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The effect of time-delay on anomalous phase synchronization
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Anomalous phase synchronization in nonidentical interacting oscillators is manifest as the increase of
frequency disorder prior to synchronization. We show that this effect can be enhanced when a time-
delay is included in the coupling. In systems of limit-cycle and chaotic oscillators we find that the regions
of phase disorder and phase synchronization can be interwoven in the parameter space such that as a
function of coupling or time-delay the system shows transitions from phase ordering to disorder and
back.
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1. Introduction

A population of nonidentical nonlinear oscillators will eventu-
ally synchronize when sufficiently strongly coupled in a suitable
topology. In some cases it has been observed that the degree of
disorder in the oscillator frequencies—as characterized by their
variance, say—first increases with coupling before eventually de-
creasing. This phenomenon has been termed anomalous phase syn-
chronization (APS) [1–4], which has a broad range of applications.

The emergence of synchrony in groups of interacting noniden-
tical oscillators is a phenomenon of considerable interest [5], with
applications in a variety of contexts ranging from epidemiology
to cellular biology. Phase synchronization (PS) [6]—as opposed to
complete synchronization—arises naturally in many areas of physi-
cal sciences since the subsystems that are coupled can have differ-
ent amplitudes and a range of internal time-scales.

How does global phase synchronization come about in such a
population? The manner in which all the oscillators in a mutu-
ally interacting group eventually adopt a common frequency of
oscillation is of considerable importance, and one which has been
explored to some extent in earlier work [1–3]. A natural expec-
tation might be that the approach to global synchronization is
monotonic: namely that two of the oscillators synchronize, then
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three, and then gradually increasing numbers of oscillators mutu-
ally synchronize.

This expectation does not hold in systems that show the
anomalous phase synchronization. The interaction among the dif-
ferent systems acts to first drive systems out of synchrony before
the strength of the interaction eventually forces them to a com-
mon dynamics. The intermediate disorder can arise from a number
of different sources—non-isochronicity [7], shear [8] or differences
in other internal parameters [5]. The full generality of this phe-
nomenon is not known, and thus the APS is of interest both from
a conceptual as well as an applications point of view.

In the present work we study the process of phase-synchroniz-
ation in oscillators with time-delayed coupling. Time-delay is both
natural and inevitable when considering interactions among sys-
tems that are spatially separated. From a mathematical point of
view, time-delay makes the dynamical system effectively infinite-
dimensional: this can open up a range of time-scales, interactions,
and novel dynamical behaviour such as amplitude-death [9–12]
and the phase-flip bifurcation [12,13]. In addition, delay offers an
additional parameter that can be varied, and if exogenous, can pro-
vide a suitable means of effecting control. The implications of APS
in such systems is therefore of considerable interest.

Our main result here is that APS can be enhanced with time-
delay: the degree of initial disorder may be significantly larger
than for the zero time-delay (or instantaneous coupling) case [1,2].
We also find that in situations when there is no APS, delay cou-
pling can cause APS to occur. Using the delay or the coupling
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strength as a parameter, systems which are in phase synchrony can
be driven out of synchrony and back again into phase synchrony.
The regions of parameter space corresponding to desynchronized
dynamics are interspersed among those corresponding to the syn-
chronized phase, and thus the anomalous behaviour can be mani-
fest as a transition from PS to phase disorder, and back to PS.

Some insight can be obtained from a study of the simplest situ-
ation, namely of two nonidentical delay coupled oscillators and we
treat this case in the next section. The specific models we exam-
ine are the Landau–Stuart system, where the dynamics can be on
limit cycles, and a somewhat more complex food-web model stud-
ied in [1,2], where APS was observed. Globally coupled oscillators
are studied in Section 3. In all these examples, our results indi-
cate that upon inclusion of time-delay, the region of APS can be
enlarged, and the degree of disorder can be enhanced. The Letter
concludes with a brief summary in Section 4.

2. Anomalous synchronization in two nonidentical oscillators

2.1. The Landau–Stuart system

Consider the case of two delay-coupled limit cycle Landau–
Stuart oscillators [11,12]:

Ż1(t) = (
1 + iΩ1 − ∣∣Z1(t)

∣∣2)
Z1(t) + ε

[
Z2(t − τ ) − Z1(t)

]
,

Ż2(t) = (
1 + iΩ2 − ∣∣Z2(t)

∣∣2)
Z2(t) + ε

[
Z1(t − τ ) − Z2(t)

]
. (1)

The variables Z j(t) are the complex amplitudes of the oscilla-
tors, |Z j | = 1 is the attracting limit cycle, Ω j are the corresponding
frequencies in absence of coupling, and ε is the coupling strength.
We consider here strongly mismatched oscillators with Ω1 = 4
and Ω2 = 7 (�Ω = 3). For the case of instantaneous coupling,
τ = 0, the effective averaged frequencies ω1,2 of the two oscilla-
tors are plotted in Fig. 1(a) as a function of the coupling strength ε .
The frequency difference �ω decreases monotonically as shown in
Fig. 1(b) and PS results above a critical coupling, ε ∼ 1.5. At these
parameter values, APS does not occur: see Refs. [1,2] for details.

