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We study the control of oscillations in a system of inhibitory coupled noisy excitable and oscillatory units.
Using dynamical properties of inhibition, we find regimes when the oscillations can be suppressed but the
information signal of a certain frequency can be transmitted through the system. The mechanism of this
phenomenon is a resonant interplay of noise and the transmission signal provided by certain value of inhibitory
coupling. Analyzing a system of three or four oscillators representing neural clusters, we show that this
suppression can be effectively controlled by coupling and noise amplitudes.
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I. INTRODUCTION

Excitable systems are widespread in nature. In many
cases, excitability originates from the existence of a bifurca-
tion to an oscillatory state when a control parameter is
changed. Prominent examples are some varieties of cells
(such as neurons, pancreatic B-cells, nerve cells from sensi-
tive regions of the body), cardiac tissue, chemical reactions
(Belusov-Zavotinsky), etc. (for a comprehensive review on
this subject, see Ref. [1]). Most excitable systems require
two types of dynamical variables (called generically activa-
tor and inhibitor) with different time scales and different in-
fluence on the overall behavior of the system. Stochastic ef-
fects, in the form of white noise or diversity, are also an
important ingredient of the dynamics. The dynamics of os-
cillatory and excitable systems near the bifurcation has at-
tracted large interest because in this region their sensitivity is
greatest and they are suitable for a reliable signal response or
information exchange. The study of coherence resonance
[2,3] (also named stochastic coherence [4]) and stochastic
resonance in nonlinear excitable units [1,5-7] aroused a
strong interest in this field.

Of particular interest is the study of coupled excitable
systems. Usually, only coupling through the activator vari-
ables is considered, leading to a full synchronized dynamics
[8]. In this work, we focus our attention on an array of noisy
excitable units coupled through inhibitory variables. Such a
kind of coupling can be realized, for instance, by a negative
coupling constant in an activator variable or by a positive
one in an inhibitory variable. Previous work has shown that
coupling through the inhibitor variable between identical os-
cillators may induce many limit cycles of different periods
and phase relations [9,10] which are stable in large regions
of the control parameter space, a behavior usually referred to
as a “dephasing” [11,12] or “phase-repulsive” [13] interac-
tion and which was shown to be a source of multirhythmicity
in different systems [14—17]. With noisy elements, a dephas-
ing interaction of stochastic limit cycles (instead of deter-
ministic ones) may result in the coexistence of spatiotempo-
ral regimes selectively sensitive to external signal periods. In
such systems, noise plays at least two roles: first, it stimu-
lates firing of stable elements and, thereby, their interaction
during return excursions; second, it stimulates transitions be-
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tween coupling-dependent attractors if the associated life-
time is sufficiently long.

In this paper, we extend our research on the influence of
inhibitory coupling. In contrast to our previous investigation
of frequency-selective stochastic resonance in linear chains
of identical excitable FitzHugh-Nagumo (FHN) models
[18,19], we consider chains of nonidentical units and focus
on the influence that the internal oscillatory units have on the
dynamics of the whole chain. Under the presence of an ex-
ternal signal, we find the counterintuitive result that inhibi-
tory coupling can lead to a multirhythmic state in which the
intermediate oscillatory units are in the rest state, while the
excitable ones oscillate in synchrony with the signal. This
implies that the intermediate units, while “silent,” are still
able to transmit information along the chain. As discussed at
the end of the paper, inhibitory coupling is of relevance for
some chemical [20-22] and biological [23] systems and our
results point to a generic mechanism of oscillation supres-
sion and information transmission. For the sake of simplicity,
however, we have only considered a prototype excitable
model (the FitzHugh-Nagumo set of equations, also called
the Bonhoeffer-van der Pol model [24]). In the next section
we present the main result in the simplest case of three
FitzHugh-Nagumo units coupled through the inhibitory vari-
able. To extend the study into another architecture, in Sec.
III, we analyze an array where two coupled oscillating units
are connected from both sides with excitable elements. Our
study ends in Sec. IV with some general conclusions and
some speculations about possible applications in biological
systems.

