Significance for a recurrence based transition analysis
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Abstract—The recurrence of states is a fundamental be2. Recurrence based detection of transitions
haviour of dynamical systems. A modern technique of o
nonlinear data analysis, the recurrence plot, visualinds a A recurrence plot tests for the pairwise closeness of all
analyses the recurrence structure and allows us to det@@ssible pairs of stategi(x;) (i = 1... N, N as the number
transitions in the system’s dynamics by using recurrencd time points or measurements) in@rdimensional phase
quantification analysis (RQA). In the last decade, the RQAPaC€,
has become popular in many scientific fields. However, a Rij= ®(8 =% - YJII), (1)
suficient significance test was not yet developed. with ® as the Heaviside function ardas a threshold for
We propose a statistical test for the RQA which is baseébatial closeness, which is given by the ndfFfi{e.g. maxi-
on bootstrapping of the characteristic small scale strestu ,um or Euclidean norm) [1]. The binary recurrence matrix
in the recurrence plot. Using this test we can present confly -ntains the value one for all close paiss — Xl < &.
dence bounds for the detected transitions and, hence, 9t@m a univariate timeseries the phase space trajectory can

more reliable result. We demonstrate the new technique @ reconstructed using time delay embedding [19].
marine dust records from the Atlantic which were used to gjmijar evolving epochs of the phase space trajectory

infer climate changes in Africa for the last 4 Ma. cause diagonal structures parallel to the main diagona. Th
length of such diagonal line structures depends on the dy-
1. Introduction namics of the system (periodic, chaotic, stochastic). &her

fore, the frequency distributioR(l) of line lengthd can be

Recurrence plots (RPs) and recurrence quantificatiqsed to characterise the system’s dynamics. Several RQA
(RQA) [1] are widely accepted methods for data analysigeasures are based on this distribufgh). Here we focus
in various disciplines, like life science [2, 3, 4, 5], engi-gnly on the measurgeterminism(DET), which is the ratio

neering [6, 7, 8] earth science [9, 10, 11] or finance angs the recurrence points forming diagonal structures,
economy [12, 13]. Based on RPs, we can study, e.g.,

complex system’s dynamics, transitions or synchronisatio Zl’\ilmm [P(I)

[3, 14, 15, 16]. The investigation of transitions in the sys- DET = SN @)
tem’s dynamics is based on changes in the system’s re- =1

currence structure. The ftérent aspects of recurrenceswe use a minimal lengthi, for the definition of a diagonal
can be measured by measures of complexity, which afige [1].

also known asecurrence quantification analysilRQA) Slowly changing states, as occuring during laminar
[1]. Although these measures are often applied to real daghases (intermittency), cause vertical structures in the R
and interpreted as indicators of changes in the system, gperefore, the distributioR(v) of line lengthsv is used to

to now there are no means to statistically validate the rguantify the laminar phases occuring in a system. Similar
sults. Statistical tests were suggested for the validaifon to the measur®ET, we define the ratio of the recurrence
interrelation and synchronisation analysis using bitaria points forming vertical structures,

extensions of RPs [17, 18]. These tests use certain sur-

rogates (AR models, twin surrogates) to test against the Z\’)':mevP(v)

null-hypothesis. However, these are special cases of a re- LAM = W ®)
currence based analysis and are not applicable for our pur- V=

pose to detect transitions. In this letter we propose a technd call this measudaminarity (LAM) [1].

nique which calculates the confidence level for the most In order to study the time-dependent behaviour of a sys-
important RQA measures. Using this method we are abtem or data series, we compute these RQA measures us-
to provide a significance statement for detected transtioing a moving window. The window has sia% and is

in the systems dynamics based on RQA. We illustrate thimoved with a step o over the data in such a way that
approach on a climate proxy time series (marine dust deucceeding windows overlap witW — s, thus providing
posits), which were used to infer climate variability in thetime-dependent measur&ET(t) and LAM(t) with t =
past. W/2,3W/2,5W/2,...,N — W/2. The number of windows



Nw covering the data is floor-round®y = (N-W+5s)/s. 4. lllustrative example

This technique was successfully applied to detect chaos- ) _ _ o

period transitions [15], chaos-chaos transitions [3] d di In thls sect_|0n we |Ilustrz_;\te the proposed statlst|cal_ ftest

ferent kinds of transitions between strange non-chaotic b@n @ signal with chaos-period and chaos-chaos transitions.

