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Universality in the Synchronization of Weighted Random Networks
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Realistic networks display not only a complex topological structure, but also a heterogeneous
distribution of weights in the connection strengths. Here we study synchronization in weighted complex
networks and show that the synchronizability of random networks with a large minimum degree is
determined by two leading parameters: the mean degree and the heterogeneity of the distribution of node’s
intensity, where the intensity of a node, defined as the total strength of input connections, is a natural
combination of topology and weights. Our results provide a possibility for the control of synchronization
in complex networks by the manipulation of a few parameters.
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Over the past few years, the analysis of complex systems
from the viewpoint of networks has become an important
interdisciplinary issue [1]. It has been shown that physical
and dynamical processes, such as cascading failures [2],
epidemic spreadings [3], and network synchronization [4–
9], are strongly influenced by the structure of the under-
lying network. Previous work on synchronization has fo-
cused mainly on the influence of the topology of the
connections by assuming that the coupling strength is
uniform. However, synchronization is influenced not only
by the topology, but also by the strength of the connections
[9]. Most complex networks where synchronization is
relevant are indeed weighted. Examples include brain net-
works [10], networks of coupled populations in the syn-
chronization of epidemic outbreaks [11], and technological
networks whose functioning relies on the synchronization
of interacting units [12]. The distribution of connection
weights in real networks is often highly heterogeneous
[13]. The study of synchronization in weighted networks
is thus of substantial interest.

In this Letter, we address this question in random net-
works with weighted coupling schemes motivated by real
networks. Our main result is the uncovering of a universal
formula that describes with good approximation the syn-
chronizability of identical oscillators solely in terms of the
mean degree and the heterogeneity of the node’s intensity,
irrespective of the degree distribution and other topological
properties. The intensity of a node, defined as the sum of
the strengths of all input connections of that node, incor-
porates both topological and weighted properties and raises
as a very important parameter controlling the synchroniz-
ability. In particular, it follows that the synchronizability is
significantly enhanced when the heterogeneity of the
node’s intensities is reduced.

The dynamics of a general weighted network of N
coupled identical oscillators is described by
06=96(3)=034101(4)$23.00 03410
_x i � F�xi� � �
XN

j�1

WijAij�H�xj� �H�xi��; (1)

� F�xi� � �
XN

j�1

GijH�xj�; i � 1; . . . ; N; (2)

where F � F�x� governs the dynamics of each individual
oscillator, H � H�x� is the output function, and � is the
overall coupling strength. Here G � �Gij� is the coupling
matrix combining both topology [adjacency matrix A �
�Aij�] and weights [weight matrix W � �Wij�, Wij � 0]:
Gij � �ijSi �WijAij, where Si �

PN
j�1 WijAij denotes

the intensity of node i. The rows of G have zero sum,
and this ensures that the completely synchronized state
fxi � s;8ij _s � F�s�g is an invariant manifold of Eq. (2).
In this work, we focus on the class of weighted networks
where G is diagonalizable and has real eigenvalues. As it
will be shown shortly, in this case the synchronizability of
the networks can be characterized by the properties of the
eigenvalues, without referring to specific forms of F and
H. This applies, in particular, to the important class of
networks where G can be written as G � BC for B a
nonsingular diagonal matrix and C a symmetric, zero
row-sum matrix. We assume that matrix A is binary and
symmetric, and that the connection weights and asymme-
tries are incorporated into W.

The linear stability of the synchronized states can be
studied by diagonalizing the variational equations of
Eq. (2) into N blocks of the form [14]

_� l � �DF�s� � ��lDH�s���l; l � 1; . . . ; N; (3)

which are different only by �l, the lth eigenvalue of G,
ordered as 0 � �1 	 �2 
 
 
 	 �N. The eigenvalues of G
are nonnegative because Gii � �

P
j�iGij � 0 and �1 � 0

because
P
jGij � 0 for all i. The stability of s is deter-
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mined by �l and the master stability function [14], i.e., the
largest Lyapunov exponent � of the generic variational
equation _� � �DF�s� � �DH�s���. For many oscillatory
dynamical systems [6,14], � is negative in a single, finite
interval �1 < �< �2, where the thresholds �1 and �2 are
determined only by F, H, and s. The network is thus
synchronizable for some � iff the condition �1 <��l <
�2 is satisfied so that ����l�< 0 for all l � 2. This is
equivalent to the condition