II. THREE NONIDENTICAL INHIBITORY COUPLED
FITZHUGH-NAGUMO UNITS

We consider a rather simplistic model with a minimal
scheme of connections that can retain the basic structure of
the system we want to study: an open, linear chain where
both ends have an excitable unit. The middle unit represents
an oscillatory unit (Fig. 1). We want to study whether a pe-
riodic, subthreshold signal, acting on the left element can
reach the right one, in such a way that no oscillations appear
in the middle unit.

©2006 The American Physical Society
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FIG. 1. (Color online) Scheme of the setup for the case N=3. At
both ends there are excitable units, coupled through inhibitor cou-
pling to the middle (oscillatory) element.

The scheme in Fig. 1 corresponds to three FitzHugh-
Nagumo oscillators coupled through the inhibitory variables
3
X

1
—+x1,
3

eXp=y;—
yi=a;—x;+ & (1) + A cos(wr) + D(y, = y1), (1)

x3

. 2
EXy) =Yy — g +x2,
Va=ay—x3+ &(t) + D(y, — y2) + D(y3 - y)), (2)
3
. X3
EX3=Y3— ; +X3,
y3=az—x3+ &(t) + D(y2 - y3), (3)

where w=2m/T; is the frequency of the input signal with
period T,. The Gaussian (white) noise sources &(¢) satisfy
ENEN=ar8t-1')5,.

In a neural context, x;(¢) represents the membrane poten-
tial of the neuron and y,(r) is related to the time-dependent
conductance of the potassium channels in the membrane
[25]. The dynamics of the activator variable x; is much faster
than that of the inhibitor y;, as indicated by the small time-
scale ratio parameter . It is well known that for |a;|>1 a
single unit has a stable fixed point and presents excitable
behavior: small perturbations are followed by a smooth re-
turn to the fixed point, while a perturbation larger than a
threshold value induces a return through a large excursion in
phase space (a spike). For |¢;/ <1, the fixed point becomes
unstable and a stable limit cycle appears. In this regime, the
dynamics consists in a periodic series of spikes. Along this
section, we will consider the fixed parameters e=10" a
=a3=1.01, and a,=0.99, such that the two end units are ex-
citable and the middle one oscillatory. We have checked that
(in the absence of external forcing and noise) the three units
retain their excitable or oscillatory character despite the cou-
pling among them, such that the middle unit spikes periodi-
cally and the two end units display small subthreshold oscil-
lations around the fixed point.

The issue now is the behavior of these same units when
noise and external forcing are present. We will show that it is
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possible to have a noise-induced regime in which the oscil-
lations of the middle unit are suppressed. To characterize this
phenomenon of oscillation suppression, we have computed
[26,27] Nﬁ”, the number of spikes per time unit at the ith
neuron, defined as the number of times the variable y,()
surpasses a fixed threshold per time unit. N( represents the
reciprocal of the averaged interspike time 1nterval

An important point is whether in this oscillation suppres-
sion regime, noise can help to transmit the information of the
subthreshold external signal by a stochastic resonance
mechanism. In order to address this issue, we compute the
linear response Q) of the ith neuron in the chain at the input
frequency o [28,29]:

09 =2y {1)e (4)

where (---) denotes a time average.

A. Oscillation suppression via a noise-induced dynamical trap

In a previous work [17] it has been shown that in a system
of three FitzHugh-Nagumo units in the oscillatory regime
(and in the absence of external forcing) the inhibitory cou-
pling leads to two coexisting dynamical attractors, with dif-
ferent natural frequencies. These attractors correspond to an
antiphase oscillator movement and to the so-called dynami-
cal trap regime where the middle oscillator is at rest and the
two oscillators at the ends oscillate in antiphase. If one now
applies a weak external periodic signal to one of the end
units and uncorrelated noise to every unit, one can still
achieve the suppression of the self-excited oscillations of the
middle unit and, at the same time, achieve a reliable trans-
mission of the signal, provided the following two conditions
hold: (i) the frequency of the external signal coincides with
the natural frequency of the dynamical trap attractor, and (ii)
the noise in the system is near the optimal one for the desired
signal amplification (i.e., stochastic resonance phenomenon
on this attractor).

