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This work combines the Theory of Chaotic Synchronization with the Theory of Information in
order to introduce the chaotic channel, an active media formed by connected chaotic systems. This
subset of a large chaotic net represents the path along which information flows. We show that the
possible amount of information exchange between the transmitter, where information enters the net,
and the receiver, the destination of the information, is proportional to the level of synchronization
between these two special subsystems. Another important foretelling of this approach is that if the
receiver and the transmitter are phase or completely synchronized, transmission has the capacity to
happen with no errors.

A communication system, as defined by Shannon [1],
is composed of an information source that produces
a message, a transmitter, that transforms the message
into a signal suitable for transmission over a channel,
such that the message can be retrieved in the receiver

with a minimal amount of errors. The most outstanding
result in Shannon’s Theory of Communication is the for-
mula that gives the channel capacity, i.e., the average up-
per bound for the mutual information exchange between
the transmitter and the receiver, or in other words, the
possible amount of information that can be transmitted
in a physical medium.

In chaos-based communication systems, each step of
the communication can be performed using a chaotic sys-
tem. As shown in [2], chaotic systems can naturally pos-
sess the properties of a transmitter, since they can be
controlled such that the information of the message is
encoded in its chaotic trajectory. Moreover, a chaotic
trajectory is suitable for transmission over noisy and fre-
quency band-limited channels, in the sense that the re-
ceiver can recover the message with a small amount of
errors [3–6].

A channel as defined by Shannon is a physical medium
that enables information to pass throughout until it ar-
rives to the receiver. Analogously, we define a chaotic
channel as an active physical medium formed by at least
two connected chaotic systems that enable information
from a source to pass from the first one (the transmit-
ter) to the last one (the receiver). A chaotic net, formed
by many connected elements might possess only a few
chaotic channels, in the sense that the channel is the path
of connected systems along which information flows. We
define a transmitter and a receiver in this net to be both
elected subsystems of the whole chaotic net.

A first step to understand the chaotic channel goes
back to the works [7–9] in which it is shown that two cou-
pled chaotic systems can become Completely Synchro-
nized (CS), i.e., the distance between their initially dif-
ferent trajectories tends to zero, as time tends to infinity.
This property was explored as a communication system,
making the pair of coupled systems to work as an active
media that transports information from a driving system
(the transmitter) to a slave system (the receiver) [8, 9].
The condition under which CS takes place is given by the

conditional exponents [8]. Basically, two coupled chaotic
systems have two sets of conditional exponents. One set
is associated with the synchronization manifold and the
other one associated with the transversal manifold. The
presence of positive transversal exponents indicate that
CS does not exist.

A second step is given by [10, 11]. A chaotic trajectory
produces to an observer a certain amount of uncertainty,
that defines information, quantified by the Kolmogorov-
Sinai entropy HKS [10], which is the proper way of calcu-
lating the Shannon source entropy of a chaotic set. For
systems with a measurable (the trajectory is bounded
to a finite domain) and ergodic (average quantities can
be calculated in space and time) invariant (with respect
to time translations of the system and to smooth trans-
formations) natural measure, that is smooth along the
unstable manifold, HKS equals the sum of the positive
Lyapunov exponents [11]. So, as a source of information,
the more chaotic a system is, the more information it
produces.

A third step is given in [12], which showed that the
conditional exponents alike the Lyapunov exponents are
relevant physical quantities to describe a network that
is formed by coupled chaotic systems. In particular, in
addition to Pesin’s identity [11], it was suggested [12] that
the summation of the positive conditional exponents λ+

between two subsystem of a large network could be a
measure of the apparent rate of information production
in each pair of subsystems, as if they were detached from
the whole group.

We show in this paper, by plausible physical rea-
sonings, that the appropriate quantity to quantify the
amount of information in the chaotic channel is

IC =
∑

λ
+
‖ −

∑
λ

+
⊥, (1)

where IC represents the mutual information between
the transmitter and the receiver,

∑
λ+
‖ , the sum of the

positive exponents associated with the synchronization
manifold, and

∑
λ+
⊥, the sum of the positive exponents

associated to the transversal manifold. The term
∑

λ+
‖

represents the information (entropy production per time
unit) produced by the synchronous trajectories, and it
corresponds to the amount of information transmitted.
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The term
∑

λ+
⊥ represents the information produced by

the non-synchronous trajectories, and it corresponds to
the information lost in the transmission, the information
that is erroneously retrieved in the receiver. From Shan-
non’s work, the mutual information between the trans-
mitter, S1, and the receiver, S2, is given in a colloquial
term as the amount of information transmitted minus
the information lost due to errors. So, it is suggestive
to assume that in coupled chaotic systems, the mutual
information is given by Eq. (1).

