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Abstract
In this work, we reanalyse the HRV data from the 2002 Computers in Cardiology (CiC)

Challenge using the concept of large-scale dimension densities and additionally apply this

technology to data of healthy persons and of patients with cardiac diseases. The large-scale di-

mension density is estimated from the time series using a normalized Grassberger-Procaccia

algorithm, which leads to a suitable correction of systematic errors produced by boundary

effects in the rather large scales of a system. In this way, it is possible to analyse very short,

non-stationary and unfiltered data, such as HRV. Moreover, this method allows us to anal-

yse short parts of the data and to look for differences between day and night. The circa-

dian changes in the dimension density enable us to distinguish almost completely between

real data and computer generated data from CiC 2002 challenge using only one parameter.

In the second part we analysed the data of 15 patients with atrial fibrillation (AF), 15 pa-

tients with congestive heart failure (CHF), 15 elderly healthy subjects (EH) as well as 18

young and healthy persons (YH). With our method we are able to separate completely the AF

(µρls
= 0.97 ± 0.02) group from the others and, especially during daytime, the CHF patients

show significant differences to the young and elderly healthy volunteers (CHF: 0.65±0.13, EH:

0.54± 0.05, YH: 0.57± 0.05, p < 0.05 for both comparisons). Moreover, for the CHF patients we

find no circadian changes in µρls
(day: 0.65±0.13, night: 0.66±0.12, n.s.) in contrast to healthy

controls (day: 0.57± 0.05, night: 0.67± 0.07, p = 0.00004). Correlation analysis showed no sta-

tistical significant relation between standard HRV and circadian LASDID demonstrating a

possibly independent application of our method for clinical risk stratification.
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INTRODUCTION

Annually, in the United States up to 450,000 people die due to sudden cardiac

death [1–3]. Therefore, an accurate and reliable identification of patients who are at

high risk for sudden cardiac death is an important and challenging problem. In this

paper we introduce a measure of complexity which may help to solve this problem

when applied to heart rate variability (HRV) data. Observational data, such as HRV,

often are rather short and may be noisy. Different data analysis techniques to under-

stand complex processes observed in nature [4–6] were developed. Linear approaches

of time series analysis are often not sufficient [7, 8] and most of the nonlinear tech-

niques [9, 10] suffer from the curse of dimensionality. Mostly, there are not enough

points in the (often non-stationary) time series to reliably estimate these nonlinear

measures. The uncritical application of these methods especially to natural data,

therefore, can be very dangerous and often lead to serious pitfalls.

To overcome these difficulties, other measures of complexity have been proposed,

such as Renyi entropies, effective measure complexity, ε-complexity or renormalized

entropy [11, 12]. They are mostly basing on symbolic dynamics and are efficient

quantities to characterize measurements of natural systems, such as in cardiology

[13–15], cognitive psychology or astrophysics [16–18]. These methods are often not

sufficient for very short data sets. For short data sets the method of point correlations

has been introduced [19], but the dimension is estimated from a short part of the

classical correlation dimension at small scales where no scaling region can be found

for short data sets. In this paper we focus on another type of measures of complexity

basing on the method of large-scale dimension densities (LASDID) [20] and apply this

methodology to HRV data. LASDID allows to analyse very short data sets, so it is

possible to calculate it for short parts of the data and get an overview of the changes

in the dimension density inbetween 24 hours.

The paper is organized as follows: First, we give a short overview of the method of

large-scale dimension densities. Next, we describe the data used for this study. Then,

we apply this technique to HRV data and show the ability to distinguish between real

and simulated data. Finally, we analyse HRV data of AF patients and CHF patients

in comparison to healthy persons.
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METHOD OF LARGE-SCALE DIMENSION DENSITIES (LASDID)

LASDID [20] is estimated with a normalized Grassberger-Procaccia algorithm,

which leads to a suitable correction of systematic errors produced by boundary ef-

fects in the rather large scales of a system. So it is possible to analyse rather short

and non-stationary data.