haviour and periodic or chaos [20]. It is applicable on reafVe use a modified logistic map with mutual transitions [15]

world data, as demonstrated for the study of cardiac vari- S .

ablity [21], brain activity [5], changes in finance markets X1 = a(i) () (1~ x()) (6)

[13] or thermodynamic trans?tior]s in cqrrosion Process€gith the control parametet in the range [$200 39325]

[7]. However, all these applications miss a clear signifiyit, increments ofAa = 0.000001. Using this intervall

cance statement or require repeated measurements to allQW find fora = [3.92221 392227] a period-7 window, for

for statistical testing. a = [3.93047 393050] a period-8 window and at a broad
range aroune = 3.928 intermittency (Fig. 1A).

3. Confidence intervals of univariate timeseries
A 1

In order to perform a statistical inference for the RQA
measures, we propose a bootstrapping approach [22]. Thegg
bootstrap is a statistical tool that allows for estimatihg t
precision ofany sample statistics (mean, medid?(]) or
P(v)) by randomly resamplinga{ith replacement) from the
observed data.

Since the basis of the RQA measures are the frequency 04
distributionsP(l) or P(v) of the diagonal and vertical re-
currence lines, we will bootstrap these distributions. For 0-2
the sake of simplicity, we only consid&l), but the same fh i AR
logic applies toP(v). 392 3922 3924 3926 3928 393 3.932

For each of the moving windowt (t = ' ' " Control parameter a ' '
W/2,3W/2,5W/2,...,N — W/2), i.e. for diferent time
points, we have a local distributioR;(I). However, we B 1
will use all local distributions for bootstrapping in order
get an overall distribution over the entire region of ingtre _
in the recurrence plot, which is covered by the movinga %8|
windows. This means, we bootstrap from the unification 0.7

0.6

|5(|):Upt(|) (4) 3.92 3922 3924 3926 3.928 393  3.932
t

of the local distributions. We draw recurrence structures

(i.e. diagonal lines) fron®(l). The numben of drawings is = 02

the mean number of recurrence structures contained in the ;|

local distributions? (), o - 4 k
A

LA f .
0
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Figure 1: (A) Logistic map with chaos-period and chaos-
From the resulting empirical distributid?r (1), we compute  chaos transitions for control parameget: [3.9200 39325]
the corresponding RQA measure, in our cBE€T, Eq. (2).  and corresponding RQA measures (B T and (C)LAM.
Repeating this procedur® times (e.g.B = 5,000), pro- Fora = [3.92221 392227] we have a period-7 window, for
vides a test distribution foDET, sayF(DET). F(DET) 3 = [3.93047 393050] a period-8 window and at a broad
provides a robust estimate for the system’s overall b@ange around = 3.928 intermittency (marked with dotted

haviour as captured by the complexity measures. To thies). 99% confidence bounds are shown as dash-dotted
baseline of the system we can later compare any occurifges.

transitions.

Calculating thex-quantiles of the distributiof (DET), Next we compute the RQA measurBET and LAM
we derive the confidence intervals DEET which can be from this data series (no embedding) using windows of size
used to statistically infer whether the changeD&T(t), W = 200 and with a step size of = 50. The thresh-
and thus the observed transitions, are statistically figniold ¢ is chosen for each window separately in order to pre-
cant. serve a constant recurrence rate of 5%. As a line structure



we consider each line with a length of at least two pointgver, a new debate about climate transitions at these times

i.e.lmin = Vmin = 2. recently arose because of their importance for the hominin
The measurdDET shows for the periodic windows at evolution in Africa [24]. This debate challenges for a re-

a=[3.92221 392227] anch = [3.93047 393050] maxima liable test and enhanced analysis tools for the detection of

(Fig. 1B) [3]. The periodic behaviour of the system causesuch transitions. Therefore, we apply the RQA and the pro-

only long diagonal lines, resulting in high values@ET. posed significance test on the dust flux record of the ODP

In contrastLAM shows high values only for the region of site 659 [23].

intermittency around = 3.928 (Fig. 1C). In this region,  We used a time delay embedding with dimensioa 3

the system has slowly changing, laminar states [3]. and delayr = 2. The threshold is chosen to preserve a
For the proposed bootstrapping approach, we use 5,000nstant recurrence rate of 5%. The bootstrapping is per-

resamplings in order to construct the empirical distribuformed using 5,000 resamplings. We are interested in the

tions F(DET) andF(LAM). We have found that this num- 95% confidence interval.