A similar result appears in our system of three coupled
units. For very small noise, the situation is as described at the
beginning of the section with the middle unit oscillating and
the end units at rest. As noise increases, one observes ran-
dom switches between this state and a dynamical trap regime
in which the middle unit is at rest and the two end units spike
in antiphase. This effect can be quantified by measuring the
number of spikes N ) and the responses Q) as a function of
the noise intensity. As shown in Fig. 2, one can distinguish
several behaviors depending on the period of the external
forcing.

(a) This is the case where the period of the input signal
equals the natural period of an isolated FitzHugh-Nagumo
oscillator (7,=2.8 for a=0.99). The noise-induced oscillation
suppression described before is apparent in the right panel of
this figure, where it is shown that the number of spikes at the
middle unit, Aﬂf), first decreases as the noise intensity in-
creases. This oscillation suppression is maximum at a value
of the noise intensity, of ~3 X 107, At noises larger that this
value, the number of spikes in the three units are very close
to each other.
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FIG. 2. (Color online) Optimal noise suppresses oscillations
while letting the signal (within a certain range) be transmitted. This
effect occurs due to dynamical trap, supported by inhibitory cou-
pling. (a) nonresonant, 7,=2.8; (b) dynamic trap, T,=3.1; (c) an-
tiphase resonance, 7,=4.5; (d) no resonance, 7,=6.0. Other param-
eters: e=107%, a;3=1.01, a;=0.99, A;=0.01, and D=0.15. The left
and right columns correspond to the Q and N, measures.

In the left panel we plot the response Q) of each unit.
Note that there is a range of values for the noise intensity for
which the middle unit responds to the injected signal most
effectively than the end units, as signaled by a higher value
of the response Q@. For increasing noise intensity, beyond
the value where the oscillation suppression was maximum,
all units have a similar response.

(b) For an intermediate range of periods T, €[3,3.4], we
observe that there exists a range of noise intensities (o~
€[107,1073]) such that the number of spikes is strongly
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reduced in the middle oscillatory unit, while the response to
the driving frequency is better than in the oscillatory unit;
i.e., this is the manifestation of the dynamic trap regime. One
can clearly see the effective oscillation suppression of the
oscillatory middle element [see Fig. 2(b), right] and—despite
this suppression in the middle of the chain—the reliable in-
formation transport from the first to the last unit by a large
linear response Q in these elements [Fig. 2(b), left]. The
dynamic trap regime includes an antiphase motion of the first
and last units which results in combination with the inhibi-
tory coupling in a suppression of the oscillations of the
middle element.

(c) Increasing even further the period, T,=4.5, the exter-
nal signal is now in resonance with, and hence amplifies, the
antiphase motion in which the first and last units oscillate
in-phase and in antiphase with the middle one. In this case,
another interesting regime appears in the noise range o'i
€[107°,10™*] as observed in the right panel of Fig. 2(c),
where the spike numbers of all three elements coincide
nearly, as well as in the linear response plot (left panel),
where all oscillators display a very similar linear response Q.
This antiphase regime demonstrates a totally different behav-
ior than the dynamic trap regime, case (b) discussed previ-
ously. Note that the antiphase regime appears for a much
larger noise intensity than the dynamic trap regime, hence
showing a double selectivity by the input frequency and the
noise intensity.

(d) Finally, for much larger period 7,=6.0, there is no
resonance, Fig. 2(d). This can be observed especially at the
linear response Q (left panel) which is much smaller than in
the resonant cases. Noteworthy, the last element in the chain
exhibits a poor signal response.

B. Control of suppression by the coupling strength

Noise-induced dynamical trap suppression is possible by
the existence of a new attractor originated in the inhibitory
nature of the coupling. Hence, the coupling intensity D con-
trols the effectivity of the suppression, as well as the fre-
quency of the attractor. The existence of an optimal value for
D is shown in Fig. 3, in which we plot the linear response Q
and the spike numbers N, as a function of the coupling in-
tensity. Setting the noise intensity 0'(21 to the value of maxi-
mum of the linear response Q [Fig. 2(b), left panel] and
varying the strength D of the inhibitory coupling, it is clear
the existence of an optimal D such that the middle unit is
silent (Fig. 3, right panel), while the first and last units ef-
fectively respond to the driving frequency (Fig. 3, left panel).