To calculate the correlation dimension D2 of a system with the Grassberger-Pro-

caccia algorithm [21], means that the attractor firstly has to be reconstructed by em-

bedding. The embedded time series consists of vectors {~x(t) = (x1(t), x2(t), ..., xm(t))},
where m is the embedding dimension. Then one has to calculate the correlation inte-

gral C(r,m) by

C(r,m) =
1

N(N − 1)

∑

i6=j
θ(r − |~x(ti)− ~x(tj)|) (1)

where θ is the Heaviside function and r is the radius around each point within neigh-

bouring points are counted for the correlation sum. D2 is then defined as

D2 = lim
r→0

lim
m→∞(d logC(r,m)/(−d log(r))), (2)

if this limit exists [21]. Because it is impossible to reach the limit r → 0 in numeri-

cal calculations, one has to estimate this dimension from larger distances, i. e. the

right hand side of eq. (2) becomes a distant dependent function D2(r,m). For low-

dimensional attractors for small r there often exists a rather large region in log2(r)

where this D2(r,m) is nearly constant. This part is referred to as the scaling re-

gion [21]. For larger values of r, D2(r,m) is decreasing because of boundary effects,

for small distances the dimension is fluctuating rather irregularly due to the finite

amount of data. It has been shown, that with the growing dimension of the attractor

the number of data points needed to reach the scaling region is increasing exponen-

tially [10, 20, 22]. If the time series is too short, one only gets the part of D2(r,m)

with decreasing values. With LASDID we are able to use this part of D2(r,m) too.

We have recently introduced the large-scale dimension density ρls(r,m) [20] which

is defined by normalizing the dimension density D2(r,m)/m of all coordinates m of the

embedded system to the dimension density D2(r, 1) of one coordinate of this system:

ρls(r,m) = D2(r,m)/(mD2(r, 1)). (3)
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FIG. 1: Comparison of LASDID (solid line) with the Grassberger-Procaccia algorithm(dashed

line) calculated for HRV data. With LASDID we get a plateau for scales between 1/2 and

1/10 of the attractor diameter, corresponding to log2(r) = −1 to −3.4. For the calculation we

used only 2000 RR-intervals, which is not enough to find a scaling region with the Grass-

berger-Procaccia algorithm. The data was embedded with τ = 1 and embedding dimension

m = 4.

This normalization is the main point of our new approach and leads to a surpris-

ingly well-expressed plateau for large scales r yielding an estimate of ρls. In fig. 1 the

normalized curve is shown and compared with the original Grassberger-Procaccia

algorithm. The large scaling region of the normalized curve enables to estimate a

reliable value of ρls by averaging all values of this region.

The advantage of LASDID is that it is possible to estimate it from rather short

and non-stationary time series. So we can cut every RR-interval time series in M

shorter pieces. To reduce very large RR-intervals which sometimes occur because of

measurement errors in the unfiltered data which we use in the second part of the

paper, it is necessary to transform the data to a gauss distribution. Then, for every

of this short and transformed pieces, we calculate the large-scale dimension density
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ρls(r,m) via the basic eq. 3 and estimate ρls from the plateau. This leads to a time

series of ρls(t). For this time series we calculate further measures of complexity: the

mean value µρls
by

µρls
=

1

M

M∑

i=1

ρls(ti), (4)

the standard deviation σρls
by

σρls
=

√√√√ 1

M − 1

M∑

i=1

(ρls(ti)− µρls
)2 (5)

and the coefficient of variation cvρls
by

cvρls
= σρls

/µρls
. (6)

As shown in [20] the large-scale dimension density is decreasing with increasing em-

bedding dimension m. But in this work our main intention is to compare data of

different groups of patients, that means not the absolute value of the dimension den-

sity is important but the comparison of them, i.e. here ρls and the derived measures

of complexity µρls
, σρls

and cvρls
have to be understood as relative measures. For the

calculation of LASDID we use an embedding-dimension of m = 4 and a delay of

τ = 1. But the results are qualitatively the same with embedding dimensions be-

tween m = 4, ..., 8 and delay times between τ = 1, ..., 5. Finally, approximations of the

large-scale dimension mρls and the large-scale dimension density ρls are made with

embedding dimensions up tom = 200. Group summaries are expressed as mean value

± standard deviation. Statistical analysis was performed via Mann-Whitney U test

and Pearsons correlation coefficients where appropriate. In all tests, the criterion for

statistical significance is p < 0.05.

