Dynamical Optimization and Synchronization in
Adaptive Complex Networks

Maoyin Chen and Jirgen Kurths

Abstract We introduce two dynamical optimization coupling mecharggor get-
ting different kinds of synchronization in adaptive comgphetworks. At each node
in the network there is an oscillator and the ensemble ofllagwmis could be ei-
ther identical or non-identical. For each oscillator, wéuationly one incoming
link's strength in different time intervals while the othiecoming links’ strengths
remain constant. The dynamical optimization coupling na@i$ms are in effect
“winner-take-all” strategies. If one incoming link for daoscillator has the maxi-
mal competition ability in different time intervals, itsehgth increases by a small
value. This way, we realize different kinds of synchroni@atn adaptive complex
networks with undelayed or delayed couplings, as well agrerthat all oscillators
have uniform intensities during the transition to synclization. We also enhance
the synchronizability in complex networks with identicakilators.

1 Introduction

Real-world complex networks (CNs) are interacting dynainéntities with an in-

terplay between dynamical states and interaction patté/hge topological studies
have revealed important organization principles in thecttires [1-6], a more com-
plete understanding would require characterizations héyioe topology. There are
recently several approaches in this direction. Especi@lintensive investigations
of synchronization dynamics in oscillatory networks [9,19,23-26,32-34,37-40.].
However, most of these works consider networks that do nahgé the topology
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with the dynamics. (ii) Growing attention on unified studiéshe coevolution of dy-

namical states and network structures [10-15,21,22,222343]. Models of adap-
tive complex networks (ACNs) have been proposed, e.g.vaglof oscillators

due to fitness in interacting species [10], reinforcemermiooinection strength [11]
or rewiring of links [12] due to payoffs among agents playgames; or adaptive
changes of coupling strength according to the state distanglobally coupled

chaotic maps [13] in a desynchronized regime

ACNs appear in many biological applications. They combapotogical evolu-
tion of the network with dynamics in the network oscillatdRecently, Gross and
Blasius provided a survey on adaptive coevolutionary neke/fil5]. According to
this survey, the majority of recent studies revolve aroumd key questions cor-
responding to two distinct lines of researchwihat are the values of important
topological properties of a network that is evolving in time and, ii) how does the
functioning of the network depend on these properties? The first line of research is
concerned withthe dynamics of networks [15]. Here the topology of the network
itself is regarded as a dynamical system. It changes in tigerding to specific,
often local, rules. Investigations in this area have reacahat certain evolution
rules give rise to peculiar network topologies with spepiaperties. The dynam-
ics of ACNs has been investigated in a number of parallelistuffom different
fields, ranging from genomics to game theory. The second mhia of network
research focuses dhe dynamics on networks [15]. Here each oscillator of the net-
work represents a dynamical system. The individual sysammsoupled according
to the network topology. Thus, the topology of the networkais static, while the
states of the oscillators change dynamically. Importantesses that are studied
within this framework include synchronization of the inidival dynamical systems
[9,14,17-19,21-34,37-40,42,43], and contact processed) as opinion formation
and epidemic spreading [44-46].

As a typical dynamical regime on networks, synchronizatspecially the abil-
ity of networks to obtain synchronization (synchronizayjl attracts lots of inter-
ests [14,17-19,21-33,37-40,42,43]. Complete synchatioz (CS) in networks of
identical oscillators [27-30] and phase synchronizati®8)(in networks of non-
identical oscillators [21,22] can be ensured by introdg@daptive local couplings
between connected oscillators, or adaptive global cogplin the whole networks.
The networks due to adaptive couplings are also a kind of ABGdsed on the local
dynamical neighborhood information in networks with ideat oscillators, Zhou
and Kurths introduced an adaptive coupling scheme [27]siRoplicity, this method
is called the Zhou-Kurths method. Consequently, the adagtlf-organization by
the Zhou-Kurths method drives the network into the direttid a more homoge-
neous topology, ongoing with an enhanced ability for syantmation. Hence it is
possible to synchronize networks that exceed by severaremf magnitude the
size of the largest comparable random graph that is stitlssonisable [15].

However, there are some shortcomings in these studies ors A@iere the local
or global couplings are changed adaptively. The first oneaisthese works can not
ensure that all oscillators have uniform intensities dyitime transition to synchro-
nization. From the works on synchronizability in networkighaa given topology,
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the synchronizability becomes optimal when the intensitiecome uniform in net-
works. This can be verified by the load [37,38] and degree [28jed weighted
networks. For randomly enough unweighted and weighted orésy the synchro-
nizability is controlled bySnax/Smin, WhereSnax and Spin are the maximum and
minimum of intensitiess, defined by the sum of the couplings for oscillait¢32].
For scale-free (SF) networks [32], one g8t/ Smin = Kmax/Kmin ~ N2, where
kmax andknin are the maximal and minimal degrees, respectively. For & fivet-
work topology, the synchronizability can be enhanced iftibensities become more
homogeneous. The second problem is that these methods the effectively ap-
plied to networks with delayed couplings. For example, fetworks with identical
chaotic oscillators, the non-uniformity of intensitiesedonot ensure the existence
of a synchronous manifold in networks with delayed cougirfeurther, there ex-
ists no unifying adaptive coupling scheme to get differéntlk of synchronization.
The scheme for PS in the Kuramoto model can not be effectaghjied to PS in
networks with non-identical chaotic oscillators and CS étworks with identical
chaotic oscillators. The scheme for CS in networks with f@hchaotic oscillators
can not be effectively applied to PS in networks with nomtit=al oscillators.