Since both types of coupling, inhibitory and activator, can
be immanent in neural networks, we have investigated how
the suppression can be regulated if we tune the coupling
from an activator to an inhibitory one. To do this, we have
added activator coupling in the model by interchanging D by
(I-a)D in the equations for the inhibitory variable y; and
inserting the terms aD(x,—x;) into Eq. (1), aD(x;—x,)
+aD(x3—x,) into Eq. (2), and aD(x,—x3) into Eq. (3). These
extensions of the model are used only in this section for the
calculation of Fig. 4. With help of the new sliding parameter
a we change the weight of the type coupling from a=1 (pure
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FIG. 3. (Color online) Linear response Q (left) and normalized
spike number N; (right) versus inhibitory coupling. The other pa-
rameters are e=107%, a;3=1.01, 1,=0.99, A;=0.01, T,=3.1, and
0?=3x107°.

activator coupling) to =0 (pure inhibitory coupling). The
results are illustrated in Fig. 4. We clearly see that increasing
the weight of the inhibitory coupling (from right to left)
leads to an abrupt suppression of the middle oscillator (Fig.
4, right) and to a significant joint increase of the linear re-
sponse Q of the first and third oscillators, but not of the
middle one (Fig. 4, left). Note the logarithmic scaling of the
parameter « at the abscissa. We clearly observe that already
a small fraction of activator coupling (in the order of 1%)
destroys the dynamic trap regime in the given parameter set.

III. MODEL FOR FOUR NONIDENTICAL UNITS

Next we delve into the question of whether larger chains
with more coupled oscillatory units also show the same phe-
nomenon discussed in the previous section. Although it
would seem a rather trivial proposal just to enlarge it to a
case in which the system size is N=4, the dynamical regimes
that arise in such a situation are far from being simple modi-
fications of the results shown above.

We will not consider an enlargement of the excitable ends
of the chain, because it is a well known fact that coupling
them through the activator variable with a strong enough
bind will result in an entrainment of such a subchain and the
dynamical evolution of such units will be effectively that of
one oscillator. Then, the most interesting question arises
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FIG. 4. (Color online) The influence of the type of coupling on
the linear response Q (left) and the normalized spike number N;
(right) for three coupled FitzHugh-Nagumo units. The sliding pa-
rameter « shifts the weight of the diffusion constant D from a pure
inhibitory coupling (@=0.0) to a pure activator coupling (a=1).
The other parameters are e=107%, a;3=1.01, a,=0.99, ai=4
X107, A;=0.01, T,=3.1, and D=0.15.
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FIG. 5. (Color online) Scheme of the setup for the case N=4.
While at both ends there are excitable units, in the center there are
oscillatory ones. The coupling between units of different nature is
inhibitory, and the coupling between the oscillatory units is through
the activator variable.

from the enlargement of the middle part, which is composed
of oscillatory units. So we add to the scheme of three ele-
ments (Fig. 1) an oscillatory element in the middle position
and couple it by an activator coupling with the other (iden-
tical) oscillatory element and with an inhibitory coupling to
the adjacent excitable element (Fig. 5).

The mathematical description of the scheme in Fig. 5 is
given in Egs. (5)—(8). The two oscillatory units are placed at
the middle position and are both coupled to their adjacent
excitable one by an inhibitory coupling as in the chain of
three elements, whereas an activator coupling is set between
them. As in the previous section, independent additive white
noises act on the units and an external, subthreshold, periodic
signal drives only the first element:

3

. X
EX1=)Y1— §+x1,
yi=a;—x;+§&(t) + Ay sin(wt) + D(y, - yy), (5)

3

. )
eXy =V, — §+x2+C(x3—x2),

Va=ay=x+ &(t) + D(y, = y,), (6)

3

) X3
eX3=y3— §+x3+C(x2—x3),

y3:a3—X3+§3(t)+D(y4_y3)’ (7)
. X
EX4 =Yg — §+x4,
Va=as—x4+ &) +D(y3 = y4). (8)

We will fix using the following simulations the parameters
a,3=0.99 (oscillatory regime), a; 4,=1.01 (excitable regime),
and the signal intensity A;=0.01 (subthreshold).

