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We investigate an experimentally feasible synthetic genetic network consisting of two phase repulsively
coupled repressilators, which evokes multiple coexisting stable attractors with different features. We perform a
bifurcation analysis to determine and classify the dynamical structure of the system. Moreover, some of the
dynamical regimes found, such as inhomogeneous steady states and inhomogeneous limit cycles can further be
associated with artificial cell differentiation. We also report and characterize the emergence of chaotic dynam-

ics resulting from the intercell coupling.
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I. INTRODUCTION

The design of artificial genetic units resembling submod-
ules of natural circuitry in the cell has led to the construction
of bacterial strains that exhibit programmed behavior.
Switches [1], oscillators [2,3], and logic gates [4] are well-
defined components of artificial genetic networks based on
which a complementary approach has been developed, to
generate and test hypothetical principles underlying the evo-
Iution and operation of biological networks. Most of the ar-
tificial components are thus not direct derivatives of natural
circuits, but are created to accomplish predefined functions
in isolation from the rest of the cellular machinery of the host
cell. This approach offers the opportunity to design and study
specific functions and signaling pathways for which limita-
tions occur in a natural environment.

Given that cells are frequently subject to chemical signals
from neighboring cells, it is a natural step to combine syn-
thetic genetic networks with a chemical cell-to-cell commu-
nication mechanism. The ability of cells to communicate
with one another allows them to coordinate the behavior of
the entire community. A well-defined example of coordinated
global behavior in bacteria is, e.g., the quorum sensing
mechanism, through which gene expression in bacteria is
regulated in response to the local cell population density. In
that sense, a recent modeling study has shown the possibility
of implementing an enhanced macroscopic genetic clock,
consisting of repressilators positively coupled through a
quorum-sensing mechanism [5]. That approach enables a di-
verse and noisy community of synthetic gene oscillators, in-
teracting through a quorum sensing mechanism, to self-
synchronize in a robust way, leading to improved
rhythmicity of the system. In contrast to such positive cou-
pling, in what follows we consider a cell-to-cell communica-
tion module designed to have a repressive and phase-
repulsive influence on the repressilator oscillations. It is a
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widely accepted fact that a phase repulsive coupling [6-8]
leads to competition and avoidance between network com-
ponents in physics and biology, and is used, e.g., to explain
morphogenesis in Hydra regeneration and animal coat pat-
tern formation [9], neural activity in the brain of songbirds
[10], regulation in the respiratory system [11], and global
behavior of synthetic genetic networks [12,13].

Recently, we showed that a repressilator population con-
sisting of 100 cells with repressive cell-to-cell communica-
tion offers a very diverse dynamics, due to the inherited mul-
tistability and multirhythmicity [13], and exhibits a high
adaptability typical of natural systems. These effects can be
very important for the construction of genetic networks and
understanding of evolutionary effects behind the mechanisms
of cell differentiation and genetic clocks. The ability of a
genetic unit to produce different dynamical regimes that co-
exist provides improved adaptability: If a cellular state be-
comes unprofitable for the cell, the genetic unit can easily
switch to some of the other available coexistent states.
Therefore, in the present paper we perform a detailed bifur-
cation analysis of a minimal system of two repressilators
coupled via repressive cell-to-cell communication, in a bio-
logically realistic parameter range. The analysis reveals the
dynamical structure of the model, allowing us to classify the
character of the regimes present and explaining in detail the
transitions between them. Moreover, we report and discuss in
detail a chaotic regime found in certain parameter ranges. It
is important to note here that the discussed repressilator is, to
our knowledge, the first synthetic genetic model displaying
chaotic dynamics in a biologically reasonable parameter
range. We further discuss the importance of these dynamical
regimes in coupled genetic networks for new applications
regarding the design of genetic clocks, synchronization prop-
erties with the cell cycle [14], chronotherapy, etc.

II. MODIFIED REPRESSILATOR WITH REPRESSIVE
CELL-TO-CELL COMMUNICATION

The repressilator consists of three genes whose protein
products repress the transcriptions of each other in a cyclic
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FIG. 1. (Color online) Scheme of the repressilator with quorum
sensing cell-to-cell communication: with reinforcing coupling [5]
(top) and repressive coupling (bottom).

way [2]. The gene lacl expresses protein Lacl, which inhibits
transcription of the gene fefR. The product of the latter, TetR,
inhibits transcription of the gene cI. Finally, the protein prod-
uct CI of the gene ¢/ inhibits expression of lacl and com-
pletes the cycle (left-hand module in Fig. 1). An additional
feedback loop involving two proteins, LuxI and LuxR,
placed on a separate plasmid, realizes the cell-to-cell com-
munication [5,15,16]. The LuxI protein is responsible for the
biosynthesis of a specific, acylated homoserine lactone sig-
naling molecule, known as the autoinducer (AI). The autoin-
ducer is a small molecule that can diffuse through the cell
membrane, providing the means for chemical communica-
tion between neighboring cells. It binds the LuxR protein,
and the LuxR-AI complex further activates targeted gene ex-
pression, in this case, the additional lacl gene.