In this chapter we develop two adaptive coupling schemegtdifferent kinds
of synchronization in networks, as well as to ensure thadsdillators have uni-
form intensities during the transition to synchronizatidhis chapter is organized
as follows. In the next section, we consider PS in the famawus#oto model with
delayed couplings and external noises. By adaptively #dmishe couplings ac-
cording to thedynamical gradient network (DGN) approach [22], we ensure PS in
different variants of the Kuramoto model, as well as all besigirs have uniform
intensities. This approach can be also applied to networtts mon-identical os-
cillators, provided that the definition of ‘phase’ is wekdthed. Furthermore, this
approach can be extended to CS in networks with identicallatses. In section
3, we further propose another more effective coupling meisia, thedynamical
optimization (DO) mechanism [42,43], for realizing CS in networks witlendical
oscillators. Though there exist delayed couplings in netgonve realize CS effec-
tively, as well as the intensities for all oscillators aréfarm. We also discuss the
enhanced synchronizability in scale-free (SF) networkssamnall-world (SW) net-
works, due to the DO mechanism. This approach s also afpidica PS in networks
with non-identical oscillators. In the last section we digwour conclusion.

2 PSin the Kuramoto model

Among many models that have been proposed to address syidition phenom-
ena, one of the most successful models is the Kuramoto méB! [t can be used
to understand the emergence of synchronization in netwafrkscillators. In par-
ticular, this model presents a second-order phase tran$itm incoherence to syn-
chronization. For synchronization in the Kuramoto modelnyworks assumed that
the couplings between connected oscillators are cons2dr2¢]. Recently, some
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works introduced adaptive couplings in this model. Maisie et al. introduced
the mechanism of plasticity to study multistability, and@wed that the couplings
are varied in accordance with the spike timing-dependexstisity [20]. Ren and
Zhao also proposed adaptive couplings by introducing naotisly adaptive cou-
plings, and this can enhance the synchronization in the idata model. In this
scheme, the couplings grow stronger for pairs which hawgelgshase incoherence
[21].

Based on a DGN approach, we also consider synchronizatitreiluramoto
model with adaptive couplings. This study is motivated irt pg the work [35,36],
where the concept of gradient networks is introduced. @radietworks are di-
rected subnetworks of an undirected “substrate” netwonkhich each oscillator
has an associated scalar potential and one outlink thatsgtmirihe oscillator with
the smallest (or largest) potential in the reunion of itgelfl its neighbors on the
substrate network. The existence of gradients has beennstwowlay an impor-
tant role in biological transport processes, such as cgjtation: chemotaxis, hap-
totaxis, and galvanotaxis. Naturally, the same mechanidingenerate flows in
complex networks as well [36]. In addition, gradient netkgohave been already
utilized to enhance synchronization in networks [23]. Ag@hweighted asymmet-
rical network is regarded as a superposition of a weightethsgtrical network and
a weighted gradient network. Depending on the degrees dfatscs, a weighted
coupling scheme is proposed to enhance the synchronizahilnetworks. How-
ever, the proposed gradient network is static, i. e., itsctire is time independent.
Differing from the static gradient networks in Ref.[23]agiient networks devel-
oped in this section are dynamical, which implies that thedgnt networks in dif-
ferent time intervals are different.

Here the Kuramoto model consists of a populatioN@bupled oscillators where
the phasé (t) of thei-th oscillator evolves in time according to

%-W, ZW”A. sin(6; — 6),i=1,2,--- N, (1)
wherew; are natural frequencies distributed with a given probghbiensityg(w),
Ajj is the binary adjacency matrix representing the topologyetivorks, and it is
not necessary symmetric. Furthef; > O is the coupling strength of the incoming
link (i, j) pointing from oscillatorj to oscillatori if they are connected. Denokg
as the index set of neighbors of oscillator

The Kuramoto model (1) can be solved in terms of the ordenpetearr (t) that
measures the extent of synchronization as

r(t)es¥®

N
3 @

Z|H

wherel? = —1, ¥(t) stands for an average phase, and the parametar(9) < 1.
Obviously, ifr(t) =1, PS in the Kuramoto model (1) is realized. The paranrétéer
given by Eq. (2) has been widely used [7-9,21,25].
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We first introduce adaptive couplings into the Kuramoto mdde In order to
do so, we segment the time interyial +) into

[to, +00) = U th-1,tn), (3)

n>1

wheret, =t + nT, tg is the transient time, the lengihof intervals is chosen suit-
ably. For the parameteft), we define one local order parameter for oscillator
the intervallt,_1, tn):

1/t

in —— X
r T tn71r.(t)0|t, (4)
with 1
ri(t)efHt — ——_ ot
ki+1 JeK.zu{l}

wherek; is the degree of oscillator The parameter " can measure the local syn-
chronization extent among oscillatoand its neighbors. If" = 1 for certainng,
oscillatori and its neighbors are locally synchronized in the inteftygl 1, tn,).

For the network of oscillators, the extent of synchronats to choose the order

parameterg(n):
tn
ro(n) := = r(t)dt. (5)
T tho1

If there is ang such that (ng) = 1, we conclude that synchronization in the network
is realized effectively.