Finally, the capacity as defined in Shannon’s work, is
the maximum of the mutual information. So, while the
capacity of a net that respects certain conditions [11] is
given by HKS =

∑
λk>0 λk, with λk representing all the

possible Lyapunov exponents of the net, where a chaotic
channel is located, the capacity of the chaotic channel is
given by C = max (IC), with the condition that

HKS ≥ C. (2)

We implement this approach for a system of two cou-
pled maps, and for a system of three coupled Rössler
oscillators, showing that this approach is valid for both
descriptions of dynamical systems, the discrete and the
time-continuous. Further and in the conclusions, we ar-
gue that these results can be extended to large networks
of coupled chaotic systems, as well.

The discrete channel - a channel of communication

formed by discrete chaotic elements: We model a discrete

channel by two coupled maps x
(1)
n+1 = (1−c)2x

(1)
n +2cx

(2)
n

(mod 1) and x
(2)
n+1 = (1 − c)2x

(2)
n + 2cx

(1)
n (mod 1), with

c ≤ 0.5, representing the coupling strength. In here,
the channel is completely described only by the trans-
mitter, the subsystem of variable x(1), and the receiver,
the subsystem of variable x(2). The Lyapunov exponents
of these coupled systems are λ1=2 and λ2=2-4c. There-
fore, HKS = 4-4c. The synchronization manifold, x‖, is
defined by the following variable transformation: x‖ =

x(1) +x(2), and the transversal manifold is defined by x⊥

= x(1) − x(2). The conditional exponents are λ‖=2 and
λ⊥=2-4c, therefore, equal to the Lyapunov exponents.
For no coupling (c=0), these two mappings work as in-
dependent sources of information, and the capacity for
generating information of these two sources are given by
the sum of the capacity of each one, which in this case is
equal to HKS = λ1 + λ2 = 4. The mutual information
should vanish (note that for c=0, λ‖ − λ⊥=0) with the
errors produced by the non-synchronous trajectories be-
ing maxima (note that λ⊥ is maxima for c=0). This IC

function increases as the coupling c increases, once the
larger is c, the larger is the synchronization level, and
consequently the amount of information retrieved in the
receiver. So, we see that it is reasonable to consider that
IC = λ‖ − λ⊥. Note that Eq. (2) holds, once HKS =
4 − 4c ≥ IC , with IC= 4c. We get equality for c=1/2
(HKS=IC) when CS is reached between the transmitter
and receiver. At this moment, the errors produced by the
non-synchronous trajectories should vanish. That is ex-
actly what happens to λ⊥. Therefore, we see again that

it is reasonable to consider that λ⊥ is related to the errors
caused by the non-synchronous trajectories in the decod-
ing of the information in the receiver. So, when there is
no CS, errors may occur in the transmission (

∑
λ+

1 > 0),
while when there is CS, errors may not occur and the
channel transmits information in its full capacity.

The continuous channel: - a channel of commu-

nication formed by continuous chaotic elements A small
chaotic network is modeled by the following system of
three coupled Rössler oscillators: ẋi = −αiyi − zi +
Aji(xj − xi), ẏi = αixi + ayi, żi = b + zi(xi − c), with
a=0.15, b=0.2 and c=10, and i, j = 1, . . . , 3. The index i
and j denotes systems Si and Sj . Aji indicates the cou-
pling of the perturbation that Sj makes in Si. We use the
index i to represent the transmitter and the index j to
represent the receiver. The configuration of the net is set
to have S1 and S2 bidirectionally coupled with A12=A21,
and S3 is unidirectionally coupled to S2, that is, A23 ≥0
and A32=0. α1=1, α2=1.0002, and α3=0.998, and thus
all the systems have different parameters.

The absence of non-local connections (A13=A31=0) is
imposed such that we are able to calculate the capacity
of the chaotic channel only by looking at pairs of nearby
elements. So, for this network of three elements, instead
of looking at the mutual information between S1 and S3

(whose calculation involves terms on the subspaces of all
the other subsystems of the net), we look at the mutual
information between S1 and S2, and also between S2 and
S3, and infer what is the mutual information between
S1 and S3. This assumption simplifies enormously the
analytical (and numerical) calculation of the conditional
exponents.

Assuming ~Xi to describe the state variables of subsys-
tem i, then the synchronization manifold between sub-

system Si and Sj is given by xij

‖ = ~Xi + ~Xj , which

yields the ODE’s that describe this manifold. ẋij

‖ =

[(αj−αi)y⊥−(αi+αj)y‖]/2−z‖ G‖+, ẏij

‖ = [(αi+αj)x‖+

(αi −αj)x⊥]/2+ay‖, żij
⊥ = 2b+(0.5x‖− c)z‖ +0.5x⊥z⊥.