In [5] it was suggested to place the gene luxI under in-
hibitory control of the repressor protein Lacl (Fig. 1 top).
The additional negative feedback loop in this case coincides
with the overall negative feedback along the repressilator
ring and evokes a reinforced coupling. An ensemble of re-
pressilators engineered in this way tends to achieve in-phase
oscillations with strong global self-oscillations. However, in
contrast to [5] we investigate here the case of a repressive
and phase-repulsive coupling. For this purpose, we have
modified the initial scheme (top module in Fig. 1), placing
the gene lux/ under inhibitory control of the repressilator
protein TetR (Fig. 1 bottom). The proposed rewiring between
the repressilator and the quorum sensing module introduces
an additional loop which competes with the overall negative
feedback loop along the repressilator ring, resulting in a
phase-repulsive intercellular coupling.
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The mRNA dynamics is described by the following Hill-
type kinetics with Hill coefficient n:

(o4

qi=—a;+——, 1
! e )
. o
bi:_bl N 2
1 +A7} @
Si
i=—c;+ - + Kk——, (3)
1+B} 1+,

where the subindex i specifies the cell, and a;, b;, and ¢;
represent the concentrations of mRNA molecules transcribed
from the genes of fefR, cl, and lacl, respectively. The model
is made dimensionless by measuring time in units of the
mRNA lifetime (assumed equal for all genes) and the mRNA
and protein levels in units of their Michaelis constants. The
mRNA concentrations are additionally rescaled by the ratio
of their protein degradation and translation rates. « is the
dimensionless transcription rate in the absence of a repressor
(assumed equal). « is the maximum transcription rate of the
LuxR promoter. The dynamics of the proteins is linked to the
amount of the responsible mRNA, and the parameter 8, .
describes the ratio between mRNA and the protein lifetimes
(inverse degradation rates). We assume different lifetime ra-
tios for the protein-mRNA pairs which results in a weak
relaxatorlike dynamic of the repressilator.

The variables A;, B;, and C; denote the concentration of
the proteins TetR, CI, and Lacl, which have dynamics given
by

Ai = ﬁa(ai _Ai)’ (4)
Bi= Bb(bi_Bi)a (5)
Ci=B(c;-C). (6)

The cell-to-cell communication is realized by the small
autoinducer protein (AI). Assuming equal lifetime of the CI
and LuxI proteins, their dynamics are identical, and hence
we will use the same variable to describe both protein con-
centrations. The Al concentration S; in cell i is proportional
to B,, i.e., the concentration of LuxI protein in it. The Al
concentration S; is scaled by its Michaelis constant as well.
The dynamics of the internal Al is also affected by an intra-
cellular degradation, and by diffusion toward or from the
intercellular space,

Si=_ksOSi+kSlBi_ n(Si_Se)7 (7)
S,=0S, (8)
1 N
S=—>5.. 9
NE , )

The diffusion coefficient 7 depends on the permeability of
the membrane to the autoinducer. Due to the fast diffusion of
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the extra-cellular AT (S,) compared to the repressilator pe-
riod, we can apply the quasi-steady-state approximation to
the dynamics of the external Al and replace the dynamics of

the extra-cellular Al S, by the mean field of the internal Al §
[5].

The parameter Q is defined as Q=06N/V./ks,+ ON/Vey
[5], with N the number of cells, V,,, the total extra-cellular
volume, k,, the extra-cellular Al degradation rate, and & the
product of the membrane permeability and the surface area.
The coupling coefficient Q is proportional to the cell density
and can be varied in the range between O and 1 in a con-
trolled way in a chemostat experiment by changing the total
chemostat volume. Therefore, in the numerical investigations
that follow we use Q as bifurcation parameter.