Now we introduce an adaptive coupling scheme into the Kutamwdel. Our
idea to adjust the couplingf; in the intervalltn,tq,1) is based on the concept of
gradient networks [35,36]. To define a gradient network atittstantt = t,, we
consider a network denoted By= (V, E,), whereV stands for the set of oscillators,
and E, denotes the set of links at the instant t,. Consider a field denoted by

={h},---,h}} at the instant = t,, whereh! is the scalar assigned to oscillator

i. We define the gradierifiy of the field hi' in oscillatori to be the directed link
Orp = (i,u"), wherep € KI represents one neighbor of oscillaioAt the instant

t = tp, the network>q = (V, On), wherel, is the set of the grad|enﬁhin is called

a gradient network. Note that at different time instantsghadient networks can
be different. In this section, this kind of gradient netwsik called DGNSs. In the
gradient networlZy, the directed linki, ") points from oscillato, at which the
scalar field has the minimum (or maximum) value in oscillatBe K;, i.e. [36]

' = arg jrggx{—hj”} (6)

to oscillatori. If several neighbors have the same scalar field, we chodgeonr
randomly. For oscillator in the Kuramoto model (1), we choose the scalar figld
as .

h'=r"". (7)
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Denote the couplingMj in the intervallt,_1,tn) asV\/irj‘. In the gradient network
composed of the gradientsn, we adjust the couplini,» of the incoming link
(i, ") pointing from oscillaton" to oscillatori. In the intervallt,, t,,1), we adap-
tively adjust the coupling\/luin of the incoming link(i, u") in the gradient network
Zg = (Va Dn) by

Wit = Wi + e, (8)

whereg > 0 is an arbitrary small incremental coupling. When the ljnlf) does
not belong to the gradient netwokl, its coupling satisfies

W= Wy, (9)

From Egs. (6-9), the DGN approach is also a dynamical opétitim coupling
scheme. It reflects the “winner-take-all” strategy in thasgeof scale fields. For
oscillatori, the incoming link to be adjusted is always chosen as ondipgifrom
one neighborhood oscillator with the minimal (or maximad)dito itself. Further,
we only adjust one incoming link’s strength in different &nmtervals while the
other incoming links’ strengths remain constant. Here wisndehe intensity§ for
oscillatori as§ = ¥ jcx, WjAjj. Note that the intensities of all oscillators in networks
are uniform, since at each step the intensity of each ogmillacreases by the same
amounte.

Now we analyze the feasibility of the above coupling scheméhie linearized
dynamics of the Kuramoto model (1). When the Kuramoto dymarisi close to the
attractor, the phase differences are small, and then teecsupling function can be
approximated linearly. Therefore, in the inter{@alt,;1), the linearized dynamics
of oscillatori can be written in the form

@ = TWIA (6 - 8) +(6 — ) (10)

In the above equation the last teume“in — 6) is equivalent to the term-£(6, —
Guin), which can be regarded as a negative feedback term for td@ectional syn-
chronization from oscillatop to oscillatori. This could make the phase difference
between oscillator and its neighbop" be smaller, which may result in synchro-
nization in the Kuramoto model.

The adaptive scheme (6-9) can be easily extended to Kuramadels with de-
layed couplings and external noise. One case is the Kuramottel described by
[8,24]

dé , .
o =Wty WHASING; — 8) + &(t), i =1,2,-.N, (12)
J

whereé;(t) is white noise due to some complicated environment with etgtion
and variance

<&t)>=0,<&t)&(t') >=25;0(t—t').

Another case is the Kuramoto model given by [8]
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Fig. 1 Simulation results in the Kuramoto model (1) without noi$be parameterg(n) as a
function of the adjustment step(a), and the parameteft) as a function of the stem for solving
the Kuramoto models (b), in SF networks (solid lik= 3; dotted lineM = 5) and SW networks
(dashdot lineK = 2, p=0.03; dashed lineK = 4, p=0.03). The adjustment stepas a function
of the sizeN in networks (c), and standard deviatiBg,(k) as a function of degrelein SF and SW
networks withN = 1000 (squareM = 3; diamond:M = 5; star:K = 2, p = 0.03; circle:K =4,
p=0.03). All estimates are the results of averaging over 50zatdns.

% =W+ ZV\l‘.injSin(Gj,T —6)+&(),i=12,---,N, (12)

]
where the tern®; ; represents the delayed phasé — 1), andt is a constant time
delay.

Our simulations are based on SF and SW networks. SF netwrelgeaerated
by the Barabasi-Albert model [2], where the initial netlwi a fully connected net-
work with M oscillators, labeled by=1,---,M. At every time step a new oscillator
is introduced to be connected kb existing oscillators. The probability that a new
oscillator is connected to oscillatbdepends on the degr&eof oscillatori, namely
IMi = ki/ 3 j k;. After repeating folN — M times, a SF network has a degree distrib-
ution P(k) ~ k~2 and the minimal degrégnin = M. SW networks are generated by
the Newman-Watts model [16]. The initial network i¥Ka-nearest-neighbor cou-
pled network consisting dfl oscillators arranged in a ring, with each oscillaitor
being adjacent to its neighbor oscillatdes 1, - - -, i + K/2, and withK being even.
Then one adds with probabilifya connection between a pair of oscillators.

In our simulations in this section, the initial couplings &dl incoming links for
each oscillator are zero, the natural frequencies of thiatscs are uniformly dis-
tributed in the interva]—1, 1], the transient time i = 100s, the length of intervals
is T = 1s, and the incremental couplinggs= 0.01. The solution of networks is re-
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Fig. 2 Simulation results in the Kuramoto model (1) with noise. Paeameterq(n) as a function
of n (a), and the paramete(t) as a function ofm (b), in SF networks (solid lineM = 4; dotted
line: M = 6) and SW networks (dashdot lin€:= 6, p = 0.01; dashed lineK = 8, p=0.01). All
estimates are the results of averaging over 50 realizations

solved using the Euler method and the step time0.02s, and the ending condition
for our scheme i (ng) — 1| < 10~ for certainno.