We are interested in the signal penetration along the chain
from the first to the last element as a function of the signal
period and the noise intensity. In order to investigate whether
the same phenomenon appears in this chain, two different
cases are considered: first, we take the optimal parameters
from the case N=3 and make the coupling between the os-
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cillatory units strong enough such that they become en-
trained. In the second case, we use a weaker activator cou-

pling.

A. Strong interoscillatory coupling

Let us focus first on a regime of strong coupling among
the oscillatory units. We use the following set of parameters:
e=10" a,4=1.01, a,3=0.99, C=0.80, and D=0.22. In this
case and without an external periodic signal (A;=0.0) in-
jected or noise (oﬁ:0.0), the analysis of the power spectrum
exhibits that the natural period of the system is T,,,~2.67.
The oscillatory units exhibit their periodic oscillations at
their natural frequency. The excitable units, at their time,
show only subthreshold oscillations at the natural frequency
of the oscillatory units.

In the presence of an external signal Fig. 6 illustrates the
normalized spike number and the linear response Q as a
function of the noise intensity o‘i for different driving peri-
ods T,. Figure 6(a) depicts the results when the system is
subjected both to noise and external signal and the signal
period 7,=2.61 is slightly below the natural period. It is
observed (as in the N=3 case) that now the oscillatory units
respond but not the excitable one at the end of the chain.

Increasing T, well over the natural frequency, e.g., T
=2.8 or 2.9 [Fig. 6(b) or 6(c)], the dynamic trap regime
appears. It is important to emphasize that the quality of the
signal transmission to the last unit is enhanced with respect
to the N=3 case (compare Figs. 2 and 6).

An interesting phenomenon occurs for T,=2.9 [Fig. 6(c)]
where there are two well-differenced situations of dynamic
trap like regimes. First, for very low noise intensities (0'2
~1077) there is an almost perfect suppression of the oscilla-
tions and at the same time a perfect signal transmission
which is the result of the desired dynamic trap regime. There
is then a secondary oscillation suppression regime at o‘za
~2.5X 107, at which the signal is not transmitted with the
same fidelity as compared to the case at about o‘i% 1077, In
the second regime the last unit is oscillating, neither at the
driving frequency nor at the natural one of the middle oscil-
lators, but at another one. Figure 7 shows the power spec-
trum for such a secondary regime in the interesting fre-
quency range around driving and resonance frequency. Let
us consider the particular case of the fourth oscillator. It is
subject to two different signals, one of them with the natural
frequency of the third unit and one with the external driving
frequency. It is not trivial how these two signals interact in
order to produce this unit’s response, but it has been demon-
strated that in nonlinear systems [30] subjected to two sig-
nals, the response may appear at neither any of the driving
ones. Regardless of these facts, the important footprint of
this secondary regime is the low response of the last unit to
the driving frequency.

One can clearly see in Fig. 7 three peaks in the frequency
range w €[1.8,2.8] in the system output. The first and high-
est peak at w=2.16 is well pronounced only for the first and
driven oscillator and corresponds to a period 7=2.9, equal
to the driving period T; i.e., only the driven oscillator exhib-
its a good response to the signal. The second peak, very close
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FIG. 6. (Color online) Linear response Q (left column) and N;
(normalized spike number), in the right column, versus noise inten-
sity for a chain of four oscillators. (a) T,=2.61, (b) T,=2.8, (c) T,
=2.9, and (d) T,=3.1. Other parameters: e=107*, a; 4=1.01, a,3
=0.99, and A;=0.01. The couplings are C=0.80 and D=0.22
(strong interoscillatory coupling regime).