DATA

Physiological data very often show complex structures which cannot be simply de-

scribed and, therefore, their interpretation is difficult. For the HRV data we are

analysing in this paper (see fig.2), it is well known that a metronomic heart rate is

pathological - the healthy heart is influenced by multiple neural and hormonal fac-

tors that result in variations in RR intervals. Even after three decades of study, new
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FIG. 2: Representative beat-to-beat intervals (RR-intervals) from simulations (a, time series

34 from Computers in Cardiology challenge 2002), from a young and healthy volunteer (b),

from an elderly healthy volunteer (c), from a patient with congestive heart failure (CHF) (d)

as well as from a patient with atrial fibrillation (AF) (e).

techniques continue to reveal properties of the time series of RR-intervals. Hier ver-

stehen wir nicht ganz, wie Sie das mit ’focus on problems’ gemeint hatten.

Moreover, the simulation of such time series is still extremely sophisticated and Phy-

sioNet [23] and Computers in Cardiology 2002 organized a challenge to improve the

momentary understanding of cardiovascular regulation. The aim of the first part of

this challenge was to construct simulations of the RR interval time series spanning

a full 24 hours with sufficient verisimilitude to be taken as real. In a second part a

blind classification of a mixed set of real and simulated RR interval time series shall

be performed.

In this paper, we reanalyse the 46 time series from the second part of this chal-

lenge using LASDID to test whether new information in RR interval variation can be

revealed. Therefore, the first intention of this contribution is to study whether these
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both types of time series can be discriminated by LASDID parameters.

The second intention of this paper is to demonstrate a possible application for risk

stratification of cardiac diseases. Therefore, we analyse the 24 hours HRV data of 15

patients with atrial fibrillation (AF) (15 male, age: 67±12), of 15 patients with conges-

tive heart failure (CHF) (11 male, 4 female, age: 56±11), of 15 elderly healthy subjects

(10 male, 5 female, age: 50 ± 9) as well as of 18 young healthy persons (13 female, 5

male, age: 34±8). The original 24 hours ECG recordings were digitized at 128 samples

per second with standard Holter devices, and the beat annotations were obtained by

automated analysis with manual review and correction. The data of the CHF patients

and the young healthy subjects are available from Physionet [23]. We calculate LAS-

DID with the unfiltered data and compare it with standard time and frequency do-

main parameters as well as parameters based on symbolic dynamics which have been

recently successfully applied to other cardiological problems [13, 24, 25]. The follow-

ing HRV parameters are calculated from the filtered time series [26] [? ]: MeanNN,

the mean value of normal beat-to-beat intervals; sdNN, the standard deviation of in-

tervals between two normal; Rmssd, the root mean square of successive RR-intervals;

and pNN50, the percentage of RR-interval-differences greater than 50 ms. Addition-

ally, in the frequency domain the normalised low-frequency (LFn) the ratio LF/HF

are estimated. Finally, HRV is analysed by methods of nonlinear dynamics, espe-

cially symbolic dynamics [14, 27]: FWSHANNON, the Shannon entropy of the word

distribution and POLVAR10, a measure to detect intermittently decreased HRV. At

last, we use LASDID to estimate dimensions of HRV data with high embedding di-

mensions.

RESULTS

Separation of real and simulated data

First we use the method of LASDID to compare time series of real ECG data with

those of simulated data. (see fig.2a,b). We subdivide every time series in pieces of

an equal amount of heart beats and calculate ρls(r,m) (Eq.3). After estimating the

dimension from the plateau at large scales, this leads to a time series with fluctu-
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ating values ρls(t) which are analysed by calculating the mean value µρls
(Eq.4), the

standard deviation σρls
(Eq.5) and the coefficient of variation cvρls

(Eq.6). To find the

best length of the short pieces all calculations have been done with different amounts

of heart beats. For less than 500 heart beats ρls can not be calculated reliably. The

region of the plateau becomes to short because the part with the fluctuating val-

ues, which usually exists for small scales is shifted to larger scales and cuts off the

plateau. For pieces of 1000 heart beats the plateaus are not cut and we get almost the

same results as with intervals of 2000 heart beats. But for pieces longer than 2000

heart beats more and more information about the circadian changes gets lost. So the

following calculations are done with 1000 heart beats per piece of RR-interval.