We first simulate SF networks witk = 1000 and SW networks witN = 1000
andp = 0.03 in the absence of noise. We plot the local order paramg#sra func-
tion of the adjustment time [Fig.1 (a)], and the global order parametexs a func-
tion of the stepm (= n/h) for solving the Kuramoto model [Fig.1 (b)]. Obviously,
due to our coupling scheme (8,9), the Kuramoto model (1)hresa synchronized
regime after several hundreds of adjustment steps. In éwveeyinterval, only one
incoming link’s coupling for each oscillator is adjustedthg same small incremen-
tal coupling, and the other incoming links’ couplings remaonstant. Hence the
intensitiesS for all oscillators are identical during the transition ymshronization.
From Fig.1(a,b), the extent of synchronization in the Kuoéanmodel increases
with increasing of the intensit$ given byS= S = ne. In our coupling scheme,
the intensitySis a good indicator for synchronization in the Kuramoto mogé¢
aboutn = 300, namelyS= 3, the Kuramoto model (1) is practically in a synchro-
nized state. However, equal intensities can not be ensyrethler known adaptive
coupling schemes [21,27]. The intensities in Ref. [27]rsglg depend on heteroge-
neous degrees in SF networks. The larger the degree of diatisds, the larger its
intensity is.

We also discuss the synchronization in SF and SW networksdifferent size.
Under the same ending condition, we observe that the adguststeps needed to
synchronize SF networks with the saiieare almost identical [Fig.1 (c)]. It further
means that the timendT) needed to synchronize SF networks with the sdvhe
is almost equal. We can also obtain similar results in SW agktsvwith the same
K and p. The steps in SW networks with the sampend a smalK are almost
identical while the steps in SF networks with differévitare also different. This
can be in part explained by the average degtde>= 2M in SF networks and
<k>~K+(N—-1)p/2in SW networks. When the average degree of networks is
smaller, it requires a longer time to synchronize networks.

After the ending of our scheme (8,9), we also analyze thetioelship be-
tween the normalized coupling matf& = (G;j) with G;; = V\/i?OAij/nos and the
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Fig. 3 Simulation results in the Kuramoto model (12) without noiShe parameterp(n) as a
function ofn (a), and the paramete(t) as a function ofn (b), in SF network (solid lineM = 4;
dotted line:M = 7) and SW network (dashdot link:= 6, p= 0.02; dashed lineK = 8, p=0.02).
All estimates are the results of averaging over 50 reatinati

coupling matrixGg = (VVi/J-Ajj) with V\/i/j = 1/ki. We compute the average error
Eav(k) = % Eékzl E4 betweenG and Gy, wherey is the number of oscillators with

the same degrée andEq = /¥ ;i (Gij — 1/ki)?/k; if ki = k. We show thaG;j is

almost identical to the value/k; (or Gij ~ ki’l) [Fig.1(d)]. After the ending of our
scheme, the coupling&qrj‘0 for the incoming links of oscillator are approximately
no¢/ki. Therefore, for SF networks with the sariveand SW networks with the
sameK andp, the maximal coupling relies on the minimal degree in neksor he
larger the degree of oscillators, the smaller the couplir'}g/irj‘0 is.

Even if there exists noise in the Kuramoto model (1), we can abtain similar
results in SF networks with differe and SW networks with differeri and p
[Fig. 2]. For the Kuramoto model (12) with delayed couplingsnulation results
are plotted in Fig.31{ = 1) and Fig.4 t = 3). Here we only plot figures on the
parametersy andr. From these figures, synchronization can be realized afédyt

Note that there are two parametdrsand € in our scheme. Due to the weak
coupling for synchronization in the Kuramoto modelgcan not be large, but the
lengthT of the intervals can be arbitrarily large. In our simulas@rcan be chosen
in the interval [0.0001,0.02]. For different values Bfand &, we obtain similar
results.

Remarks: Gomez-Gardefies al. proposed another order parametgg to mea-
sure the extent of synchronization [26], where

1 1 tr+4t _
Flink = lim / 1606 Wlgy). 13
link 2Njink Zje | |Alﬂoo A . b | ( )

whereNjnk is the number of links; is a large time. The averaging tindg is taken
large enough to obtain good measures of the degree of calegetween each pair
of physically connected oscillators. Eqgs. (4,5,7) in odresne can be replaced by

i 1 1 T 6 (t)—6:
Mlink = K 5 e300 Wlgt|, (14)

tho1
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Fig.4 Simulation results in the Kuramoto model (12) with noisee Parameterp(n) as a function
of n (a), and the paramete(t) as a function ofn (b), in SF network (solid lineM = 4; dotted
line: M = 6) and SW network (dashdot lin&: = 6, p = 0.01; dashed lineK = 8, p=0.01). All
estimates are the results of averaging over 50 realizations

1 1/ 5
Mlink (M) = mz % 5 \ et 1800 Ulgt|, (15)
1 jek; n-1

and _
h' = Tiink: (16)

respectively. One ending condition i, (no) — 1| < 10~2 for certainng. Since
numerical results are very similar to those with respechwpgarameters" and
ro(n) [Figs. 1-4], we omit corresponding figures.

The DGN approach can also be applied to CS in networks withtickd oscilla-
tors, whose state is representedxhyin this case, we should assign a suitable scale
field to oscillatori. Eqgs. (4,5,7) in our scheme can be replaced by

: 1 1 st

=i 3 7 [ Ixi=xillet (17)
link k. j;i T 1
th
) =3 3 7 [ il 19
2Nink 4 %, T Jtoa
and
A = k" 19

i = Tlink> (19)

respectively. One ending conditionris, (o) < € for certainng, ande is arbitrary
small.