to the first one, at w=2.245 (T=2.8) is displayed mainly by
the last unit. The third peak at w=2.49 (T=2.52) can be
found in all elements with nearly equal height. The third
peak has a very small influence on the total responses of the
system (note the logarithmic scale), and it is produced by
small subthreshold oscillations. The corresponding time se-
ries is as follows: the first (driven) oscillator shows a reliable
spiking behavior with a period equal to the driving period,
while the two middle oscillators are mostly silent and the last
oscillator spikes with a slightly reduced period of 7,=2.8
(thus leading to the difference in the linear response at the
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FIG. 7. (Color online) Power spectrum of a four oscillator sys-
tem for the parameters: e=107%, a; 4=1.01, a;3=0.99, A;=0.01,
T,=2.9, C=0.80, D=0.22, and 0>=2.56 % 107°.

signal frequency Q between the first and last FitzHugh-
Nagumo in this regime). Due to the small difference in the
periodicity, there is no phase locking in this regime and a
continuous phase slip between the first and last units appears.
If the phase difference is large enough, the chain switches to
an antiphase regime; i.e., the otherwise silent middle oscilla-
tors spike in antiphase to their excitable neighbors. This tran-
sition to the antiphase attractor induces a delay of the last
unit compared to the first ones. This antiphase regime is
unstable at the considered parameter set, and the chain
switches back to the previous attractor with the silent middle
elements and the phase slip between the first and last one.
The interruption of this long-life attractor by the unstable
antiphase attractor results in a nearly equal spike number of
the first and last units. Therefore, the interesting behavior in
Fig. 6(c) at a noise intensity oﬁ%2,5 X 107% is caused by a
regime which is only similar to the dynamic trap regime, but
is not exactly the desired dynamic trap and hence does not
provide a reliable information transport.

As a summary of this section, it could be said that the
dynamic trap regime still occurs, but in a narrower region of
the driving period (7, € [2.8,3.0], Fig. 8) than in the case of
N=3 (T, €[3.0,3.4]).

Finally, Fig. 9 yields that there is also a range of inhibi-
tory coupling D such that this phenomenon happens. This
resonancelike behavior with respect to the inhibitory cou-
pling strength is caused by the influence of this parameter on
the resonance frequency of the dynamic trap regime. This
figure shows the existence of a maximum (located at a
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FIG. 8. (Color online) Linear response Q and normalized spike
number N, versus time periodicity 7. The system is composed of
four units in the strong interoscillatory coupling regime and the rest
of the parameters are £=107%, a;4=1.01, a,3=0.99, A;=0.01, C
=0.80, D=0.22, and 0>=2X 107"
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FIG. 9. (Color online) Linear response Q and normalized spike
number N, as a function of the inhibitory coupling strength D. The
system is composed by four units in the strong interoscillatory cou-
pling regime and the rest of the parameters are e=10"%, a; 4=1.01,
a;3=0.99, A;=0.01, C=0.80, 0'§=2 %1077, and T,=2.9.

coupling D=0.25) in the response as a function of this pa-
rameter.

B. Intermediate interoscillatory coupling

We also found another kind of dynamic regime in this
model with a smaller activator coupling. The analysis of the
power spectrum in the absence of noise and external signal
shows that the oscillatory units exhibit their periodic oscilla-
tions at their natural period T,,~2.54. The excitable units,
at their time, generate only subthreshold oscillations at the
natural frequency of the oscillatory units. Note that the natu-
ral frequency is shifted from the previous case of a strong
interoscillatory coupling (T,,,=~2.67). In this case, however,
the dependence with T of the linear response Q curves and
the oscillation suppression is quite different from the previ-
ous case. Even for slightly detuned input signals 7,=2.55 a
strong dynamic trap arises in the system [Fig. 10(a)]. This
oscillation suppression mechanism is very robust over a wide
range of driving periods T, [Figs. 10(a)-10(c)], whereas a
reliable signal transmission along the chain can be observed
only in a much narrower range of the driving period, T
€[2.6,2.65] [Fig. 10(b)].

The oscillation suppression here is really robust, showing
that the middle units do not spike for very large periods of
time. The phenomenon is also robust to changes of almost
four decades in the noise intensity.