The parameter values used, given in the caption of Fig. 2,
are experimentally reasonable, corresponding to mRNA life-
times of 5 min, a TetR protein lifetime of 5.9 min, a CI and
Lacl protein lifetime of 50 min, an Al lifetime of 5 min,
Michaelis constants of 20 nM, translation rates of
0.1 proteins/s, and an unrepressed transcription rate of
0.4 transcripts/s for tetR and 0.047 transcripts/s for ¢/ and
lacl. We assume k,,~ 0.6 h™!, which is reasonable for a me-
dium with pH~7 [16]. The membrane permeability coeffi-
cient for the Al corresponds to 107° m/s, which is on the
order of magnitude of similarly sized biomolecules, such as
tryptophan and glucose [17].

III. BIFURCATION ANALYSIS FOR TWO COUPLED
REPRESSILATORS

Models of synthetic genetic applets usually either consist
of single synthetic units [1,2] or exhibit in-phase oscillatory
behavior [3,5]. On the other hand, other regimes including
clustering, with the possibility of different distributions be-
tween clusters, have been reported recently in networks of
synthetic genetic oscillators of different types [12,13]. In par-
ticular, the model described in the preceding section exhibits
multistability and oscillation death [13]. Figure 2 shows rep-
resentative time traces, obtained by direct numerical calcula-
tions of a population of N=2 coupled repressilators, for in-
creasing coupling strength. The different dynamical regimes
found are self-sustained oscillatory solutions [Fig. 2(a)], in-
homogeneous limit cycles (IHLC) [Fig. 2(b)], inhomoge-
neous steady states (IHSS) [Fig. 2(c)], and homogeneous
steady states (HSS) [Fig. 2(d)], all of which exist for biologi-
cally realistic parameter ranges. Here we present a detailed
bifurcation analysis that allows us to determine the origin of
the different solutions and the scenarios of transitions be-
tween them, thus providing deeper qualitative and quantita-
tive conclusions about the structure and dynamical behavior
of the system.

The analysis is performed using the XPPAUT package [18]
for a system of two coupled genetic oscillators, and shows
that already two oscillators provide a large variety of pos-
sible regimes. In the bifurcation analysis below we use the
coupling strength Q [Eq. (8)] as a biologically relevant pa-
rameter to obtain one-parameter continuation diagrams. Q is
proportional to the cell density and can be changed experi-
mentally in chemostat experiments in the range between zero

PHYSICAL REVIEW E 78, 031904 (2008)

1 n n n n L f d h
400 600 800 1000

(a) time

0 200 400 600
(b) time

2+ 4

0200 400 600 800 1000
(c) time

0 T TT00 200 300 400500
(d) time

FIG. 2. (Color online) Typical time series of the a; mRNA con-
centration for the four stable regimes: (a) Q=0.1, oscillatory; (b)
0=0.3, inhomogeneous limit cycle; (c) Q=0.4, inhomogeneous
steady state; and (d) Q=0.4, homogeneous steady state. The com-
mon parameters are N=2, n=2.6, a=216, £,=0.85, B,=0.1, B,
=0.1, k=25, ky=1.0, k;;=0.01, »=2.0.

and one. Values beyond this range do not have biological
meaning, but can be helpful for a formal bifurcation analysis.
Thus, starting from the homogeneous unstable steady state of
isolated oscillators (Q=0), we have obtained the basic con-
tinuation curve containing the homogeneous and inhomoge-
neous stable steady states (the stability regions of HSS and
IHSS are shown on Fig. 3). It is necessary to mention here
that the bifurcation diagrams shown in what follows (Figs.
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FIG. 3. (Color online) Bifurcation diagram obtained by variation
of Q, illustrating the stable-steady-state regimes (HSS and IHSS).
For parameters values see Fig. 2. Here, thin solid lines denote the
HSS, thick solid lines the IHSS, and dashed lines denote unstable
steady states. The same bifurcation diagram is valid for the second
repressilator.

3-5) depict only those bifurcation points and solutions that
are in the center of the corresponding discussion.

The basic continuation curve is characterized by two im-
portant properties: (1) the presence of broken symmetry bi-
furcations (BP; and BP, in Fig. 3) where inhomogeneous
solutions arise, and (2) the stabilization of the homogeneous
state for large coupling values (Q>0.129). The HSS solu-
tion is characterized by a constant protein level concentra-
tion, stabilized through a saddle node bifurcation (LP; in
Fig. 3). A typical time series of this regime can be seen in
Fig. 2(d). Additionally, another HSS branch is found between
LP, and HB, (Fig. 3), but it is located outside the biological
relevant range (since Q> 1).