R � �N=�2 < �2=�1; (4)

where the eigenratio R depends only on the network struc-
ture (G), and �2=�1 depends only on the dynamics. From
these, it follows that the smaller the eigenratio R, the more
synchronizable the network and vice versa [6]. Another
measure of synchronizability is the cost C involved in the
couplings of the network [9]. When Eq. (4) is satisfied, the
synchronized state is linearly stable for �>�min �
�1=�2. The cost C is the total input strength of the con-
nections of all nodes at the synchronization threshold:
C � �min

P
i;jWijAij � �min

PN
i�1 Si. The normalized cost

C0 � C=�N�1� � �=�2; (5)

where � �
PN
i�1 Si=N, does not depend on the dynamics

(F, H, and s) and can be used as a complementary pa-
rameter of synchronizability [9]. Here we characterize the
synchronizability of the networks using both the eigenratio
R and the cost C0.

Previous work has obtained bounds for the eigenvalues
of unweighted networks (Wij � 1) (see [15] for a review).
Such bounds, however, are not tight and may provide
limited information about the actual synchronizability of
complex networks. Here we aim at obtaining a more quan-
titative approximation of the synchronizability for a class
of weighted random networks with real spectra, which
includes unweighted networks as a special case. Our analy-
sis is based on the combination of a mean field approxi-
mation and new graph spectral results.

First, in random networks with kmin � 1, close to a
synchronized state Eq. (1) can be approximated as

_x i � F�xi� � ��Si=ki�
XN

j�1

Aij�H�xj� �H�xi��: (6)

The reason is that each oscillator j receives signals from
a large and random sample of other oscillators in the
network and xj is not affected directly by the individual
output weights Wij. Consequently, we may assume that
Wij and H�xj� are statistically uncorrelated and thatPN
j�1 WijAijH�xj� 
 �1=ki�

PN
j�1 WijAij

PN
j�1 AijH�xj� �

Si �Hi if ki � 1 [16]. Here �Hi � �1=ki�
PN
j�1 AijH�xj� is

the local mean field.
Now, if the network is sufficiently random, the local

mean field �Hi can be approximated by the global mean
field of the network, �Hi 
 �H � �1=N�

PN
j�1 H�xj�.

Moreover, close to the synchronized state s, we may as-
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sume �Hi 
 H�s�, and the system is approximated as

_x i � F�xi���Si�H�s��H�xi��; i� 1; . . . ;N; (7)

indicating that the oscillators are decoupled and forced by
a common oscillator _s � F�s� with forcing strength pro-
portional to the intensity Si. The variational equations of
Eq. (7) have the same form of Eq. (3), except that �l is
replaced by Sl. If there exists some � satisfying �1 <
�Sl < �2 for all l, then all the oscillators are synchroniz-
able by the common driving H�s�, corresponding to a
complete synchronization of the whole network. These
observations suggest that the eigenratio and the cost can
be approximated as

R 
 Smax=Smin; C0 
 �=Smin; (8)

where Smin, Smax, and � are the minimum, maximum, and
mean intensities, respectively.

Next we present tight bounds for the above approxima-
tion. Equation (6) means that the coupling matrix G is
replaced by the new matrix Ga � �Ga

ij�, with Ga
ij �

Si
ki
�

��ijki � Aij�.Ga can be written asGa � SĜ � SD�1�D�
A�, where S � ��ijSi� and D � ��ijki� are the diagonal
matrices of intensities and degrees, respectively, and Ĝ is
the normalized Laplacian matrix [17]. Importantly, now
the contributions from the topology and weight structure
are separated and accounted by Ĝ and S, respectively. We
can show that the largest and smallest nonzero eigenvalues
of matrix Ga are bounded by the eigenvalues �l of Ĝ as

Smin�2c 	 �2 	 Sminc0; Smax 	 �N 	 Smax�N; (9)

where c and c0 can be approximated by 1 for most large
complex networks of interest, such as realistic scale-
free networks (SFNs). The proof is involved and
long, and the details will be presented elsewhere. If the
network is sufficiently random, the spectrum of Ĝ
tends to the semicircle law for large networks with arbi-
trary expected degrees [17], provided that kmin �

����
K
p

,
and maxf1��2; �N � 1g � �1� o�1�� 2���

K
p for kmin �����

K
p

ln3N, where K is the mean degree. From these, it
follows that

�2 
 1� 2=
����
K
p

; �N 
 1� 2=
����
K
p

; (10)

which we find to provide a good approximation under the
weaker condition kmin � 1, regardless of the degree dis-
tribution. From Eqs. (9) and (10), we have the following
approximations for the bounds of R and C0:

Smax

Smin
	 R 	

Smax

Smin

1� 2=
����
K
p

1� 2=
����
K
p ; (11)

�

Smin
	 C0 	

�

Smin

1

1� 2=
����
K
p : (12)

For the case of unweighted networks (Si � ki, � � K), the
bounds in Eq. (11) are much tighter than those reviewed in
Ref. [15].
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FIG. 1. (a) R as a function of Smax=Smin and (b) C0 as a
function of �=Smin, averaged over 50 realizations of the net-
works. Solid symbols: uniform distribution of Si 2 �Smin; Smax�.
Open symbols: power-law distribution of Si, P�S� � S�� for
2:5 	 � 	 10. Different symbols are for networks with different
topologies: BA growing SFNs (�), growing SFNs with aging
exponent 	 � �3 (�), random SFNs with 
 � 3 (�), and
K-regular random networks (4). The number of nodes is N �
210 and the mean degree is K � 20. Insets of (a) and (b): AR and
AC as functions of K for Smax=Smin � 1 (�), 2 (�), 10 (4), and
100 (*), obtained with uniform distribution of Si in K-regular
networks. The dashed lines are the bounds. Solid lines in (a) and
(b): Eq. (13) with AR � AC � 1.
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The bounds in Eqs. (11) and (12) show that the contri-
bution of the network topology is mainly accounted by the
mean degree K. Therefore, for a given K, the synchroniz-
ability of random networks with large kmin is expected to
be well approximated by the following universal formula:

R � AR
Smax

Smin
; C0 � AC

�

Smin
; (13)

where the prefactors AR and AC are expected to be close to
1. In the case of matrix Ga with uniform intensity (Si �

18i), they are given by the upper bounds, AR �
1�2=

���
K
p

1�2=
���
K
p and

AC �
1

1�2=
���
K
p , and AR ! 1 and AC ! 1 in the limit K !

1. Formula (13) is consistent with the approximation in
Eq. (8) and indicates that the synchronizability of these
networks is primarily determined by the heterogeneity of
the intensities.

Our numerical results on various weighted and un-
weighted networks have confirmed this universal formula.
First we consider the following weighted coupling scheme:

Wij � Si=ki; (14)

in which the intensities Si follow an arbitrary distribution
not necessarily correlated with the degrees. In this case,
Eqs. (6) and (1) are identical and Ga � G. This weighted
coupling scheme includes many previously studied sys-
tems as special cases. If Si � ki8i, it corresponds to the
widely studied case of unweighed networks [5,6,8]. In
the case of fully uniform intensity (Si � 18i), it accom-
modates a number of previous studies about synchroniza-
tion of coupled maps [4,7]. The weighted scheme studied
in [9], Wij � k�i , is another special case of Eq. (14) where
Si � k1��

i .
We have applied the weighted scheme to various net-

work models: (i) Growing SFNs with aging [18]. Starting
with 2m� 1 fully connected nodes, at each time step we
connect a new node to m existing nodes according to the
probability �i � ki��	i , where �i is the age of the node.
The minimum degree is then kmin � m and the mean
degree is K � 2m. For the aging exponent �1<	 	 0,
this growing rule generates SFNs with a power-law tail
P�k� � k�
 and scaling exponent in the interval 2< 
 	 3
[18], as in most real SFNs. For 	 � 0, we recover the usual
Barabási-Albert (BA) model [19], which has 
 � 3.
(ii) Random SFNs [20]. Each node is assigned to have a
number ki � kmin of ‘‘half-links’’ according to the distri-
bution P�k� � k�
. The network is generated by randomly
connecting these half-links to form links, prohibiting self-
and repeated links. (iii) K-regular random networks. Each
node is randomly connected to K other nodes.