Note that the curves for the number of spikes show an
exact coincidence between the first and last units (i.e., the
excitable ones), although such a perfect matching does not
occur for the linear response Q. The first and last units fire at
the same rate (same normalized spike number N,), but they
are not phase locked; i.e., there is a random phase slip. When
the difference in phase between these two excitable units is
large enough, this dynamic regime destabilizes and a regime
in which there is an in-phase motion of excitable units and
(in antiphase) spikes of the oscillatory units appears. But this
last dynamic regime is unstable and rapidly falls to the pre-
vious one. It is interesting that the matching in the number of
spikes occurs in the dynamic trap regime—i.e., that the sub-
threshold dynamics of the oscillatory units is sufficient to
carry information from one end of the chain to the other one.

Figures 11 and 12 demonstrate that there are optimal val-
ues of couplings for the suppression to occur. While the de-
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FIG. 10. (Color online) Linear response Q and normalized spike
number N (left and right columns, respectively) versus noise inten-
sity. The time periodicities are (a) T,=2.55, (b) T,=2.61, and (c)
T,=5.2. The other parameters are £=107%, a; 4=1.01, a,3=0.99,
A,=0.01, C=0.20, and D=0.50 (intermediate interoscillatory
coupling).

pendence on the activator coupling C is such that the sup-
pression holds for couplings larger than a given value, we
observe a much narrower range, a resonancelike behavior, as
a function of the inhibitor coupling D. Even further, for D
large enough, the oscillation suppression phenomenon disap-
pears and most of the spikes occur at frequencies different
from the driving one (i.e., Q vanishes).
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FIG. 11. (Color online) Linear response Q and normalized spike
number N versus activator coupling C. The system is composed of
four units, and the other parameters are £=107%, a;4=1.01, ay;
=0.99, A,;=0.01, D=0.50, T,=2.61, and 0>=2Xx107".
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FIG. 12. (Color online) Linear response Q and normalized spike
number N, versus inhibitory coupling D. The parameters are: &
=104, a;4=1.01, a;3=0.99, A;=0.01, C=0.20, T,=2.61, and 0’2
=2x107".

Figure 13 shows the dependence on the signal periodicity
T,. It is clear that the oscillation suppression and signal trans-
mission are optimal at the same parameter values. Further-
more, in the same figure it can be seen that there is a very
narrow peak around the natural period (7,=T,,,=2.54) of the
oscillatory units at which they respond optimally. Note that
the oscillation suppression holds for a wide range of values
of the driving period 7. But the main result shown in this
figure is the fact that the suppression of oscillations in the
oscillatory units is much more robust than in the previous
cases—i.e., N=3 and N=4 with strong interoscillatory cou-
pling. This result is somewhat unexpected given the fact that
these couplings are not as strong as in the previous parameter
sets and then the units are allowed to move more freely.

To show the different influence of activator and inhibitory
couplings, we have added an extra activator coupling in the
model by interchanging D by (1—a)D in the equations for
the inhibitory variable y; and inserting the terms
aD(x,—x;) in Eq. (5), aD(x;—x,) in Eq. (6), aD(x;—x3) in
Eq. (7), and aD(x;—x,) in Eq. (8). These extensions of the
model are used only in this section for the calculation of Fig.
14. We shift the balance between the activator and inhibitory
coupling between these elements continuously with the pa-
rameter a. In Fig. 14, two clearly different regimes can be
observed: for a<<3X 1073 there is a situation of dynamic
trap regime with reliable information transport, while for «
>3 X 1073, there are oscillations in the middle units’ position
and no response to the driving frequency.

As shown in Fig. 14, a very sharp transition to a situation
of oscillation suppression and no response to the driving fre-
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o
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FIG. 13. (Color online) Linear response Q and normalized spike
number N, versus driving period 7. For this four unit system, the
parameters are =107, a;4=1.01, a,3=0.99, A;=0.01, C=0.20,
D=0.50, and 02=2X107".
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FIG. 14. (Color online) The influence of the type of coupling on
the the linear response Q and the normalized spike number N, in a
system composed of four coupled FitzHugh-Nagumo units. The
sliding parameter « shifts the weight of the diffusion constant D
from a pure inhibitory coupling (a=0.0) to a pure activator cou-
pling (a=1). The other parameters are =107, a;4=1.01, ay;
=0.99, 0'§=2>< 1075, A;=0.01, T,=2.61, C=0.20, and D=0.50.

quency in the middle units is observed when the activator
coupling is weak enough, a<<3 X 1073, Figure 14 (as Fig. 4
for the N=3 case) shows the essential imperative of the in-
hibitory coupling between the excitable and oscillatory units
to reach the dynamic trap regime with the desired feature of
oscillation suppression and information transmission.