3 CSand enhanced synchronizability in ACNs

In this section, inspired by the DGN approach, we develogtaranore effective
optimization coupling mechanism: the DO coupling mechanik does not only
realize different kinds of synchronization in networks llgo leads to enhanced
synchronizability in SF and SW networks. In this section, fikg consider CS in
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networks with undelayed or delayed couplings. Then we shaiy to enhance the
synchronizability in SF and SW networks.

3.1 CSin ACNs

Our general model for networks consisting\b€oupled identical chaotic oscillators
with a time-varying coupling matrix is given by

XiZF(Xi)+%Gin(Xj,Xi)7 (20)
=1

wherex; is the stateF(x;) is the dynamics of the individual oscillatgr, H(x;,X;)
is the inner coupling functiorG = (Gjj) is the outer coupling matrixGi; = W;Aij,
whereA = (Ajj) is the binary adjacency matriX; is the coupling strength of the
incoming link (i, j) pointing from oscillatorj to oscillatori if they are connected,
Gii = — Y jek; AijWj, Ki is the neighbor set of oscillator

In this section we consider CS in network (20) in two casg@fie case is the
network (20) with undelayed couplings, where the functidx;j,xi) = Ho(X;) —
Ho(x;), andHy is the output function for each oscillator. (ii) The otheseas the
network (20) with delayed couplings, in which the functidix;, xj) = Ho(x;(t —
7)) — Ho(xi(t)) with a time delayr > 0.

In the above section, we have proposed a DGN approach taee$ in the
Kuramoto model, and this approach can be also applied to Gtetimorks with
identical oscillators. However, the DGN approach is vergcsgl in two aspects.
One is that it should assign a scale potential to each oxileithin any time in-
terval, which depends on the extent of the local synchrdiozamong itself and
its neighbor oscillators. The other is that the incoming lio be adjusted by the
DGN approach is often not mostly effective. Inspired by ttheai of the DGN ap-
proach [22], we have further introduced a DO mechanism to &warks [42]. It
also reflects the “winner-take-all” strategy, where theimig link to be adjusted is
always chosen as a pair of oscillators with the weakest spmitation. This means
that the DO mechanism is much more effective than the DGNaampbr.

We first introduce the idea of the DO mechanism. In the infeftyet,.1), the
choice of the incoming link for oscillataris based on the maximal accumulated
synchronization error in its neighborhood, rather thareteling on the scalar fields
of oscillators [22]. The DO mechanism is introduced as fofio

(i) For the incoming link(i, j) of oscillatori, we accumulate the synchronization
errors by the integral function

tn

En(i,j) = [ @(xi,xj)dt, (21)

tho1
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Fig. 5 The average synchronization erioin SF networks with undelayed couplings as a function
of (a) timet, and (b) intensityS, by the DO mechanism. The parameters dre- 1000,M = 5,
T =1s,6 =0.001 ando = 1.5.

whereg is the error function relying on different kinds of synchization in net-
works.

(ii) By the optimization in the neighborhood of oscillatorwe identify the in-
coming link (i, j5,,,) with the index

_— .
Jmax = arg MavEn(i. j). (22)

(iii) We adjust the coupling strengilV; adaptively by

ijm

n+1 .__\p/n
g~ Ao 23
W =W, ] # Jimax

Compared with the incoming link generated by the optimaascheme (6,7),
namely the DGN approach, the incoming link generated by tlerBechanism
is much more effective. Further, there is one common polg:intensities of the
oscillators in the networks are also uniform, since at eégh the intensity of each
oscillator increases by the same amaogidtring the transition to synchronization.

Our simulations in this section are also based on SF netwgekerated by
the Barabasi-Albert model [2] and SW networks generatethByNewman-Watts
model [16]. In the following, network (1) is a network of Rabsr oscillators:
Xi = (%,Yi,z), F(xi) = (—0.97y; —z,0.97x + 0.15y;,z (X, — 8.5) + 0.4), the function
Ho(Xi) = (x,0,0), and the error function

(xi,Xj) = X —Xj| + |y —yj| + 12 —z].

In order to verify CS, we define the average synchronizatioor @s

1 N
E:—Z -

wherex = (x,Y,Z) is the mean-field of ak;. In our simulations, the initial coupling
strengths for all incoming links are zero, the transienttisig = 100s, the length of
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Fig. 6 The intensities§ as a function of time for arbitrarily 20 oscillators in SW networks with
undelayed couplings (a), or delayed couplings (b), by theuZKurths method. The parameters
areN =500,K =4, p=0.003,y = 0.002,7 = 0.01s.

time intervals isT = 1s, ands = 0.001. Further, initial conditions for all oscillators
are randomly chosen from the chaotic attractor. The salubibnetwork (20) is
solved by using the Euler method with the time steg: 0.01s, and our ending
condition for the DO mechanism B < 1075

For network (20) with undelayed couplings, CS is realizdeaively [Fig.5].
From Egs. (22,23), all oscillators have uniform intensitikiring the transition to
synchronization, regardless of heterogeneous degre¢shiBus totally different
from adaptive networks [21,27]. The average intenSitly) over oscillators with
degreek increases aS(k) ~ kP with 8 ~ 0.5 [27].

After the adaptation, network (20) with undelayed cougirmgin be rewritten
asx; = F(xi) + S[Ho(xi) — Ho(Xi)], whereSy = eng is the ultimate intensityng
is the ending adjustment step, and= (1/ki) ¥ jc; X;j is the local mean field of
neighbors [32]. In randomly enough networks the local megld §; of oscillators
with kj > 1 can be approximated by the global mean figlet x. Hence we get; ~
F(xi) 4+ So[Ho(X) —Ho(xi)]. Hence all oscillators are forced by a common mean field
signalHo(x) with the same forcing streng, and all oscillators synchronize at a
similar speed to the mean activity The speed only depends on the same intensity
(i.e. the sum of input signals each oscillator receiveg)aréless of the network
size. The independence of the network size is not satisfi€&kfs. [21,27], where
the speed strongly relies on heterogeneous intensities.