Introduction of a finite delay (τ �= 0) gives the phase diagram
shown in Fig. 2; the oscillators are not in synchrony in the shaded
region in the τ–ε plane and therefore there is the possibility of
APS. Along a line of fixed coupling strength ε = 1, say, examina-
tion of the largest few Lyapunov exponents [14] and the difference
in frequency of the two oscillators as a function of τ reveals APS,
as shown in Fig. 3(a), (b). As can be seen there is a finite range
of time-delay for which the individual oscillator frequencies are
different, and the difference �ω can be larger than the initial
�Ω = 3. Note that this region of anomaly is in effect caused by
time-delay, since when τ = 0, there is no region of APS (Fig. 1).
Similar results have been also reported for phase only oscillators
in Ref. [15] and subsequently in Ref. [16–19]. However, unlike the
situation in Ref. [15], we do not find any evidence for hysteresis
here: the curve in Fig. 3(b) is a composite of 50 simulations, each
starting from different initial conditions (ruling out the possibility
of multistability). Over a broad range of coupling parameters (re-
sults not shown here) there does not appear to be any hysteresis.

As is also evident in Fig. 2, APS can occur at fixed time-delay by
variation of the coupling parameter ε . Note that the introduction
of delay can reduce the onset of synchronization (see for small τ in
Fig. 2). Results are shown in Fig. 3(c) and (d) for the Lyapunov ex-
ponentand frequency difference respectively at τ = 0.75. Since this
occurs with variation of the coupling strength for a fixed nonzero
time-delay as well, the process is an example of APS arising from
the time-delay interaction.

For the symmetric system when Ω1 = Ω2, there is no anoma-
lous synchronization, but there is evidence for a phase-flip bifurca-
tion [13] when the frequency increases in a manner similar to the
Fig. 1. In the Landau–Stuart system, Eq. (1) for the case of instantaneous coupling,
τ = 0, the variation of (a) the individual frequencies, ω1,2 of the two oscillators,
and (b) their frequency difference, �ω as a function of the coupling strength, ε .

Fig. 2. Schematic phase diagram in the τ–ε plane for nonidentical Landau–Stuart
oscillators, Eq. (1). The shaded region corresponds to desynchronized motion, and
therefore APS can occur when parameter variation includes a path that traverses
this region.

frequency increase shown in Fig. 3(b). This suggests that the phe-
nomenon of anomalous synchronization may be the counterpart of
the phase-flip in nonidentical systems. Since experimental verifi-
cation of the phase-flip has been carried out in recent work [20],
a systematic exploration of anomalous phase synchronization in a
similar dynamical system (delay-coupled Chua oscillators) should
be feasible.

Because of the nature of the boundary of the synchronized re-
gion, the anomalous effect can be evidenced as a transition from
a synchronized state to a desynchronized state, and back to syn-
chrony, as in Fig. 3(b), (d); see the parameter range marked by ar-
row A. In this system APS occurs when the dynamics is quasiperi-
odic (λ1 = λ2 = 0) but in general, the motion can even be chaotic,
as in the example below.

2.2. Chaotic oscillators

We next analyze a model that has been studied earlier [1,2],

ẋ1,2(t) = x1,2 − 1.5 − 0.1x1,2 y1,2,

ẏ1,2(t) = −β1,2 y1,2 + 0.1x1,2 y1,2 − 0.6y1,2

+ ε
[

y2,1(t − τ ) − y1,2(t)
]
,

ż1,2(t) = −10z1,2 + 0.1 + 0.6y1,2z1,2. (2)

This is a system of two coupled food-webs, each of which (dif-
ferentiated by subscripts 1 or 2) describes a three level “vertical”
food chain. The variables x correspond to the vegetation, which is
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Fig. 3. (a), (c) The largest few Lyapunov exponents and the (b), (d) frequency difference between two coupled nonidentical Landau–Stuart oscillators, Eq. (1). The left panel
shows the variation with τ at fixed ε = 1 (vertical arrow in Fig. 2), while the right panel is for varying ε at fixed time-delay τ = 0.75 (horizontal arrow in Fig. 2). APS occurs
in the range marked A and A′ . In (b) and (d) the frequency difference curve shown is a composite of 50 different simulations.
Fig. 4. (a) Individual frequencies and (b) frequency difference for τ = 0 as a function
of the coupling strength in the food-web system, Eq. (2).

Fig. 5. Schematic phase diagram for the food-web oscillator system, Eq. (2) as a
function of the parameters (ε, τ ). The individual systems do not synchronize in the
shaded region, and this indicates the region where anomalous phase synchroniza-
tion can potentially be observed. Note that, near ε ∼ 0, there is a thin shaded region
along delay.

consumed by herbivores (y) which themselves are preyed upon by
the top predator (z). The individual uncoupled systems can show
chaotic dynamics, and therefore in the coupled system the syn-
chronized dynamics can also be chaotic.