As a result of the symmetry breaking of the system
through a pitchfork bifurcation (BP; in Fig. 3), the unstable
steady state splits in two additional branches, giving rise to
an inhomogeneous steady state (IHSS). This particular phe-
nomenon is model-independent, persisting for large paramet-
ric regions in several models of diffusively coupled chemical
[19-21] or biological oscillators [3,22]. The THSS in our
model is manifested through two distinct steady protein con-
centration levels [Fig. 2(c)], gaining stability through a Hopf
bifurcation, denoted as HB; in Fig. 3, and thus leading to the

FIG. 4. (Color online) Bifurcation diagram versus coupling Q,
with a focus on the IHLC and the IHSS. The stable IHSS is repre-
sented by a thick blue line, the stable IHLC with a thick orange line,
and the unstable IHLC is represented with a dashed yellow line.
Parameters are those of Fig. 2.
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FIG. 5. (Color online) Bifurcation diagram versus coupling Q,
focusing on the stable antiphase oscillations (thick yellow line).
Parameters are those of Fig. 2.

so-called “oscillation death” (OD) regime. This regime arises
at a critical coupling Q.;,=0.3588 for the set of parameters
used here, and is stable until LP, at 0=0.5548. The IHSS
solution coexists in the Q parameter space with the HSS
(Fig. 3). For example, for Q=0.37 there is a coexistence of
nine steady-state solutions, three of them stable and six un-
stable.

The next step of the bifurcation analysis is to study the
limit cycles that arise from the Hopf bifurcations found on
the basic continuation curve. In particular, the Hopf bifurca-
tion HB; gives rise to a branch of stable inhomogeneous
periodic solutions, known in the literature as inhomogeneous
limit cycle (THLC) [23]. The manifestation of this regime is
however different in different systems: For two identical dif-
fusively coupled Brusselators, e.g., it is defined to be a peri-
odic solution of the system of oscillators rotating around two
spatially nonuniform centers [23,24]. For the model investi-
gated here, the manifestation of the IHLC is somewhat dif-
ferent: The IHLC is characterized by a complex behavior,
where one of the oscillators produces very small oscillations
of the protein level, whereas the other one oscillates in the
vicinity of the steady state with an amplitude just slightly
smaller than that of an isolated oscillator [see Fig. 2(b)]. The
THLC is stable for values of Q between HB, and LPs (Fig.
4). In the case of the two-oscillator system considered here,
each oscillator has the same probability to occupy and stay in
the upper or lower state, due to the symmetry of the system.
The initial conditions are the only factor determining the
separation of the oscillators.

For coupling values smaller than a given critical value
0i:<0.129, the system is characterized by a self-oscillatory
solution. For two coupled oscillators, this regime corre-
sponds to antiphase oscillations. As shown on Fig. 5, this
state belongs to a branch of periodic orbits originating at the
Hopf bifurcation HB,. Figure 5 illustrates in detail the bifur-
cation structure of the antiphase dynamics when Q is being
varied. Stable antiphase oscillations are observed between
HB, (Q=1.253) and TR, (torus bifurcation for Q=1.137),
and from Q=0 until TR, (Q=0.5848). As demonstrated, this
solution loses its stability for 0.5848 <(Q <1.137. Direct nu-
merical simulations revealed the existence of complex be-
havior in the latter range of Q values, which we discuss in
detail in Sec. V.
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FIG. 6. (Color online) Bifurcation diagram versus the coupling
Q where the periodic branch of the unstable synchronous oscilla-
tions (red dashed lines) is shown. Parameters as in Fig. 2.

In contrast to the case of positively coupled repressilators
[5], where coupling was seen to provide coherence enhance-
ment, investigations of the dynamical structure of the system
with phase-repulsive coupling by means of direct calcula-
tions [13] did not reveal the presence of a stable in-phase
regime (synchronous oscillations over the entire cell popula-
tion). The present bifurcation analysis confirms this result: A
branch of synchronous periodic oscillations is in fact seen to
emanate from HBj, but it is unstable (Fig. 6). We have fur-
ther confirmed that the in-phase regime is unstable for all
values of a and Q studied, in contrast to the antiphase limit
cycle oscillations, which arise even for small « values. The
existence of this antiphase (or phase-shifted) solution is a
clear manifestation of the phase repulsive character of the
Al-mediated coupling, which enhances the phase difference
between the oscillators in the model, until the maximal phase
difference of 7 is reached.

