the difference might arise from the fact that the Rulkov maps are connected by a

linear coupling and the Izhikevich neurones by a pulse coupling.

Nevertheless, we find that in the simulations using the Rulkov map, the neu-

rones have a flexible dynamics permitting them to quickly adapt to the dynamics

of their neighbours. In the simulations performed with the Izhikevich neurones,

each element follows mainly its own dynamics and correlates only with the neigh-
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bours of strongest input. This observation transcends the particular models and

configurations here adopted and should be taken on account when studying syn-

chronization phenoma in complex networks [1, 3].
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Figure 1: Weighted adjacency matrix W of the cortico-cortical connectivity
of the cat comprising of 826 directed connections between 53 cortical ar-
eas. The connections are classified as weak (open circles), intermediate (blue
stars) and dense (red filled circles) according to the axonal densities in the
projections between two areas. For visualisation purpouses, the non-existing
connections (0) have been replaced by dots.

2 Dynamical Simulations of the Cat Cortex

As in [2, 23, 24] the cortico-cortical connectivity of the cat has modelled, which

is summarised as a weighted adjacency matrix W , Fig. 1. This data is a colla-

tion performed by J. W. Scannell [15, 16] based on previous anatomical reports.

The network is weighted according to the axonal density of the fibers linking two
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areas. Thus, 3 means a strong (dense) connection, 2 means intermediate and 1 a

weak (sparse) connection. The cases explicitly reported as absent or no informa-

tion available were treated the same and were weighted as 0. Cortical networks

have been reported to have small-world characteristics, i.e. a high clustering co-

efficient and a short average pathlength [4]. The degree of the nodes is very

heterogeneous and ranges from 2 to 35 connections, insofar, the network has a

(scale-free-like) broad degree-distribution [12, 20]. In Figure 1, four main clusters,

called “communities”, can be distinguished which have dense connectivity inside.

These communities correspond to the functional subsystems visual (V), auditory

(A), somato-motor (SM) and frontolimbic (FL) [4, 15, 16].

In order to achieve our goal of developing a model that reproduces the main

dynamical behaviour of the multilevel model and is computationally competitive,

we choose to turn back from the multilevel approach and try alternative dynamics

for modelling the areas. The dynamics of an area is now simulated by a single

neuron, modelled by 1) an iterated map developed by N. F. Rulkov [14], and 2)

a system of two first order differential equations (ODEs) with an additional after

spike reseting mechanism, after E. Izhikevich [8]. Every neuron receives input from

its neighbours and is additionally stimulated by an independent Gaussian white

noise.

2.1 Simulation of Cortical Areas by the Rulkov Map

The Rulkov map is a two-dimensional iterated map, which is capable of replicating

the spiking, and spike-bursting behaviour of real neurones by the interplay between

two dynamical variables, one describing fast dynamics and the other slow variable

(see details in Appendix A). To simulate the cortical network of the cat, each

area is replaced by one Rulkov map in chattering state, i.e. the isolated neuron
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is characterised by periodic epochs of bursting and inactivity, see Fig. 2 (Top).

The maps were then coupled following the recommendations in [14]. After being

coupled, the maps still display a chattering behaviour but irregular due to the

input from their neighbours, Fig. 2 (Bottom).
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Figure 2: Characteristic signal of a cortical area modelled by a Rulkov map.
(Top) Before coupling, isolated neurones were setup into a regular chattering
state, i.e. periodic epochs of bursts and inactivity without noise. (Bottom)
After the neuron is coupled to the network with noise, it displays an irregular
chattering behaviour.

After running the simulations, the pairwise linear correlation r(i, j) between

cortical areas have been computed to characterise the synchronisation behaviour

and the functional clustering. As mentioned in [7, 14], synchronisation is only

observed in the low frequency bands of bursts, but not in high frequent spikes, so

a low pass filter has been applied to the output signals before computing r(i, j)

(Appendix C). In Fig. 3 a gallery of correlation matrices r(i, j) is shown and

the corresponding cluster trees (dendrograms) for coupling strengths ranging from

g = 10 to g = 525. Each correlation matrix is the average of 10 realisations. With

a very weak coupling, Fig. 3(a), the dynamical clusters are visible although the
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correlations are weak and noisy. The dynamical clusters in Fig. 3(b) raise from the

background with high contrast, while in Fig. 3(c) inter cluster correlation becomes

more dominant. Finally, a strong coupling leads to global correlation, Fig. 3(c).