For the network (20) with undelayed couplings, the adapdivategies can re-
alize CS both in SF networks with undelayed couplings andvihri@tworks with
undelayed couplings [43]. However, even for SW network$wibmogeneous de-
grees, the adaptive strategies can not ensure unifornsitigeif all oscillators have
different initial conditions. We plot the intensiti&s(i.e. § = ¥ jk, Gij), for 20 ar-
bitrarily chosen oscillators in SW networks according te #hou-Kurths method
[Fig.6(a)]. When the adaptation parameter is chosen-a$.002, we find that the
Zhou-Kurths method can not ensure uniform intensitiesrduar after the adap-
tation. Based on the DO mechanism, synchronization in SWors is realized
effectively [Fig.7(a)], and the intensities are alwaysfar during the transition
to synchronization. From Fig.7(b), the intens8y= S is also a good indicator for
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Fig. 7 The average synchronization eri®rin SW networks with undelayed couplings as a func-
tion of (a) timet, and (b) intensity§, by the DO mechanism. The parametersire 500,K = 4,
p=0.003,T =1s,& = 0.001.

synchronization in networks. ASincreases to a critical value, a network becomes
synchronous.

For the network (20) with delayed couplings, even for a siirakk delayr (such
ast = 0.01s), the Zhou-Kurths method can not realize synchrominati SW net-
works [Fig.8(a)]. The synchronization error between twargected oscillators is
about 102 x 500= 5 for networks withN = 500. Due to the DO mechanism, syn-
chronization can be realized effectively when the time gela- 2s [Fig.8(b)]. The
synchronization error is about 1®x 500= 0.005. Hence the DO mechanism is
much more effective than the Zhou-Kurths method. The maisoe is that the DO
mechanism enures that the intensities are always unifomnglthe transition to
synchronization. But the Zhou-Kurths method can not ensaitorm intensities
even for a small time delay [Fig.6(b)]. Though the differemé intensities between
oscillators is small initially, it becomes large as timereg&ses. The uniformity of
intensities is a necessary condition for the existence ghalgonous manifold in
NW networks with delayed couplings. After the adaptatidwe, $ynchronous man-
ifold is given by {xi(t) = xp(t),i = 1,---,N}, wherexq(t) is the solution of the
isolated dynamics

Xo(t) = F(xo(t)) + So(Ho(Xo(t — T)) — Ho(Xo(t)))-

Remark: The DO mechanism can be also applied to PS in networks with non
identical oscillators, provided that the phase in netwask®scillators is well-
defined [6]. For the Kuramoto model, the accumulated symihation error (21)
is defined by

. 1 -
En(i,))== [ [1—rn(i,j)dt (24)
tho1
with rn(i, j)ef*h(h) = (e48i 1 ef8) /2, where O< rq(i, j) < 1 measures the extent of

synchronization of oscillatoris j, and¥4(i, j) stands for an average phase.

For the networks = 1jFi(xi) + zz-\l:]_Gin(Xj,Xi), where the parameter is
distributed uniformly in an intervdll — A1, 1+ At] with the paprametef\7 = 0.1,
the accumulated synchronization error (21) is defined by
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Fig. 8 The average synchronization eri®in SW networks with delayed couplings as a function
of timet. (a) the Zhou-Kurths method & 0.01s). (b) the DO mechanism £ 2s). The parameters
N =500, p=0.003,y =0.002,T = 1s,& = 0.001.

1

En(i,j) == [ [1-rn(i,j)dt, (25
Jth-1

wherer, (i, j)ef () = (&£9i 4-€¢91) /2, the phasé; can be simply defined b§; =
arctarfy;/x)i) [6]. Of course, for the above two cases, we should choosalsait
ending conditions (such as Eq.(15) dn, (no) — 1| < 1072).

Note that the DGN approach can be also applied to PS in nesmwitk much
more complex non-identical oscillators, such as the ndtsiof Rossler oscillators.
In this case, the order paramete(s), ri(t), fink, rl'i’r:‘k are defined according to the

phased;.

3.2 Enhanced synchronizability in ACNs

We first briefly review the stability of networks with one tiAfnevariant topology:
N

% =F(xi)+0 5 GjHo(xj), L<i<N, (26)
=1

whereo is the overall strengtli(x;) is the dynamics of individual oscillatdfp(x;)
is the output function. For a generally asymmetric ma@fk= (G}) with G, =

V\/i(j’A;j, the variational equation for the synchronous sfage=s, Vi} is

& = [DFo(s) — oA\DHo()]&, (27)
whereD is the Jacobian operatoy, are the complex eigenvalues of the Laplacian
matrix L (= —G9), satisfying RéA;) < Rg(Az) < --- < Re(Ay). The largest Lya-
punov exponent (LLE)A (a, 8), of

N = [DFo(s) — (a +iB)DHo(s)]n (28)
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Fig. 9 The ratio RéAn)/Re(A2) as a function of the adjustment stepn SF networks. Solid line:
CS in network (26) withG® = G; dotted line:Rypt. Inset: the stationary ratio. The parameters are
N =1000,M =5, T = 1s ands = 0.001.

is a function ofa and, which is the master stability function (MSF) [17,18]. Let
Z be the region in the complex plane where the MSF provides ativeg_LE. The
condition for CS in network (26) is that the sfdrA;, VI} is entirely contained in
Z [17]. Here we only consider the case where the regiois bounded. Then, a
better synchronizability is achieved if simultaneously thtio RéAy)/Re(A2) and
maxIm(A;)| are minimized [33,38].