IV. COMPARISON BETWEEN BIFURCATION ANALYSIS
AND DIRECT CALCULATIONS

To compare the bifurcation analysis with the results of
direct calculations, we calculated 1000 time series for the
system of two coupled repressilators with different random
initial conditions for every parameter set, using an uniform
distribution [25] in the range [0,220] for the mRNA and pro-
tein initial conditions and [0,1.2] for the AT initial condition.
The 1000 random initial conditions cover the 14-dimensional
phase space of the system (7 degrees of freedom per oscilla-
tor) densely enough such that one can detect stable coexist-
ing attractors with a significant basin of attraction. The direct
calculations described here represent a different approach
from the bifurcation analysis, and are valid for large system
sizes as well. Therefore, the combination of both methods
sheds light on the dynamics of the repressilator model with
repressive cell-to-cell communication. All the direct numeri-
cal simulations are performed in the same manner as in Ref.
[13] for an ensemble of 100 repressilators.

Figure 7 (top) shows the stable-steady-state and limit-
cycle branches as obtained from the bifurcation analysis,
whereas the bottom plot represents the percentage of regimes
as determined by the direct calculations described above.
Both methods predict and confirm that for small coupling,
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FIG. 7. (Color online) Comparison between the bifurcation
analysis (top) and the direct calculation with random initial condi-
tions (bottom). Note the logarithmic scale of both ordinates in the
two plots. The oscillatory regime is represented by a yellow solid
line (top) and a yellow area (bottom); the IHLC by solid orange
lines (top) and a orange-white chess board pattern (bottom); the
IHSS by solid blue lines (top) and a small blue striped area (bot-
tom); and finally the HSS is illustrated by a solid black line (top)
and a grey area (bottom). Parameters are those of Fig. 2.

0<0.129, antiphase self-oscillations are the only stable re-
gime. For coupling value 0=0.129, the homogenous steady-
state stabilizes through a limit point bifurcation (LP; in Fig.
3), and further coexists with an oscillatory solution. The di-
rect calculations reveal the dominance of the single-fixed-
point solution, which has a larger basin of attraction: At Q
=0.2, for instance, only about 70 of the total 1000 random
initial conditions result in the oscillatory state, while the
other remaining 930 result in HSS. For Q e[0.2236,
0.3588], direct calculations show the existence of an inho-
mogenous limit cycle (orange white chessboard pattern in
Fig. 7, bottom) that coincides with the region where a stable
THLC solution was found by the bifurcation analysis (solid
orange line in Fig. 7, top). As previously discussed, the
IHLC branch emerges via a Hopf bifurcation (HB; on Fig.
4), through which the THSS loses stability as Q decreases.
We see a very good coincidence of the stability ranges of the
IHLC and the IHSS predicted by the bifurcation analysis and
shown by the direct calculation. Both regimes have a small
basin of attraction. Note however that in the region where the
IHLC and IHSS exist, the bifurcation analysis predicts the
coexistence of the antiphase oscillatory regime, which is
nevertheless not observed in the direct simulations. This is
due to the fact that the antiphase oscillations have a very
small basin of attraction, which is difficult to reach from a
set of initial conditions drawn randomly throughout the 14-
dimensional phase space of the system.

V. CHAOS PROVOKED BY REPRESSIVE CELL-TO-CELL
COMMUNICATION

The bifurcation analysis (Fig. 5) predicts unstable an-
tiphase oscillations between the torus bifurcation points TR,
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FIG. 8. Phase diagrams of the self-oscillations in the A;-B;
plane for large coupling Q: (a) 0=0.5, (b) 0=0.6, (c) 0=0.7, and
(d) 0=0.96. Other parameters are those in Fig. 2.

and TR,. We could not trace the solutions emerging from
those bifurcations with XPPAUT, and proceeded the investiga-
tions with direct calculations. To that end, we performed
simulations starting with small coupling Q and traced the
self-oscillatory regime up to strong coupling. The resulting
self-oscillations are stable and resistant to small perturba-
tions in the initial conditions and to dynamical noise (nRNA
dynamics was perturbed with additive white noise, corre-
sponding results not presented here). Figure 8 shows phase
plots for different values of Q. Figure 8(a) with 9=0.5, just
before the torus bifurcation 7R, shows normal self-
oscillations in the A;-B; phase plane. Figure 8(b) corre-
sponds to a Q value just after the torus bifurcation, and
shows the projection of the torus in the A;-B; phase plane.
The phase plots of Figs. 8(c) and 8(d) also correspond to Q
values between the two torus bifurcations TR, and TR;, but
look very different. Specially, Fig. 8(c) may correspond to
chaotic dynamics.

To reveal and classify the different self-oscillatory dy-
namics between the two torus bifurcations, we compute the
maximal Lyapunov exponent of the system. To that end, we
forward integrate a small perturbation of the trajectory, the
random tangent vector, by the Jacobi matrix. The logarithm
of the norm of the tangent vector is related to the maximal
Lyapunov exponent [26] and we normalize it by the integra-
tion time. The result is shown in Fig. 9, together with a
bifurcation diagram computed as a series of Poincaré sec-
tions, with the ordinate showing the value of the B, if the
trajectory crosses A;=4.0.