For real data we find values of µρls
between 0.5 to 0.7, whereas simulated data

ranges between 0.4 to 0.9, only half of the models generated data which also ranges

between 0.5 to 0.7. Values near one indicate a rather stochastic behaviour of the

heart rate, values near zero mean deterministic heart beats. Furthermore real data

shows stronger fluctuations in the time series of LASDID, i.e. the values of σρls
are

higher for real data (σρls
from 0.09 to 0.17 for real data against σρls

from 0.02 to 0.11 for

simulated data) representing circadian variability changes. The best discrimination

result, however, we get with the coefficient of variation cvρls
. It makes it possible to

distinguish between real and simulated data by using only one parameter. Almost all

simulated time series can be detected with this method (see fig. 3).

The records of the real data always started and ended in the morning, so it is

possible to distinguish between day and night. In the following we used the time

between 8:00 a.m. and 1:00 p.m. as day interval and the time from 1:00 a.m. to 6:00

a.m. as night interval. For real data we find higher values of µρls
for the night for

most of the records (day: µρls
= 0.546 ± 0.056; night: µρls

= 0.628 ± 0.069). According

to the Mann-Whitney U-test this difference between day and night is significant (P

for day vs. night < 0.001). But only few of the simulated data sets show differences

between two different time intervals.

Interestingly, always two datasets of the simulated data have been generated with

the same model. These pairs do not differ much in µρls
which enables to assign the

data with lower µρls
to a single model. For data with higher µρls

always two models

come into question (see fig. 4).
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FIG. 3: A comparison of the coefficients of variation cvρls
(Eq.6) of real data and simulated

data shows higher values for real data.

Risk stratification of cardiac diseases

The second intention of this paper was to demonstrate a possible application for

risk stratification of cardiac diseases. Therefore, we compare the data of different

pathologies and healthy subjects. For patients with atrial fibrillation (AF) we find

values of µρls
near one which indicates almost stochastic heart beats. The coefficient

of variation cvρls
for this patients is very low (see fig. 5 and tab. I). This means,

the AF-group separates completely from the others. Elderly patients with congestive

heart failure (CHF) show higher values of cvρls
. The highest values we find for elderly

healthy patients (EH) (see fig. 5 and tab. I). This means, low values of cvρls
indicate

a higher risk of heart disease. For the healthy persons we again find higher values of

µρls
for the night, but not in patients with congestive heart failure (see tab. II). Thus,

finding no circadian differences in µρls
is also a pathological sign.
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FIG. 4: µρls
of the simulated data. Always two datasets have been generated with the same

model and are connected with lines.

A closer look at the dependency of the mean value of the age of the patients shows

that µρls
is decreasing for increasing age (see fig. 6). This can be interpreted as a

decreasing of the number of degrees of freedom in the underlying processes with age.

This result agrees with other studies that have found decreasing dimensionality of

heart beats with age, described by the group of Goldberger, using detrended fluctua-

tion analysis [28, 29] and by Yoshikawa, calculating Lyapunov dimensions [30].

For standard analyses it is necessary to exclude artefacts and premature beats

from the HRV data to make it for instance possible to estimate spectra reliably. To

see, how sensitive LASDID is to this filtering, we pre-processed [26] the data and cal-

culated LASDID again. For healthy persons we find almost no differences in µρls
, σρls

and cvρls
. For most of the AF-patients µρls

is decreasing and cvρls
increasing respec-

tively. This means, some of the random processes in the heart beats of AF-patients

are filtered out. For most of the CHF-patients we find no differences between filtered
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Group µρls
σρls

cvρls

AF 0.968 ± 0.021 0.023 ± 0.012 0.024 ± 0.013

CHF 0.651 ± 0.125∗ 0.105 ± 0.027∗ 0.168 ± 0.053∗

EH 0.563 ± 0.042∗� 0.120 ± 0.022∗ 0.209 ± 0.028∗�

YH 0.6062 ± 0.0392∗∇ 0.112 ± 0.016∗ 0.185 ± 0.021∗∇

TABLE I: The four different groups of patients are AF (Atrial Fibrillation), CHF (Congestive

heart Failure), EH ( Elderly Healthy) and YH (Young Healthy). They have different mean

values of µρls
(Eq.4), σρls

(Eq.5) and cvρls
(Eq.6) (∗ p < 0.001 vs. AF group, � p < 0.05 vs. CHF

group, ∇ p < 0.05 vs. EH group).