The transversal manifold is defined as xij
⊥ = ~Xi − ~Xj ,

which give us ẋij
⊥ = [(αj −αi)y‖ − (αi + αj)y⊥]/2− z⊥ +

Gij
⊥ , ẏij

⊥ = [(αi + αj)x⊥ + (αi − αj)x‖]/2 + ay⊥, żij
⊥=

0.5x⊥z‖ + (0.5x‖ − c)z⊥, with the term G⊥ and G‖ ex-
pressing the coupling between the transmitter and the
receiver, with other elements in the network. The Jaco-
bian of the whole net in the partial derivatives ∂/∂xij

‖

and ∂/∂xij
⊥ is formed by a 18 × 18 matrix. The con-

ditional exponents are the logarithms of the eigenvalues
of the product of these Jacobian matrix, as we iterate
the trajectory. Assuming that terms given by the prod-
uct of exclusively variables in the transversal coordinates
do not contribute to the diagonal of the Jacobian prod-
uct, as well as, are irrelevant in comparison with terms
exclusively given by the product of the synchronization
variables, the Jacobian in the variables xij

‖ is exclusively

dependent only on terms that depend on the variables
xij

‖ (the same happens for the variables xij
⊥), if i and j
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are neighbors. That is, i = 1 and j=2, or i=2, or j=3.
This means that the transversal exponents do not depend
on the parallel exponents, and vice-versa, and they can
be easily calculated by two matrices that have the same
dimensionability as the chaotic subsystems (3 × 3). This
property, a consequence of the linearity of the coupling,
does not hold for non-local couplings with terms given
by i=1, j=3. If this is the case, our approach still can be
used, but one has to calculate a matrix of size 18 × 18.
Also, for this proposed linear and only local couplings,
each positive Lyapunov exponent can be associated ex-
clusively to the capacity of one subsystem in the net, i.e.,
H(Si).
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FIG. 1: [Color online] The mutual information IC between re-
ceiver and transmitter in the network formed by three coupled
Rössler systems. We show the information lost in the trans-
mission (

∑
λ+
⊥), and the information retrieved by the trans-

mitter, the mutual information (
∑

λ+
‖
). In (A) the transmit-

ter is S1 and in (B), we can consider as transmitters (receivers)
S1 or S2 (S2 or S3), and A12=A21=0.05. CS between S2 and
S3 is achieved for A23 ≥0.31. The units are in bits per time
unit. The intermittency present in the transition to PS in (A)
causes numerical errors that apparently makes IC > H(S2).

In Fig. 1 we show the formation of channels of commu-
nication, in this three elements net. In (A) we consider
that there is no coupling between S3 and S2 (A23=0),
and therefore, IC(S1, S3)=0. As we increase the coupling
between S1 and S2, the mutual information IC(S1, S2) in-
creases from 0 to IC(S1, S2) ∼=0.126 bits per time unit,
the maximum value for the mutual information, that is
the capacity of the chaotic channel. Note that the ca-
pacity of the net is given by HKS

∼= 0.26. Two phenom-
ena are important to characterize the chaotic channel:
(i) First, the appearance of Phase Synchronization (PS)

[13] between S1 (transmitter) and S2 (receiver). In this
phenomenom the amplitudes of the two systems are un-
correlated while their phase difference remains bounded.
Whenever that happens

∑
λ⊥ → 0 (arbitrarily close to

zero), and therefore, the error in the retrieving of infor-
mation in the receiver, caused by the non-synchronous
trajectories, is already a minimum, i.e. there is a large
chance that the message is completely recovered, with no
errors, or with an insignificant small amount of errors,
as discussed in [6]; (ii) The appearance of CS, makes∑

λ⊥ =0, which means that the message can be com-
pletely recovered, with no errors, with the extra fact
that the channel has its maximal capacity, i.e., IC(S1, S2)
= C. Then, we fix the coupling between S1 and S2

(A12=A21=0.05), so to have PS between S1 and S2, and
increase the coupling between S2 and S3. These three
coupled systems can be treated as forming two commu-
nication channels. One from S1 to S2 and another from
S2 to S3. Assuming, S1 to be the transmitter and S2

the receiver, IC(S1, S2) ∼=0.078. As we increase A23, the
channel formed by S2 and S3 has the same characteristics
as shown in (A), that is, when S2 and S3 presents PS,∑

λ⊥ → 0, and when S2 and S3 are in CS (what hap-
pens for A23 ≥0.31),

∑
λ⊥=0. Thus, the mutual infor-

mation between the systems S1 and S3 is therefore given
by the minimum between IC(S1, S2) and IC(S2, S3), and
the capacity of this channel can be achieved for a set
of couplings such that the minimum between IC(S1, S2)
and IC(S2, S3) is a maximum. Consequently, that hap-
pens when S1, S2, and S3 are in CS. In this figure,
we also plot the information produced by the receiver
H(S2), in (A) and the receiver H(S3) in (B). At the mo-
ment the receiver is completely synchronized with the
transmitter, the information of the receiver equals the
mutual information, i.e., H(S2)=IC(S1, S2) in (A), and
H(S3)=IC(S2, S3) for A23 ≥0.31. This result, clearly
demonstrates that the possible amount of information
that can be transmitted to the net is fundamentally
bounded by the capacity of the receiver to generate in-
formation. We have extended these studies numerically
to large networks and get analogous results. Next, we
make general remarks concerning this approach.