A torus bifurcation implies an increase of the dimension-
ality of the attractor. To confirm this fact we computed the
correlation dimension D, of the system, which verifies that
C(e) ~8§ , where C(¢g) is the correlation sum and e the size
of the balls in which the phase-space is partitioned. The cor-
relation sum measures the number of pairs of attractor points
inside the & ball [27]. We calculate the correlation sum and
the correlation dimension with the TISEAN package [28],
making use of the time series of all 14 variables, in such a
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FIG. 9. Maximal Lyapunov exponent (top) and the correspond-
ing bifurcation diagram (bottom) versus coupling Q. Parameters as
in Fig. 2.

way that a phase-space embedding of the dynamics is not
necessary. The resulting dimension of the stable self-
oscillatory attractor is much smaller than the dimension of
the system. Figure 10 shows the correlation sum versus & for
diverse values of the coupling strength Q. In Fig. 10, the
results are separated in two groups, for 0<Q <1 [Fig. 10(a)]
and Q=1 [Fig. 10(b)] for clarity. The correlation dimension
corresponds to the slope of the resulting curves in these
double logarithmic plots.

Limit-cycle oscillations appear below the torus bifurca-
tion Q<TR,=0.587. The slope of the correlation sum for
0=0.5 [Fig. 10(a)], and hence the correlation dimension, is
D,=1 as one expects from limit cycle oscillations. The limit
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FIG. 10. (Color online) Correlation sum C(g) for (a) the bio-
logically relevant range Q € [0, 1), and (b) Q outside of the biologi-
cally relevant range (only for theoretical completeness and justifi-
cation of Fig. 9).
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cycle is confirmed by the bifurcation diagram (Fig. 9, bot-
tom) and by the value of the maximal Lyapunov exponent
(Amax =0, Fig. 9, top).

At 0=0.587 the regular oscillations disappear and the
trajectory fills up a growing dense space. The onset coincides
with the first torus bifurcation TR, (secondary Hopf bifurca-
tion) in the bifurcation analysis (Fig. 5). The maximal
Lyapunov exponent remains unaffected by the torus bifurca-
tion at A,,,=0. The correlation dimension increases up to
D,=2, because the slope of the correlation sum for Q
=0.65 [Fig. 10(a)] is 2 times that for 0=0.5.

At Q=0.67 the torus attractor becomes unstable and A,
increases significantly above zero, marking the onset of cha-
otic behavior. The chaotic regime ranges up to Q= 0.937 and
is interrupted by periodic windows at some intermediate
ranges of Q. For instance, for Q €[0.879,0.89] the maximal
Lyapunov exponent \,,, drops down up to zero and the bi-
furcation diagram shows periodic windows in the otherwise
densely occupied phase plane. Outside those windows the
correlation dimension is slightly above two, and must in fact
be fractal due to the positive value of the maximal Lyapunov
exponent. As an example, we plot the correlation sum for the
coupling values 0=0.8 and 0=0.9 [Fig. 10(a)] and one can
see that the slopes are slightly steeper than the one of Q
=0.65. The chaotic dynamics results in a fractal structure of
the attractor with a dimension slightly above two. The
Kaplan-Yorke formula relates the Kaplan-Yorke dimension
with the set of Lyapunov exponents and predicts that a weak
unstable limit cycle with a small positive maximal Lyapunov
exponent results in only a bit larger noninteger dimension
[29].

The chaotic region ends abruptly at Q=0.937, at which
point A, declines to zero and the bifurcation diagram re-
veals a relatively simple structure. A phase plot at 0=0.96
can be seen in Fig. 8(d). The limit cycle is confirmed by the
correlation dimension being D,=1, as shown for 0=0.96,
0=1.0, and Q=1.08 [Figs. 10(a) and 10(b)]. Values of Q
beyond 1 are outside the biological relevant range, but are
helpful to understand the dynamics in the region between
TR, and TR, and to show the coincidence of the bifurcation
analysis and the direct calculations.

The interval Q €[1.089,1.137] is characterized by torus
oscillations without chaotic dynamics. The maximal
Lyapunov exponent remains at N, =0 (Fig. 9) and the cor-
relation dimension is D,=2, as one can see from the slopes
of the correlation sum for Q=1.09 and Q=1.1 [Fig. 10(b)].
The bifurcation at Q= 1.089 could be a tangent bifurcation.