For SF networks, the DO mechanism realizes CS in network ¢&eytively.
During the transition to synchronization in network (20 tratio RéAn)/Re(A7)
in network (26) withG® = G approaches the optimal synchronizabilRyy: = 3.8
[Fig. 9]. The valueRop is determined by the coupling matri® (a) = (Gj;(a))
with G{; (a) = (kikj)/ ¥ jek; (kikj)* andGj;(a) = —1, which extends the couplings
in networks [39]. Whero = 0, the eigenratio of the Laplacian matrix Gf(0) is
minimal and the synchronizability in network (26) wi@? = G'(0) is optimal [39].
From Egs. (21-23), the incoming link to be adjusted for eastillator is always
chosen to be the pair of oscillators with the maximal synotration difference in
the previous time interval, which substantially decredbesatio RéAy)/Re(A2).
From Fig. 9, this is a dynamical process towards the optigratisronizabilityRop:.

Here we assign the coupling mat®® in network (26) by

GO = Gnorm = Gend/sa (29)

where Ggpg is the coupling matrix of network (20) after the adaptati@mnce
all oscillators have uniform intensities, the Laplaciantticas of Gporm and Geng
have equal ratios Rén)/Re(A2). The ratio R€An)/Re(A2) in network (26) with
G° = Gnorm is shown by the stationary value [Fig.9: Inset]. When= 1.5, all
nonzero eigenvalues of the Laplacian matrixo®,om are located in a very narrow
region around the real axes in the regi@h and the absolute values of imaginary
parts are sufficiently small [Fig.10]. Hence the ratiq R¢) /Re(A2) is a good indi-
cator for the synchronizability in network (26). In this sea the synchronizability
in network (26) withG® = Gnom is quasi-optimal, compared with the optimal syn-
chronizability [39].
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Fig. 11 (a,b) The ratio Re\n)/Re(A;) for differentT (a) ande (b), in SF networks wittN = 1000,
M = 5. Solid line: CS in network (26) witlt® = Gorm; dotted line:Rypt. All the estimates are
averaged over 20 realizations of networks.

We discuss the effect of the paramet&rande on the synchronizability in net-
work (26) with G® = Gporm [Fig.11]. The values can be chosen in a wide range,
and the lengtfT can be arbitrary large. In our simulatioass from [0.0001,0.005].
From Fig.11, the ratio Ran)/Re(A;) is almost independent of the valuesToand
E.

The ratio RéAn)/Re(A;) in network (26) withG® = Gpom increases slightly
with increasing network sizN, and can be well-fitted by a power-law dependence,
i.e. the synchronizability decreases slightly [Fig.12pt the fitting, we find that
the network (26) is still synchronizable tN ~ 10, In this section, the size of the
network (26) that is synchronizable exceeds by severarsaianagnitude the size
of unweighted networksy¥ 10°) and networks with adaptive couplings 8 x 10°)
[27]. Obviously, this is a great enhancement of the syndhaednility in networks,
compared with unweighted networks and networks with ademduplings [27]. It
should be pointed out that for different size of networksxiira(A;)| is sufficiently
small (the maximal value is less than 0.06).

The above result can be ensured by the Gerschgorin diskeimej@rl]. For the
coupling matrixG® = Gnom, all eigenvalues are fully contained within the unit cir-
cle centered at 1. SoORe(A)) < 2,|Im(A))| < 1, and the largest R&y) will never
diverge, independently of the network sixg38]. During the transition to synchro-
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Re(\)/Re(A,)

Fig. 12 The ratio RéAn)/Re(A,) for different size of SF network (26) withl =5, 1=1, ¢ =
0.001. Diamond: unweighted networks; square: networks wdtipéive couplings [17]; circle: CS;
fitting: solid line; dotted lineR; = 40 (the maximal ratio R&n)/Re(A2) in the regionZ). All the
estimates are averaged over 20 realizations of networks.

nization in network (20)Smax/Smin always equals to 1. In Refs.[27,32], the syn-
chronizability decreases with the increasingSefx/ Smin, but Smax/ Smin increases
with the increasing of the sizN. Hence the synchronizability here is better than
the synchronizability in Ref.[27], whose main aim is to redthe heterogeneity of
intensities adaptively.

From the above analysis, we find that the DO mechanism raaudtbetter syn-
chronizability in SF networks, compared with unweightetihwogks and adaptive
networks. Now we also discuss the synchronizability in SWivoeks due to the
DO mechanism.

Obviously, the synchronization in SW networks can be redlizy the DO mech-
anism. Similarly, we assign the coupling mat@%in SW networks by Eq.(29), after
the adaptation. In order to enhance synchronizability ini8works, we compare
the synchronizability in the unweighted network (26) (typletworkzvvi? =1),the

degree based weighted network (26) (type Il netwdb}?:: 1/k), network (26)
with adaptive couplings by the Zhou-Kurths method (typenkitwork), and net-
work (26) with the coupling matrix being designed by netw(#®) with undelayed
couplings (type IV networks).