Using the chaotic channel as a medium to trans-

port information: Whether or not a stimulus propa-
gates along the net depends on how is the iteration be-
tween the channel and the stimulus. In principle, the
more synchronous is the network to the stimulus, the
more information is transmitted. In a general situa-
tion, we expect the stimulus to be complex and to be
not completely synchronized to the network, once we ex-
pect the network to have a different dynamical character
than the stimulus. Yet, we expect that some information
about the stimulus is transmitted. This would only be
possible if some quantity from the stimulus synchronizes
with the network. For example, the average frequency,
as in a chaotic system that is phase synchronized with
a periodic/chaotic stimulus. At this situation, informa-
tion about the average frequency can be retrieved some-
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where (and somehow) in the chaotic channel. Assuming
that the stimulus does not alter basic properties of the
Jacobian matrix of the synchronization and transversal
variables (one situation is when the stimulus strength is
small), the maximum possible amount of information re-
trieved about the stimulus would still be given by Eq.
(1). In other words, the capacity of the chaotic channel
limits the amount of information that can be retrieved
about the stimulus.

The noisy chaotic channel and the recovery of

information: HKS is a measure of uncertainty about
the forward time evolution of the trajectory realized up
to some precision, when a series of previous observations
with the same precision had been already performed. It
does not reflect the amount of information retrieved from
one particular observation, realized with some specified
precision. In order to understand how much informa-
tion can be withdrawn from one single observation in a
chaotic system, the accuracy with which this observation
is realized determines this amount of information, which
is a multiple of HKS [4]. From [4], we have that each
observation realized in a one-dimensional map provides
(g + 1)HKS bits. g is an integer number that is propor-
tional to the accuracy of the observation and inversely
proportional to the amount of noise in the chaotic tra-
jectory. Using the deterministic property of chaotic sys-
tems, each observed trajectory point generates more g
other trajectories points, that were not observed. For
the continuous chaotic channel, each observation of the
trajectory on a Poincaré plane can be used to reveal the
other g non-observed crossings of the trajectory in this
same plane [14]. So, each observation gives R bits of in-
formation, with R = (g+1)IC(Si, Sj)×〈T (S2)〉 bits, and
g being an integer number proportional to the accuracy of
the observation (inversely proportional to the noise vari-
ance), with 〈T (S2)〉 being defined in Ref. [14]. Note that
the average time interval to obtain all this information is
equal to (g + 1)〈T (S2)〉, and therefore, the rate at which
one recovers information in the receiver ( R

(g+1)〈T (S2) ) is

at most equal to the rate of information produced in the

transmitter (IC) [15].
Concluding, we define the chaotic channel as a sub-

set of a net of coupled chaotic systems, along which in-
formation flows. We characterize this channel by show-
ing how to calculate the amount of information inter-
change between two important elements of the channel:
the transmitter, which can be thought as an entrance
door of the information in the net, and the receiver,
the ending point of the information. From the whole
capacity of the net, given by the summation of all the
positive Lyapunov exponents for the whole net, the chan-
nel, along which information flows, has a much more lim-
ited capacity. A small coupling between the elements of
the channel means that information can already be ex-
changed between the transmitter and receiver. If phase
synchronization exists between the elements of the chan-
nel, a transmitted message can be fully recovered at a
rate smaller than if these elements are fully synchronized,
a situation for which the channel achieves its capacity. In
the case one wants to study large networks in which not
only local but also any sort of non-local coupling is pos-
sible, our method can still be used. As an example, for a
network of N systems, each one having dimension D, one
would have to construct a matrix of size 2D.M × 2D.M ,
where M is the number of possible different connections
between the systems. For example, if N=4, thus M=6,
representing the number of possible connections between
all the elements of the network: S1 with S2, S1 with S3,
S1 with S4, S2 with S3, S2 with S4, and S3 with S4.
So, in principle, one can use this approach to understand
information transmission in more complex systems, as
natural chaotic nets, e.g. the Human brain, which shows
evidence of chaotic behavior [18], ecological systems [20],
coupled lasers [21], ensembles of neuron model oscillators
[22]. Also, for transient dynamics, as in the brain of birds
[19], in the case such dynamics could be governed by an
asymptotic chaotic set from which IC is calculated.
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