The torus bifurcation at Q= 1.137 changes the torus to a
limit cycle and coincides with the torus bifurcation 7R; of
the bifurcation analysis (Fig. 5). As one expects for limit-
cycle oscillations \,,,=0 and D,=1 [see the slope of the
correlation sum in Fig. 10(b)].

We note that both the self-oscillatory (as discussed in the
preceding section) and the chaotic regimes have a rather
small basin of attraction, which makes it very difficult to
reach those regimes from a random sampling of initial con-
ditions in phase space, as done in Fig. 7. Thus, it is not clear
whether chaotic dynamics would be observed in an experi-
mental implementation of our model. However, following
the spirit of the results that have been presented in this sec-
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tion, one could envisage an experimental protocol in which a
cell population starts from the self-oscillatory regime with
small Q, i.e. small cell density, and smoothly increases its
density due to replication. In that case, one could expect the
system to end in a self-oscillatory regime at high cell density
0, and possibly in a chaotic regime. That experiment proto-
col would be comparable with the numerical method that
we have used in this section. Therefore, even though the
numerical results presented here are rather speculative in the
context of real genetic circuits, they should draw attention to
possible alternative sources of uncertainty in biological
systems.

VI. SUMMARY AND OUTLOOK

In this paper, we present investigations of two modified
repressilators, coupled by the fast diffusion of the Al across
the cell membranes. We show that, after the modifications we
have introduced in the model, the diffusion of the Al gov-
erned through the slow time scale of the system provides a
phase-repulsive coupling, which, in turn, results in a rich and
very unusual multistability of the system. We demonstrate
the coexistence of stable homogenous, stable inhomogeneous
steady states, and stable oscillating regimes in a broad region
of parameter space.

The model considered and the coupling we have intro-
duced [Egs. (7)—-(9)] have specific properties compared to
other coupled oscillators [30,31]. Typically, coupling in
population is realized via special channels (e.g., gap junc-
tions in Astrocytes [32]), thus the coupling substance is not
diluted in the medium. This means that a coupling term simi-
lar to the one governed by # in Eq. (7) determines the cou-
pling strength in standard situations. In our case, on the other
hand, the parameter Q regulates how much Al is returned to
cells from the medium. For small Q the two oscillators show
only a stable antiphase limit cycle. This predicts the domi-
nance of three-cluster decompositions in multicellular en-
sembles [13]. For larger Q auto-oscillating regimes coexist
with HSS and THSS, as well as with IHLC. The probability
of a specific regime realization depends on the initial condi-
tion, which are in turn the results of system evolution if we
are dealing with growing population and/or external pertur-
bations.

The above-discussed repressilator with repressive cell-to-
cell communication shows chaotic dynamics in a biologi-
cally reasonable parameter range. Usually, random fluctua-
tions in protein production are assumed to be caused by
noise, of either intrinsic or extrinsic origin [33]. Our results
suggest that chaotic dynamics might be an additional source
of uncertainty in gene expression, which can exist in parallel
to noise. The weak chaotic behavior observed is evoked by
cell-to-cell communication, and could not be found in the
uncoupled repressilator model. The chaotic dynamics and the
torus oscillations coexist with HSS (Fig. 7) and each dy-
namical regime is stable and robust to small noise. Sufficient
noise could evoke rare jumps from one stable regime to an-
other one, followed by long periods without dynamical
changes. In that sense, the paradigmatic repressilator with the
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many multistable states could be an example of the impor-
tance of rare events in biological systems with deep behav-
ioral changes, including chaos. Biological systems typically
exhibit diversity, and considering identical oscillators is a
strong simplification. Therefore, we tested the stability of the
dynamical regimes by applying independent additive noise to
the mRNA dynamics and introduced a small individual dif-
ference in the parameter « amongst the oscillators. Prelimi-
nary results in nonidentical repressilators (not shown) reveal
the robustness to perturbation of the four regimes IHLC,
IHSS, HSS, and antiphase self-oscillations. Diversity is of
special interest and a detailed investigation of that effect in
ensembles of coupled repressilators is currently in progress.

PHYSICAL REVIEW E 78, 031904 (2008)

ACKNOWLEDGMENTS

E.U. acknowledges financial support from the Alexander
von Humboldt Foundation, A.K. and J.K. acknowledge the
GoFORSYS project funded by the Federal Ministry of Edu-
cation and Research, Grant No. 0313924, J K. acknowledges
the EU through Network of Excellence BioSim, Contract
No. LSHB-CT-2004-005137, E.V. acknowledges support
from the Program “Radiofizika” Russian Academy and
RFBR Grant No. RFBR 08-02-00682, and J.G.O. acknowl-
edges support from the Ministerio de Educacion y Ciencia
(Spain) (project ORDEN and I3 program). This work has
also been supported by the European Commission (project
GABA, FP6-NEST Contract No. 043309).