We present results for two different distributions of
intensity Si which are uncorrelated with the distribution
of degree ki: (1) a uniform distribution in �Smin; Smax�; (2) a
power-law distribution, P�S� � S��, S � Smin, where Smin

is a positive number. Consistently with the prediction of the
universal formula, if kmin � 1, the eigenratio R collapses
03410
into a single curve for a given K when plotted as a function
of Smax=Smin [Fig. 1(a)], irrespective of the distributions of
ki and Si. The same happens for the cost C0 as a function of
�=Smin [Fig. 1(b)]. The behavior of the fitting parameters
AR and AC is shown in the insets of Fig. 1. For uniform
intensity, they are very close to the upper bounds. They
approach very quickly 1 when the intensities become more
heterogeneous (Smax=Smin > 3). Therefore, Eq. (13) with
AR � AC � 1 [Fig. 1, solid lines] provides a good approxi-
mation of the synchronizability for any large K if the
intensities are not very homogeneous.

In more realistic networks, including scientific collabo-
ration networks [13], metabolic networks [21], and airport
networks [13,21], it has been shown that the weight Wij of
a connection between nodes i and j is strongly correlated
with the product of the corresponding degrees as hWiji �

�kikj��. Here � depends on the specific network under
study. Motivated by these observations, we analyze the
weighted coupling [21]:

Wij � �kikj��; (15)

where the weights are defined for the connections of a
given network topology and � is a tunable parameter. �
controls the heterogeneity of the intensity Si and the cor-
relation between Si and ki, since Si � k1��

i hk�j ii, where
hk�j ii � �1=ki�

P
k�j is approximately constant for ki � 1

when the degree correlations can be neglected. Variations
of � have significant impact on the synchronizability of
SFNs [Fig. 2]. However, as shown in the insets of Fig. 2 for
various networks and � values, R and C0 collapse again to
the universal curves when regarded as functions of
Smax=Smin and �=Smin, respectively.

We emphasize that these results also hold for un-
weighted random networks. As shown in Fig. 3 for un-
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FIG. 2. (a) Eigenratio R and (b) cost C0 as functions of � for
the BA growing SFNs (�), growing SFNs with aging exponent
	 � �3 (�), and random SFNs with 
 � 3 (4). Each symbol is
an average over 50 realizations of the networks with K � 20 and
N � 210. Inset of (a): the same data for R as a function of
Smax=Smin. Inset of (b): the same data for C0 as a function of
�=Smin. Solid lines: Eq. (13) with AR � AC � 1.
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weighted SFNs, the eigenratio R as a function of the net-
work size N collapses to a single universal curve when
plotted against Smax=Smin [22].

In addition to heterogeneous degrees and weights, many
real networks also display high clustering [23] and non-
trivial correlation of degrees [24]. The clustering and de-
gree correlations are negligible in random SFNs and
K-regular random networks, but we find that they are
significant in growing SFNs for 	< 0. The results in
Figs. 1–3 show that the universality holds without signifi-
cant dependences on these topological properties.

Equation (13) also provides a meaningful approximation
for networks which are not fully random. For example,
consider small-world networks [23] where a regular ring of
N �� 210� nodes, each connected to K �� 20� nearest
neighbors, is rewired with a probability p for each link.
We find that R and C0 collapse to the universal curves even
when the networks are dominated by local connections,
e.g., for p � 0:3, if the intensities are very heterogeneous
(Smax=Smin � 10). For networks with kmin � 1, the syn-
chronizability is still strongly dependent on Smax=Smin

and K, although it shows additional dependences on the
details of the distributions of Si and ki and on other
topological properties.

In summary, we have shown that the synchronizability
of sufficiently random networks with minimum degree
kmin � 1 is universally dominantly determined by the
mean degree K and the heterogeneity of the intensities
Si. This universality applies to a general class of large
networks where the heterogeneity of Si is due to either
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FIG. 3. (a) R as a function of the system size N for unweighted
networks (� � 0). (b) The same data for R as a function of
Smax=Smin. Solid line: Eq. (13) with AR � 1. The other parame-
ters and legends are the same as in Fig. 2(a).
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the distribution of degrees, as in unweighted SFNs, or the
distribution of connection weights, as in weighted
K-regular networks, or a combination of both, as expected
in most realistic networks, such as in the airport network
[13], which underlies the synchronization of epidemic
outbreaks [11]. In particular, formula (13) explains why
synchronizability is improved when the heterogeneity of Si
is reduced, which can be useful for network design and
control of synchronization.
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