Group µρls
day µρls

night p day vs. night

EH 0.54 ± 0.05 0.61 ± 0.05 0.002

YH 0.57 ± 0.05 0.67 ± 0.05 < 0.001

CHF 0.65 ± 0.13 0.66 ± 0.12 n.s.

TABLE II: Comparison of the day and night values of µρls
for healthy persons (EH and YH)

with patients with congestive heart failure (CHF).

and unfiltered data, but for patient number two, six and fifteen µρls
is higher and cvρls

is lower for the unfiltered data (CHF2: µρls
= 0.682 vs. 0.596; cvρls

= 0.154 vs. 0.128;

CHF6: µρls
= 0.803 vs. 0.720; cvρls

= 0.099 vs. 0.067; CHF15: µρls
= 0.565 vs. 0.543;

cvρls
= 0.204 vs. 0.191) A closer look at the data shows that these three patients have

lots of ventricular premature beats which make filtering almost impossible. Because

of that also important HRV information is filtered out by pre-processing and it be-

comes more difficult to separate the CHF-patients from the healthy persons. But,

filtering out ventricular premature beats is not changing the dimensionality of the

data. The CHF patients three and eight also have ventricular premature beats, but

not as much as the other three patients. Here only the ventricular premature beats

are filtered and no differences occur in the results. On the other hand, in the data

of patient CHF4 there are lots of errors resulting of technical problems, and they do

not influence the unfiltered results. So it is another advantage of LASDID that unfil-

tered data can be used and a loss of information resulting from pre-processing can be
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FIG. 5: Comparison of the coefficient of variation cvρls
of patients with atrial fibrillation (AF),

with congestive heart failure (CHF) and elderly healthy persons (EH).

avoided.

In order to investigate the physiological correlates for LASDID we perform a corre-

lation analysis. Pearson correlation coefficients between different HRV parameters

and µρls
, σρls

and cvρls
are given in table III. Mean heart rate (inversely related to

MeanNN) as well as sdNN, the standard deviation of the time series, does not cor-

relate with µρls
and cvρls

. For rmssd, the root mean square of successive differences,

however, we see a significant relation to µρls
, i.e. short term respiratory induced os-

cillation in HRV plays an important role for LASDID. The highest correlation we

find for the normalized low frequency band around 0.1 Hz to µρls
, demonstrating that

the Mayer waves having the strongest influence for estimating LASDID. Interstingly,

cvρls
did not show any significant relation to HRV parameters.

To compare LASDID to correlation dimensions of HRV data calculated by others,

we also estimated ρls for higher embedding dimensions m up to m = 200 with 80, 000
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FIG. 6: The mean values µρls
of the large scale dimension density time series for healthy

persons are decreasing with the age of the persons. This Correlation is significant: r = −0.45

and p < 0.01.

µρls
σρls

cvρls

meanNN 0.053+ 0.110+ 0.107+

sdNN 0.227+ 0.232+ 0.152+

rmssd 0.509� 0.276+ 0.059+

pNN50 0.510� 0.267+ 0.046+

LF/HF −0.607∗ −0.453� −0.226+

LFn −0.735∗ −0.461� −0.163+

fwshannon −0.659∗ −0.261+ 0.037+

polvar10 −0.553� −0.353∇ −0.145+

TABLE III: Correlations coefficients r (p-value) between large scale dimension densities and

heart rate variability parameters (∗ p < 0.001, � p < 0.01, ∇ p < 0.05, + not significant).