[1] T. S. Gardner, C. R. Cantor, and J. J. Collins, Nature (London)
403, 339 (2000).

[2] M. Elowitz and S. Leibler, Nature (London) 403, 335 (2000).

[3] A. Kuznetsov, M. Karn, and N. Kopell, SIAM J. Appl. Math.
65, 392 (2004).

[4] R. Weiss, S. Basu, S. Hooshangi, A. Kalmbach, D. Karig, R.
Mehreja, and 1. Netravali, Natural Comput. 2, 47 (2003).

[5] J. Garcia-Ojalvo, M. B. Elowitz, and S. H. Strogatz, Proc.
Natl. Acad. Sci. U.S.A. 101, 10955 (2004).

[6] E. 1. Volkov and M. N. Stolyarov, Phys. Lett. A 159, 61
(1991).

[7] S. K. Han, C. Kurrer, and Y. Kuramoto, Phys. Rev. Lett. 75,
3190 (1995).

[8] G. Balazsi, A. Cornell-Bell, A. B. Neiman, and F. Moss, Phys.
Rev. E 64, 041912 (2001).

[9] H. Meinhardt, Models of Biological Pattern Formation (Aca-
demic, New York, 1982).

[10] R. Laje and G. B. Mindlin, Phys. Rev. Lett. 89, 288102
(2002).

[11] L. Glass and M. C. Mackey, From Clocks to Chaos: The
Rhythms of Life (Princeton University Press, Princeton, NJ,
1988).

[12] A. Koseska, E. Volkov, A. Zaikin, and J. Kurths, Phys. Rev. E
75, 031916 (2007).

[13] E. Ullner, A. Zaikin, E. 1. Volkov, and J. Garcia-Ojalvo, Phys.
Rev. Lett. 99, 148103 (2007).

[14] J. Hasty, F. Isaacs, M. Dolnik, D. McMillen, and J. J. Collins,
Chaos 11, 207 (2001).

[15] D. McMillen, N. Kopell, J. Hasty, and J. J. Collins, Proc. Natl.
Acad. Sci. U.S.A. 99, 679 (2002).

[16] L. You, R. S. Cox III, R. Weiss, and F. H. Arnold, Nature

(London) 428, 868 (2004).

[17] H. R. Horton, L. A. Moran, R. S. Ochs, J. D. Rawn, and K. G.
Scrimgeour, Principles of Biochemistry, 3rd ed. (Prentice Hall,
New York, 2002).

[18] B. Ermentrout, Simulating, analyzing and animating dynami-
cal systems: A guide to XPPAUT for researchers and students
(software, environment and tools), Ist ed. SIAM, 2002.

[19] K. Bar-Eli, Physica D 14, 242 (1985).

[20] M. Dolnik and M. Marek, J. Phys. Chem. 92, 2452 (1988).

[21] M. E. Crowley and I. R. Epstein, J. Phys. Chem. 93, 2496
(1989).

[22] K. Tsaneva-Atanasova, C. L. Zimliki, R. Bertram, and A. Sher-
man, Biophys. J. 90, 3434 (2006).

[23]J. Tyson and S. Kauffman, J. Math. Biol. 1, 289 (1975).

[24] E. 1. Volkov and V. A. Romanov, Phys. Scr. 51, 19 (1995).

[25] W. H. Press, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes in C: The Art of Scientific Computing, 2nd ed. (Cam-
bridge University Press, Cambridge, 1993).

[26] J. P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).
[27] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis,
2nd ed. (Cambridge University Press, Cambridge, 2004).

[28] R. Hegger, H. Kantz, and T. Schreiber, Chaos 9, 413 (1999).

[29] P. Grassberger and 1. Procaccia, Physica D 9, 189 (1983).

[30] Y. Zhai, I. Z. Kiss, and J. L. Hudson, Phys. Rev. E 69, 026208
(2004).

[31] G. B. Ermentrout and N. Kopell, SIAM J. Appl. Math. 54, 478
(1994).

[32] G. Ullah, P. Jung, and A. H. Cornell-Bell, Cell Calcium 39,
197 (2006).

[33] M. Elowitz, A. Levine, E. Siggia, and P. Swain, Science 297,
1183 (2002).

031904-8