Next, a cluster analysis of the correlation matrices is performed by calculating

their corresponding dendrograms. A dendrogram is a graph of many U-shaped

lines, which connects nodes in a hierarchical binary tree. The height of each line

stands for the dynamical distance (euclidean) between two nodes, which is obtained

from the correlation matrix: dij =
√∑

m(ri,m − rj,m)2. This technique enables

one to visualise which areas are closely connected and how they build up dynamical

clusters. As we are concerned about the anatomical clusters (V, A, SM and FL),

we concentrate on the hierarchical level where the correlation matrix decomposes

into four clusters. Apparently, the stability of hierarchical levels is a function of

correlation. By stability, we mean the height of the hierarchical level where there

are four clusters in the dendrogram.
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Figure 3: Correlation matrices and dendrograms for the Rulkov map with
different coupling strengths. (a) g = 10, (b) g = 75 and (c) g = 525.

We find that, with low correlation, Fig. 3(a), the stability of our region of
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interest is very weak. Here, the correlation between single nodes is dominating

the synchronisation behaviour, while an intermediate correlation, Fig. 3(b), leads

to the desired synchronisation of four stable clusters where each cluster has its

particular dynamics and is weakly coupled to other clusters. Very high coupling

strength destabilises the four clusters and “melt” them together, which means that

individual dynamics is getting lost, while synchronisation of all clusters becomes

dominant, Figs. 3(c). Note, that in these dendrograms, areas are generally not

ordered by their number. To see which areas form a cluster, we provide another

graph (Fig. 4). The dynamical clusters closely follow the anatomical communities,

although some of the areas are assigned to a different community. These areas,

while belonging to an anatomical community, are hubs with many connections in

other communities. Therefore, they also get synchronised with other communities

and appear dynamically clustered into a “wrong” community. The presence of

such hubs has also been reported in [6, 21, 22, 23, 24].
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Figure 4: The four dynamical clusters of the Rulkov model at an interme-
diate coupling strength of 75, result of the clustering algorithm described in
Section 2
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2.2 Simulation of Areas by Izhikevich Neurones

The same analysis has been repeated using the Izhikevich neuron to model the

cortical areas [8]. This model consists of a pair of first order ODEs; one variable

is denoted as the membrane potential of the neuron and the other as a membrane

recovery variable. Additionally, it contains an after-spike reset to avoid modelling

the shape of the spike. This model has been conceived to reproduce a rich range

of dynamical behaviours exhibited by real neurones of different classes in a com-

putationally competitive manner [8, 9].
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Figure 5: Characteristic signal of a cortical area modelled by the Izhikevich
neuron. (Top) Before coupling, isolated neurones were setup into a regular
chattering state without noise. (Bottom) After the neuron is coupled into the
network with noise, it still displays a chattering behaviour, although slightly
irregular.
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Figure 6: Correlation matrices for the Izhikevich map with different coupling
strengths. (a) g = 3, (b) g = 5, (c) g = 10, at a noise level of D = 0.1

The model parameters were chosen to simulate the isolated neurones in the

chattering state as shown in Fig. 5 (Top). The network was implemented, set-

ting up the neuron to neuron pulse-coupling as indicated in [8] (see details in

Appendix B). In the coupled configuration, areas still display a chattering be-

haviour, although only slightly irregular, Fig. 5 (Bottom), as compared to the

coupled Rulkov maps, Fig. 2 (Bottom).

The simulated network also yields synchronisation, but as seen in Fig. 6, the

clustering behaviour is different. Clusters are not concordant with the anatomical

communities, regardless of the coupling strength. Here, the SM and FL commu-

nities follow almost the same dynamics, together with a large part of the visual

cluster. Moreover, the auditory community disappears as a dynamical cluster.