13



heart beats. For the EH group this value is decreasing from ρls = 0.35 for m = 5

to values between ρls = 0.018 to ρls = 0.056 for m = 200. This corresponds to large-

scale dimensions mρls between 4 and 11 for m = 200. This is in accordance with

results of the correlation dimension calculated by Carvajal et al. (D2 = 7.5 − 10.8)

[31], Babloyantz and Destexhe (D2 = 5.5 − 6.3) [32], Kanters et al. (D2 = 9.6 − 10.2)

[33], Govindan et al. (D2 = 2.8 − 5.8) [34] and Guzzetti et al. (D2 = 4 − 7) [35]. The

maximal embedding dimension used by them was about m = 20. We could calculate

with embedding dimensions up to m = 200 because LASDID needs less data-points

than the Grassberger-Procaccia algorithm. But we did not find an upper limit for

mρls, even for m = 200 we get increasing results.

CONCLUSIONS

In this paper, we showed that our new method of LASDID can be used to analyse

very short, instationary and unfiltered data.

Firstly, we presented a way of discriminating the 46 simulated and physiological

HRV time series from the 2002 Computers in Cardiology challenge [36] using only

one parameter. Next, we demonstrated its potentials for risk stratification of car-

diac diseases. Patients with atrial fibrillation showed averaged large-scale dimension

densities near to one and can be completely discriminated from the other groups. A

dimension density near one means, that atrial fibrillation leads to a broad range of

random heart beats. The comparison of the results of LASDID for filtered and unfil-

tered data showed, that for this group filtering is senseless, because too many heart

beats are exclude due to their randomness. For the CHF group filtering also some-

times destroys important HRV information, as shown for the patients with ventric-

ular premature beats. In addition, we showed that the group of the elderly healthy

subjects is statistically different in µρls
to the congestive heart failure group. Interest-

ingly, the young healthy volunteers are not statistically different to the CHF group.

This is due to the fact that HRV decreases with age, here the number of modes µρls

decreases too (see YH vs. EH in Tab.I and fig. 6). In the CHF group µρls
is increased

compared to elderly healthy subjects. This means the number of independent modes

increases due to the disease - possible explanations are ventricular ectopy or pulsus
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alternans. For the circadian variation of cvρls
the same phenomena can be detected:

Patients with AF persisting over 24h do not show circadian complexity changes, the

young healthy group is inbetween the CHF and the elderly healthy group.

Compared to other methods of analysing RR-intervals of HRV data we only needed

one parameter to separate the simulated and physiological HRV time series from the

2002 Computers in Cardiology challenge. In a previous paper [25] we used three

different parameter for this, we quantified the distribution of RR-intervals, the cir-

cadian beat-to-beat variability as well as the beat-to-beat dynamics. Using cut-offs

for these parameters, both time series groups could be discriminated completely. The

cut-offs were subjectively chosen based on the knowledge of the normal ranges of the

used parameters. Moreover, it was an act of instinct which parameter to choose first.

To the best of our knowledge, until today there was no single parameter for the com-

plete separation of the considered groups. Using the concept of LASDID, a nearly

perfect classification was performed for the first time. Only one of the simulated time

series (no. 4) was falsely classified as a real one. This time series showed a compara-

ble number of degrees of freedom (number of modes) as compared to real data and this

number showed a circadian dependence. The modes, however, were chosen too rigid

- one can easily detect this time series as an artificial one from its frequency spec-

trum. The averaged LASDID µρls
, characterizing the number of independent modes

(the working regulatory circuits) generating the heart rate data, are statistically dif-

ferent between real and simulated data. The circadian variation of the number of

independent modes cvρls
, however, enables a nearly perfect discrimination between

physiological and artificial data. Real heart rate data are characterized by circadian

variability changes due to different mechanisms. At daytime there are influences

from physical or mental stress, food intake - in the night you should have no stress,

however, there are significant differences in the sleep stages, too. No simulation in

this data base was able to model all these effects.

Finally, looking at the correlation of LASDID to standard HRV parameters and

finding no statistical significant relation for cvρls
demonstrates the independence of

our approach and the fact, that we do not need to filter the data is a big advantage

for stratification of cardiac diseases.
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