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Abstract:

Shortness of observed time series often hinders the extraction of important information of the under-
lying system. In [1] we have proposed an algorithm that generates a long trajecotory, called Dynamically
reconstructed Trajectory (DRT), given many short trajectories from a system. In this paper we further

illustrate the validity of our algorithm to hyperchaotic systems and to systems which exhibit multistable
states space.

Natural systems often exhibit a complex behavior on different time scales. Usually, these time scales
of interest are either too short to be analysed using standand time series analysis techniques or so long,
‘that it is practically impossible to assimilate a continuous data set that completely describes the long term
‘dynamics. A classical example of the former case is transient chaotic systems [2]. The later situation is
Very common in many biological, physical systems and even numerical simulations owing to physical
a;nd technical limitations [3]. Furthermore, short data sets are often problematic to be handled by standard
time series analysis techniques. To overcome the problem of short data sets, we have recently proposed an
algorithm [1] that generates a long trajectory given an ensemble of short trajectories observed at different
tances from one system. The idea stems from the ergodic theory and uses the concept of recurrence [5]

Of phase space trajectories to reconstruct the dynamics. The algorithm uses the local information about
flow from the short segments of trajectories from a system to rebuild long dynamical replicants of the

same system, called the Dynamically Reconstructed Trajectories (DRTs). The DRTs can be then studied

by any data analysis techniques to obtain the desired information. In [1] we demonstrated the validity of
the algorithm for three chaotic paradigmatic systems: the logistic map, the Hénon map and the Réssler
oscillator. Here, we further exemplify the application of our algorithm to more complex systems, namely,
the hyperchaotic Réssler system and the standard map. But first, we give below a brief description of the
algorithm, Let & (where i = 1,...,N; J =1,...,K) represent the ensemble of K short phase space
rajectories of length IV obtained from a series of experiments or simulations. The K short trajectories
Ire concatenated to produce a long concatenated time series T1,...,&r where L = N . K. The set of

hearest neighbours of each phase space vector (Z;) is estimated for a given threshold ¢, i.e., we estimate

Ni = {2113 - | < )
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fori=1,..., L, where |- || denotes a norm, e.g., the Euclidean or the Maximum norm. The construction
of the DRTs starts with the random selection of a point, %, (where ¢ < L) from the concatenated short

conditiona mod N = 0. If ¢ mod N — 0, we are at the end of a short trajectory and &, , ; is not a reql
future of &,. Hence, the next point of the DRT is chosen as the future of one of its nearest neighbours
with respect to the threshold . But if Z, is not at the end of a short segment, i.e. a mod N # 0, then the
next point of the DRT is chosen to be either Ta+1 or the future of one of its neighbours. In this case, the
decision to continue with Lq+1 Or jump to the future of a neighbour is made with a probability p, called
inter segment jumping probability. This procedure is repeated until a DRT of the desired length Lp is
generated, where Lp < L. If during the process of the reconstruction we arrive at a point, which is at
the end of a ST and also has no neighbours with respect to €, then we restart the algorithm starting at a
different initial point Zp. If the algorithm fails to generate a DRT after, say, 1,000 trials, then the process
is quitted assuming that it is not possible to find a DRT for the given ensemble of short trajectories

algorithm for model systems exhibiting more complex dynamics, which are closer to real world systems,
The first system we analyse is the hyperchaotic Réssler oscillator [6], which has two positive Lyapunoy
exponents [5]. The flow of the hyperchaotic Rossler is described by the following set of equations:

TEY=4 G=o+02y+w; S=3+4m2 w=—0524 0,050, 1)

Starting with zg = —20,y = 0,29 = 0 and wo = 195, a long trajectory is generated using the fourth-
order Runge—Kutta method and additionally, an ensemble of K — 100 short trajectories is generated
by randomly choosing 100 different initial conditions. The length of each short trajectory is NV = 200,
Setting p = 0.01 and ¢ = 1.0, a DRT of length Lp = 10,000 is generated applying our algorithm. The
generated DRT resembles the original attractor (Fig. 1(b)) very closely. Note that the Jumps observed in
the phase portrait of the concatenated trajectory ((Fig. 1(a)) are not present any more in the phase portrait
of the generated DRT (Fig. 1(b)). Furthermore, the mutual information function (MI) [5] of the DRT is
also very close to that of the long original trajectory (Fig. 1(d)). Hence, we can say that the DRT mimics
the original long trajectory both qualitatively and quantitatively. To analyse the role played by the two
parameters p and € of the algorithm, the mutual information of 100 long trajectories of the hyperchaotic
Rossler and and 100 DRTs (generated from the above ensemble) are compared for lags 1 < 7 < 70

To quantify the closeness of the DRTs to the original long trajectories we compute the error measure:

1 T=Tmawn

|u(r) — w'(7)|
Tmaz TZ 0.5(a(7) + o'(1))’

=1

Eyr =

where 44(7) is the mean value of the MI at lag 7 of the ensemble of DRTs and ' (7) is the mean valug of
the MI at lag 7 of the ensemble of long trajectories. Similarly, o(7) and o’ (7) are the standard deviations
of the MI function at lag  estimated from 100 DRTs and 100 lon g trajectories, respectively. As expected,
the results show that frequent jumps, i.e. high values of p, or large jumps, i.e. high values of €, cause the
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Figure 1: Phase space projections of (a) the concatenated short trajectories with N = 200-and K = 100,
(b) the generated DRT, (c) a long ori ginal trajectory of the hyperchaotic Réssler. (d) Mutual information
(MI): dotted line - concatenated trajectory; dashed line - DRT and solid line - lon g original trajectory. ()
Dependence of the error in MI on the parameters of the algorithm ¢ and p.

asimple chaotic map that displays Hamiltonian chaos, namely, the standard map [7]. It is given by the
following equations

Pi+1 =pi + £8in(6;); i1 = 0; + piys. )

Depending on the value of & and the initial conditions chosen, we can have sevaral dynamical regimes
in the phase space, i.e., periodic, quasiperiodic or chaotic. For x = 0.8 and the initial conditions (i)
o= 0.0,60 = 0.6, (i) po = 0.0,y = 0.1, the system exhibits a sharply separated bistable state space,
- which consists of quasiperiodic and chaotic dynamics, respectively. First, we concatenate X = 100
- short trajectories of length N = 100 from both dynamical regimes. A DRT of length Lp = 9,000 is
then generated applying our algorithm with parameters p = 0.01 and ¢ = 0.01. Though the ensemble
consists of short trajectories from two different dynamical regimes, for smaller values of  the generated
DRT is found to resort to one of the two dynamical regimes. Since the phase space is sharply divided,
for smaller thresholds the nearest neighbors of regular regime will also belong to the same regime and
vice versa. Hence, the dynamics of the DRT depends upon the randomly chosen first point of the DRT
(Fig. 2). The resulting DRT, which is either quasiperiodic or chaotic, is found to behave quantitatively
and qualitatively similar to one long quasiperiodic or chaotic trajectory, respectively. If € becomes larger,
the nearest neighbours of any point of the ensemble will be a set that consists of points from both the
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regular and the chaotic regions. Hence, for higher values of ¢ the algorithm hops between both chaotic
and regular short trajectories, resulting in a DRT similar to that of the ensemble.

To conclude, our algorithm to generate lon g trajectories from an ensemble of short trajectories is able
to handle complex dynamical systems. The algorithm in its present form can be applied to multistable
Systems that exhibit multistable but sharply divided state space. How to enhance the algorithm to be
applicable to a wider class of mutistable systems, where the different dynamical regimes are closely
embedded, will be addressed in a forthcoming paper,
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