We find that for a fixed small probability (such agp = 0.003) for adding long-
range connections, the synchronizability in type Il netkgois better than that in
type | networks, but it is worse than that in type Il netwonke, matter how large
the sizeN of the networks is [Fig.13(a)]. However, we find that type Istworks
have a better synchronizability than both type Il and typenétworks when the
size is not too large. Of course, the smaller the probabjifg, the larger is the
size of type IV networks with better synchronizability thaath type Il and type Il
networks. For the fixed sizd = 500, we observe similar results in a certain range
of the probabilityp [Fig.13(b)]. From Fig.13, we see that the synchronizapilit
type IV networks is better than those in type Il networks ayktlll networks in
some cases. Itis reasonable that type IV networks have lsgtiehronizability than
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Fig. 13 For SW networks, the ratio R&y)/Re(A2) as a function of the network si2éfor a fixed
probability p = 0.003 (a), and the probabilitp for a fixed sizeN = 500 (b). Yellow line (square):

type | networks; green line (diamond): type Il networks;ebline (circle): type Il networks; red
line (big triangle up): type IV networks; black dashed litlee maximal ratio% in the region
Z%. The parameters ate = 4, y=0.002, T = 1s,& = 0.001. All the estimates are averaged over
20 realizations of networks.

type Il networks. This is because the DO mechanism ensurisrm intensities
of all oscillators in type IV networks. Now we further anagythe reason why type
IV networks have better synchronizability than type Il netiss in a certain range
of the probabilityp.

In order to do so, we slightly modify SW networks. The initi@twork is a
K—nearest-neighbor coupled network consistinlafscillators arranged in a ring,
with each oscillator being adjacent to it& neighbor oscillators+ 1, ---, i +K/2,
and withK being even. Then one adds with probabilitya long-range connection
between a pair of oscillators with indices satisfying

n<min{fi—j|,N—|i—j|} <n, (30)

where 0< ng, np < N/2 are two positive integers. This kind of networks is called
type V networks. Based on type V networks, we adjust the d¢ogstrengths by the
DO mechanism. After the adaptation, we define the averaggiogustrengthi\\{,)
over theky links having the same= min{|i — j|, N—|i — j| }:

W)= 5 Gy, 31

Further, for unweighted type V networks, the average Ilad over thek links
having the same s given by

(Lv) = k_1|_ > Lij, (32)

where the load.,j of the link connecting oscillatorisand j quantifies the traffic of
the shortest paths passing that link. Here the size of typetWarks isN = 300 and
the probabilityp = 0.2. For differentn; andny, we plot the relationship between
(W) andv [Fig.14(a,d,g)], and the relationship betwegr) andv [Fig.14(b,e,h)],
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ny = 150 (g,h,i). The parameters in type V networks Bre- 300,K =4, p=0.2, T =1s,€ =
0.001.

respectively. From these subfigures, we conclude(tNgthas a similar dependence
onvas(Ly), which is further verified by the relationshig{,) ~ (L) [Fig.14(c,f,i)].
This implies that the adaptation due to the DO mechanism mag to a similar
synchronizability as the load based weighted networkss Ty in part explain
why type IV networks have a better synchronizability thapetyl networks in a
certain range of the probability for adding long-range connections.

Remarks: From the above subsection, we can extend the DO mechanis® to C

in network (20) with the coupling functiold (x;, x;)

H(xj(t— 1)) —H(x) and a

small delay timerg (such asg < 2). The DO mechanism ensures that all oscillators
have uniform intensities, which leads to the existence gih&lsronous manifold in
network (20). However, it can not be realized by the dynahmehanism proposed
in Ref.[27]. Due to the DO mechanism, we can also obtain @bgynchronizability

in SF and SW networks due to CS in networks with delayed cogpliHere we omit

the corresponding results.

From the DGN approach and the DO mechanism, the two couptihgnses
are “winner-take-all” strategies. This implies that theemsity S for oscillatori in-
creases to infinity as the adjustment timtends to infinity. Hence there is one short-
coming: we should choose suitable conditions to end thetatiap of the above two
mechanisms. In fact, this shortcoming can be overcome btsfi modifying the
adjustment (8,9) for the DGN approach and the adjustmentf¢23he DO mech-
anism. Here the adjustment of couplings for the incoming ivith the maximal
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competition ability is modified as follows:

vvi';iﬁl =W + ge ko (33
for the DGN approach, and
WA =W, +ee ko (34)
max Jmax

for the DO mechanism, whellg is a suitable positive integer. From Eqgs. (33,34),
the intensityS still increases, and all oscillators have uniform intaasitHowever,
the intensityS for each oscillator can not increase to infinity, and can bended
by the limitS= lim_...S for all oscillators, where

S=ge Vo /(1—e ), (35)

Obviously, we can adjust the ultimate intensity for all datdrs by a suitable pa-
rameterkg. Whenkg is larger, the intensitys is larger; wherkg is smaller, the in-
tensity S is also smaller. It should be noted that we obtain similaultesf we
choose the parameteks = 500 ¢ = 0.01 for PS in the Kuramoto models and
ko = 100Q £ = 0.001 for CS in networks of Rossler oscillators, respectivel

4 Conclusions

In this chapter, we introduce two dynamical optimizationjgliing mechanisms for
getting different kinds of synchronization in adaptive gdex networks, whose os-
cillators could be either identical or non-identical. Fack oscillator, we adjust only
one incoming link’s strength in different time intervals Mehthe other incoming
links’ strengths remain constant. The dynamical optini@atoupling mechanisms
are in effect “winner-take-all” strategies. If one incomitink for each oscillator
has the maximal competition ability in its neighborhood iffiedtent time intervals,
its strength increases by a small value. We realize difttgmls of synchroniza-
tion in adaptive complex networks with undelayed or delagegplings, as well as
ensure that all oscillators have uniform intensities dyitime transition to synchro-
nization. We also enhance the synchronizability in compketworks with identical
oscillators.
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