IV. CONCLUSIONS

In the present work we have studied chains of three or
four coupled FitzHugh-Nagumo units subject to noise and to
an external signal. The number of units has been chosen in
order to keep the number of parameters small, but our model
could be exemplary also for larger systems if one regards one
oscillator in the model as a representation of a cluster of
many oscillators in a close area with similar properties. Con-
versely, due to the high signal quality at the end of the chain,
if we consider replicas of this basic setup coupled linearly to
others, the same phenomenon should hold along this chain.

We have found mechanisms which, with the help of a
constructive role of the noise, help to suppress self-sustained
oscillations in chains of excitable systems while yet allowing
for the propagation of external stimuli. In our scheme, an
inhibitory coupling between oscillatory and excitable units is
essential to reach the dynamic trap regime which is respon-
sible for the oscillation suppression and the information
transport. This dynamic trap regime is characterized by an
antiphase spiking behavior (with the same frequency of the
external signal) of the excitable units at both ends of the
chain and a silent (oscillation-suppressed) behavior of the
originally oscillatory units in between. The desired dynamic
trap regime is sensitive with respect to the driving frequency,
the noise intensity, and the coupling strength. We have found
other attractors which also offer a reliable oscillation sup-
pression but, however, do not provide a good information
transport along the chain. It is interesting to note that the
oscillation suppression can also be achieved (in the absence
of noise) in the presence of a strong enough driving force.
Further study would be needed in order to determine the
main features of this suppression of oscillations by the injec-
tion of a nonperiodic external signal.

PHYSICAL REVIEW E 74, 046220 (2006)

We have considered only paradigmatic models in a very
general framework, but we expect that our results are also
relevant to other models with inhibitory coupling, used, for
example, to describe various physical [31], electronic [16],
chemical [20-22,32,33] systems, biological systems [23], in-
cluding spatial nonuniformities [34], animal coat pattern for-
mation [35], or artificial gene network synchronization with
slow autoinducer diffusion [36,37]. An important example is
that of the calcium-signaling mechanism [38,39] present in
neurons in the thalamus, pancreatic acinar cells, etc. It occurs
in regions where the Ca®* (often responsible for intracell
communication) is across the cell membrane to form what is
called a Ca®>* wave. Another example is that of the neuron-
glion interaction [40,41] in which the glion acts in some
circumstances as an intermediary messenger between pre-
and post-synaptic neurons. Interestingly enough, most of the
models of this interaction are rather simplistic circuits with
three or four compartments connected diffusively at first ap-
proximation, very close to our own approach.

A similar architecture to the studied here may be respon-
sible, for example, for the activities of neural circuits in a
nucleus found in the brain of songbirds [42]. In such circuits
the connection between different functional units of the brain
is mainly due to inhibitory coupling, whereas the connec-
tions within each unit are mainly through the activator vari-
ables. Since a strong activator coupling tends to synchronize
the population of interacting units, one can neglect, as a first
approximation, that each functional unit is composed itself of
several units and restrict oneself to a case in which only one
(mean) unit is considered for each region of the brain,
coupled with others through the inhibitor variable. In this
architecture the oscillating element is directly surrounded by
inhibitory coupled excitable elements.

The suppression of global oscillations and the prevention
of undesirable neural synchronization is an ongoing issue in
medicine and neuroscience, and many techniques have been
proposed previously in the literature—e.g., permanent high-
frequency stimulation [43,44], demand-controlled deep brain
stimulation techniques [45,46], delay feedback control of col-
lective synchrony [47] or noise-induced excitability [48]. The
results of the present paper can be also potentially useful for
this research direction if applied not to inhibitory but nega-
tive coupling which can also lead to the appearance of mul-
tithythmicity [49]. There, our result should imply that it is
possible to suppress undesirable oscillations while still being
able to propagate external stimuli.
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