These observations are very similar to the patterns of synchronisation of the neu-

ral mass model discussed in [24].

3 Summary and Discussion

In this paper we have explored an alternative and simplified manner to simulate

cortical networks which can still recover the dynamical properties of the multilevel

approach of [2, 21, 22, 23, 24]. We have simulated the cortico-cortical network

of the cat by replacing each cortical area by a single excitable oscillator: either a

10



Rulkov map or an Izhikevich neuron. The dynamical correlations between areas,

using the Rulkov map (Fig. 3) closely resembles those of the multilevel model. In

the weak coupling regime, both models display dynamics which depend on the

underlying topology. The dynamical clusters are similar to the anatomical com-

munities (V, A, SM and FL). An example of the dynamical clusters obtained with

the multilevel model are shown in Fig. 7 for comparison. In the strong coupling

regime of both models, the dynamical clusters melt together leading to global

synchronisation, a situation which might be considered as pathological in brain

activity - e.g. during epileptic seizures. On the contrary, in none of the simula-

tions performed using the Izhikevich neurones, we could reproduce this dynamical

clustered behaviour (see Fig. 6).
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Figure 7: Multilevel model of [2, 23, 24] (a) correlation matrix, (b) dendro-
gram and (c) clustering map in a weak coupling regime.

An answer to this difference may lie in the fact that low dimensional maps

are capable of rich dynamics (even 1-D maps can have chaotic behaviour), while

differential equations can show chaotic behaviour only when they are at least 3-

dimensional. The neurones modelled by the Rulkov map have flexible dynamics

as shown in Fig. 2(b). As a consequence, the neurones are able to quickly adapt

to the dynamics of their neighbours. For example, the hubs are connected to

many areas which might have different time-scales. This adaptability permits the

hubs to “keep in synch” with all their neighbours. In the simulations performed

with the Izhikevich model, the individual bursting dynamics of the neurones is
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dominant and they essentially keep their own rhythm. As a result, areas can

only synchronise with the groups of neighbours from which they receive strongest

synchronised input.

Another reason for the different behaviours observed lies in the coupling be-

tween neurones. In the Rulkov model the neurones are connected by a linear

coupling which leads to burst synchronisation. As recommended in [8] the connec-

tions in the Izhikevich model are modelled by a pulse coupling between the fast

variables of both neurones. Hence, the input of a neuron takes only into account

the number of neighbours which fire a spike simultaneously.

Whether the dynamical flexibility of the areas arises from the chaoticity of

the neuronal model and/or the type of coupling, it seems that when simulating a

network of coupled oscillators (generic or excitable) the dynamics of the individual

vertices need to be adaptable. Otherwise, the dynamical outcome is not sensitive

to the underlying topology of the network, or trivially dependent on the local

number of neighbours. Further preliminary observations with different setups, e.g.

Izhikevich neurones with electrical coupling (not shown), exhibit dramatic changes

in the correlation patterns. These observations suggest that a systematic analysis

of different model dynamics and coupling types is required to understand when the

outcome of a network simulation will depend on the underlying network topology

or not.

Finally, we discuss the reliability of the simplified models presented here in

order to simulate cortico-cortical networks. In the multilevel model, the time

series signal of individual cortical areas, computed as the mean-field signal of the

internal 200 neurones resemble typical EEG data, and thus it can be considered

as a plausible model for a direct comparison to experimental-like data. In the
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simplified models the signals of individual areas is a spiking or a spike bursting

pattern, hence interpreting it as EEG data is implausible. Nevertheless, if we

regard the low pass filtered output as the signal (Appendix C), it might still have

some similarities with experimental EEGs. In any case, as the simplified model

captures the underlying topology of the network and computes very fast, it seems

suitable for applications to investigate network synchronisation and other dynamics

related properties like information processing. Another promising alternative is to

build a multilevel model but using Rulkov maps instead of neuronal models based

on differential equations.