To make contact with earlier studies [1,2] we use the same pa-
rameters as before, β1 = 0.945 and β2 = 0.995. As can be seen in
Fig. 4, for instantaneous coupling i.e. τ = 0 [1,2], there is a clear
maximum in the frequency difference �ω indicative of the anoma-
lous synchronization region. A schematic phase diagram is shown
in Fig. 5 where the shaded region indicates the lack of synchro-
nization and thus the possibility of APS which can be observed by
varying either of the parameters, coupling strength or time-delay.

For fixed ε = 0.12, the largest few Lyapunov exponents are
shown as a function of τ in Fig. 6(a). From the difference in the
frequencies (Fig. 6(b)) it can be seen that the extent of anomaly
appears to be significantly larger than in the case without delay.
Thus time-delay can enhance the level of intrinsic frequency disor-
der. Also note that delay can reduce the onset of synchronization
(at least near zero delay).

Similar results are obtained when the coupling parameter is
varied for fixed time-delay, as shown in Fig. 6(c) for τ = 3 where
the largest few Lyapunov exponents are plotted. The frequency
difference in Fig. 6(d) clearly indicates that there is APS on vari-
ation of coupling strength. The dynamics is multistable in the re-
gion marked R in Fig. 6(a). Note that the motion can be periodic
(λ2 < 0), quasiperiodic (λ1 = λ2 = 0) or even chaotic (λ1 > 0) (see
Figs. 6(a) and 6(c)) in the region of the anomaly.

3. Anomalous synchronization in an ensemble of nonidentical
oscillators

Having considered the case of two coupled oscillators with
time-delay, we now study the case of N globally (all to all) cou-
pled systems. Shown in Fig. 7 are the variance in the frequencies
of individual oscillators in N = 100 coupled Landau–Stuart systems
with variation of time-delay and coupling strength. The internal
frequencies of the uncoupled systems were taken uniformly in an
interval, Ωi ∈ [5,10] and globally diffusive coupling is effected by
adding the term

ε

N∑

j=1, j �=i

[
z j(t − τ ) − zi(t)

]
/(N − 1) (3)

in the dynamical equations (cf. Eq. (1)). The variance in individ-
ual frequencies are shown in Fig. 7(a) as a function of τ for fixed
coupling strength ε = 1.4, and in (b) as a function of the coupling
parameter ε for fixed time-delay τ = 1.6. These clearly indicate
that APS occurs over a wide range of parameters either in τ or ε .
Similar results have been obtained when N nonidentical food-web
systems are globally coupled, with external (Gaussian) noise, and
for a variety of coupling topologies.

We believe that the origin of the anomalous phase synchroniza-
tion lies in the fact that in coupled nonidentical nonlinear systems,
regions of parameter space where synchronization can and can-
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Fig. 6. For the coupled food–web system, (a), (c) the three largest Lyapunov Exponents (λ1 (black), λ2 (red) and λ3 (blue)), and (b), (d) difference in individual frequencies,
�ω, between the oscillators. The left panel shows the variation with τ at fixed ε = 0.12 (vertical arrow in Fig. 5) while right panel has variable ε for fixed time-delay τ = 3
(horizontal arrow in Fig. 5). In (b) and (d) the frequency difference curve shown is a composite of 50 different simulations. (For interpretation of the references to color in
this figure legend, the reader in referred to the web version of this Letter.)
Fig. 7. Variance of individual frequencies σ for N = 100 globally coupled Landau–
Stuart oscillators, Eq. (1) as a function of (a) τ for fixed ε = 1.4 and (b) with ε for
fixed τ = 1.6.

not occur are interwoven in a complex manner. The two examples
studied here (Figs. 2 and 5 are representative; for larger numbers
of oscillators, the corresponding diagrams will be much more com-
plex). Thus, when any single parameter is varied, there can be
transitions from phase synchrony to phase disorder and back to
phase synchrony.

4. Summary

Anomalous effects in phase synchronization in a group of non-
identical coupled systems can occur in two ways. Starting from the
situation of no coupling, the approach to a synchronized regime
can be nonmonotonic: the variance in the frequencies of the in-
dividual systems can increase before eventually vanishing. Alter-
nately, given an ensemble of time-delayed coupled nonidentical
oscillators in phase synchrony, variation of the parameters can take
the system out of synchrony before eventually restoring it. In this
latter case, the variance in the frequencies goes from zero to a
finite value before again vanishing. In both situations, the origin
of phase disorder lies in the complex manner in which regions
of synchronization/desynchronization are arranged in parameter
space.

In the present work we have considered time-delay in the in-
teraction between nonidentical oscillators and seen that the phe-
nomenon of anomalous phase synchronization can be enhanced
in comparison with the case of instantaneous coupling (τ = 0).
Further, a system which does not show APS for the case of instan-
taneous coupling may show APS when time-delay is introduced. It
should be possible to verify this effect experimentally; anomalous
synchronization effects have a parallel in the phase-flip bifurcation
which occurs for identical time-delay coupled systems [20]. The
fact that APS can be observed through variation of additional pa-
rameters suggests that it can be controlled. In particular, it may be
of interest to use such strategies when phase disorder is required
[21].
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