ber of resamplings is $icient. The parameters of the re- The RQA measure®ET and LAM reveal significant

sulting empirical distributions are already converged. Akigh values between 4.2 and 4.0 Ma, 3.6 and 3.4 Ma, 2.6

expected, the distributions(DET) and F(LAM) follow and 2.4 Ma. Around 1.1 Ma onlRET is significantly in-

normal distributions (Fig. 2). As the 99%-quantile we findcreased and around 2.9 Ma orlbAM is significantly in-

for DET thgg = 0.75 and forLAM gpg9 = 0.05. These val- creased. Since 0.6 Ma, both measures increase again sig-

ues provide the 99% confidence level ET andLAM. nificantly (Fig. 3B, C).

Thus, the two maxima dDET in the periodic windows are

significant on a 99% levelp( < 0.01; Fig. 1B). ForLAM A 3

we find several significant high values of 99% significance

in the region of intermittency aroural= 3.928 (Fig. 1C).

This is due to the longer range of intermittent behaviour in = 1} ik 1

this region of the control parametar
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Figure 2: Empirical distributions foDET and LAM de- 0.4

rived from bootstrapping recurrence structures. These dis3
tributions follow normal distributions (a fitted normal dis

tribution shown by the black line). ol ‘ ‘ ‘ ‘
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Using these RQA measures we have shown that we are

able to detect the chaos-period and chaos-chaos trasssitigrigure 3: (A) Dust flux record of ODP site 659, and cor-
with high significance. This is an improvement of the findresponding (B)DET and (C)LAM measures (95% confi-
ings discussed in [3, 15]. dence bounds are shown).

5. Application on a marine dust record Based on the significant increase of th&T measure
we can infer that especially during the epochs 4.2 to 4.0 Ma

Longterm variation in eolian dust deposits is highly re-and 3.6 to 3.4 Ma the climate was behaving more regular.
lated with terrestrial vegetation and may be used as a profje increase oEAM at 4.2, 3.6, 2.6 and 0.6 Ma indicates
for a changing climate (wet, dry). Therefore, marine dudransitions at these times in the African climate regime,
records can be used to infer epochs of a drier climate in tles exhibited by an intermittency behaviour. These time
past. In particular, a marine record from the Ocean Drillingpochs dter obviously from the climate changes proposed
Programme (ODP) derived from a drilling in the Atlantic,by deMenocal [23]. However, deMenocal was just testing
ODP site 659, was used to infer changes in the African clfor changes in the frequencies and not in the dynamics. The
mate during the last 4.5 Ma (Fig. 3A) [23]. The authodinear methods he used (evolutionary power spectra) are not
claimed that the African climate has shifted towards morable to detect dynamical transitions.
arid but variable conditions at 2.8, 1.7 and 1.0 Ma. How- These epochs found using RQA coincide with the oc-



curences of lakes in East Africa and with important hof11] N. V. Zolotova and D. |. Ponyavin, Solar Physi®43
minin evolution steps [24]. 193 (2007).

) [12] J. Belaire-Franch, D. Contreras, and L. Tordera-
6. Conclusions Lledd, Physica DL71, 249 (2002).

By bootstrapping the smale-scale structures of recufy3) F. strozzi, J.-M. Zalvar, and J. P. Zbilut, Physica A
rence plots, we were able to provide confidence levels for ~ 312 520 (2002).

the recurrence quantification analysis. We have shown that
the RQA reveals chaos-period and chaos-chaos transitidd4] J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle, Eu-
in the logistic map with statistical significance. Moreqver rophysics Letters, 973 (1987).

applying this approach on a palaeo-climate proxy recor L .

we found transitions in the climate regime, which may hav 5] Il; L:]Trulllﬁ, A GI'_UI;tam’ ‘;'ZP' ZZSbéluigag%d C. L. Web-
caused significant influences on the African climate and, erJr., Physics Letters 223 ( )-

thus, on the hominin evolution. [16] M. C. Romano, M. Thiel, J. Kurths, I. Z. Kiss, and
J. Hudson, Europhysics Letterg, 466 (2005).
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