As brain areas consist of a large number of neurones, which altogether have a

very high-dimensional phase space, in which chaotic behaviour is likely, iterated

maps could be interpreted as Poincaré-map of such a high dimensional system and

hence, are more suitable to represent them as two-dimensional ODEs.

A The Rulkov Map

Rulkov introduced a model [14] that replicates the spiking and spike-bursting be-

haviour of real neurones. The model is represented by a two dimensional map:

xi,n+1 = f(xi, yi + β) + ξi (1)

yi,n+1 = yi,n − µ(xi,n+1) + µσC(xi, xj) + ξi (2)

f(xi, yi) =


α/(1− xi) + yi, xi 6 0

α + yi, 0 6 xi 6 α + yi

−1 xi > α + yi

(3)

C(xi, xj) =
g

N

N∑
j=1

W̃ij(xi − xj). (4)
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constant value
α 6
β 1
µ 0.001
σ 0.3

Table 1: Parameter values of the Rulkov map used for the simulations in
Sec. 2.

It consists of a fast variable (x), which represents the membrane potential of the

neuron and a slow one (y), enabling the possibility to operate on different time

scales. For the fast dynamics of x, one can regard y as a control parameter. For

some regions of y there exists a stable cycle in the fast dynamics of x, which gen-

erates periodic spiking. As y changes slowly, the system will undergo a bifurcation

that destroys the stable cycle in the fast dynamics and x will converge to a fixed

point, the relaxation regime. After some time y returns to the regime, where a

stable cycle in x exists and everything starts over again.

Note that the adjacency matrix W̃ij is the normalised weighted matrix after

dividing the weight matrix by its largest element i.e. W̃ij = Wij/3. The constants

α, β, σ, µ are model parameters (Table 1) and are all the same for every area,

while ξ = DΞ0,1(t) stands for Gaussian distributed white noise with zero average

and variance 1 multiplied by a constant (D) to adjust the noise level. The coupling

strength is denoted as g.
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B The Izhikevich Model

The model by E. M. Izhikevich [8] consists of a pair of first order ordinary differ-

ential equations:

d

dt
vi = 0.04v2

i + 5vi + 140− ui + Ii (5)

d

dt
ui = a(bvi − ui) + ξi (6)

with an after-spike resetting

if v > 30, then v := c and u := u + d. (7)

In our simulations, the equations have been integrated, using the fourth-order

Runge-Kutta method with a step size of dt = 0.11. This model is also capable

of generating spiking and spike-bursting signals, but, as it consists of a system

of two first order ODEs, it cannot be chaotic in the uncoupled case. Following

the original recomendations, the pulse-coupling between neurones is modelled by

replacing the input to the neurones I with:

Ii = I0

1 +
g

N

N∑
j=1

W̃ijΘ(vj − 20)

 + ξi (8)

where W̃ij is the adjacency matrix as above, g is the coupling parameter and

ξ = DΞ0,1(t) stands for Gaussian distributed white noise with zero average and

variance 1 multiplied with a constant (D) to adjust the noise level. Here D = 0.1

was used in all cases. The control parameters (Table 2) were chosen such that the

model generates a “chattering” signal v(t), as shown in Fig. 5.

1For a faster computation, the simple Euler integration method can be used, because
its errors do not accumulate due to the after-spike reset.
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constant value
a 0.02
b 0.2
c -50.0
d 2
I0 10

Table 2: Parameter values for the Izhikevich ODE.

C Pre-Processing

All simulation runs started with random initial conditions and the first, transient

10,000 iterations were discarded. The following 50,000 iterations were saved for

data analysis. The correlation matrices exhibited are an average of 10 realisations

for the Rulkov model and 50 for the cases using the Izhikevich model because of

the resolution differences of both models. As a measure for synchronicity of the

signals xi,n the linear (zero-lag) correlation coefficient r(i, j) is used. The signal

contains two main frequencies: a (fast) occurrence of spikes and a (slow) occurrence

of bursts. Interested in the correlation of bursting activity, the signals have been

filtered to eliminate the high frequencies. A recursive filter was chosen:

zn = (a− 1)xn + azn−1 (9)

The filter has applied in both directions (forward and backward) to remove the

phase shift that it generates if applied only once. We found a = 0.9 as suitable

value. Fig. 8 shows the effect of the filter on our data.
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We thank André Bergner and Jonathan Dongues for constructive discussions.

G. Z.-L. and J. K. are supported by Deutsche Forschungsgemeinschaft (grants

16



(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalised frequency (× π rad/sample)

A
(ω

)

(b)
-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  500  1000  1500  2000  2500

x n

n

raw
filtered

Figure 8: (a) Filter response, (b) Comparison between the filtered and the
unfiltered (Rulkov) signal

EN 471/2-1, KL 955/6-1, and KL 955/14-1).

References

[1] A. Arenas, A. Dı́az-Guilera, J. Kurths, Y Moreno, and C. S. Zhou. Synchro-

nization in complex networks. Physics Reports, in press, 2008.

[2] P. beim Graben, C. S. Zhou, M. Thiel, and J. Kurths, editors. Lectures in

Supercomputational Neuroscience. Springer-Verlag, Berlin, 2008.

[3] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex

networks: Structure and dynamics. Phys. Reps., 424:175–308, 2006.

[4] C. C. Hilgetag, G. A. P. C. Burns, M. A. O’neill, J. W. Scannell, and M. P.

Young. Anatomical connectivity defines the organization of clusters of cortical

areas in the macaque monkey and the cat. Phil. Trans. R. Soc. Lond. B,

355:91–110, 2000.

17



[5] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.,

117:500–544, 1952.

[6] C. J. Honey, R. Kötter, M. Breakspear, and O. Sporns. Network structure of

cerebral cortex shapes functional connectivity on multiple time scales. Proc.

Nat. Acad. Sci., 104:10240–10245, 2007.

[7] M. V. Ivanchenko, G. V. Osipov, V. D. Shalfeev, and J. Kurths. Phase syn-

chronization in ensembles of bursting oscillators. Phys. Rev. Lett., 93:134101,

2004.

[8] E. M. Izhikevich. Simple model of spiking neurons. IEEE Trans. Neural Nets.,

14:1569–1572, 2003.

[9] E. M. Izhikevich. Which model to use for cortical spiking neurons? IEEE

Trans. Neural Nets., 15:1063–1070, 2004.

[10] E. M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of

Excitability and Bursting. MIT Press, Cambridge, MA, 2007.

[11] E. M. Izhikevich and G. M. Edelman. Large-scale model of mammalian tha-

lamocortical systems. Proc. Nat. Acad. Sci., 105(9):3593, 2008.

[12] M. Kaiser, R. Martin, P. Andras, and M. P. Young. Simulation of robustness

against lesions of cortical networks. Eur. J. Neurosc., 25:3185–3192, 2007.

[13] H. Markram. The blue brain project. Nat. Rev. Neurosci., 7:153—-160, 2006.

[14] N. F. Rulkov. Modeling of spiking-bursting neural behavior using two-

dimensional map. Phys. Rev. E, 65:041922, 2002.

18



[15] J. W. Scannell, C. Blakemore, and M. P. Young. Analysis of connectivity in

the cat cerebral cortex. J. Neurosci., 15(2):1463–1483, 1995.

[16] J. W. Scannell and M. P. Young. The connectional organization of neural

systems in the cat cerebral cortex. Curr. Biol., 3(4):191–200, 1993.

[17] O. Sporns, G. Tononi, and R. Kötter. The human connectome: a structural

description of the human brain. PLoS Comput. Biol., 1(4):0245–0251, 2005.

[18] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.

Nature, 393:440, 1998.

[19] F. Wendling, J. J. Bellanger, F. Bartolomei, and P. Chauvel. Relevance of

nonlinear lumped-parameter models in the analysis of depth-eeg epiletic sig-

nals. Biol. Cybern., 83:367–78, 2000.
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[21] L. Zemanová, G. Zamora-López, C. S. Zhou, and J. Kurths. Complex brain

networks: From topological communities to clustered dynamics. PRAMANA

J. Phys., 70(6):1087–1097, 2008.
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