Synchronized chaotic intermittent and spiking behavior in coupled map chains
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We study phase synchronization effects in a chain of non-identical chaotic oscillators with a type-
I intermittent behavior. Two types of parameter distribution: linear and random, are considered.
The typical occurring futures are the onset and existence of global (all-to-all) and cluster (partial)
synchronization with increase of coupling. Increase of coupling strength can also lead to desynchro-
nization phenomena, i.e. global or cluster synchronization is changed into a regime where synchro-
nization is intermittent with incoherent states. Then the regime of fully incoherent non-synchronous
state - spatio-temporal intermittency appears. Synchronization -desynchronization transitions with
increase of coupling are also demonstrated for a system resembling an intermittent one: a chain of
coupled maps replicating spiking behavior of neurobiological networks.

PACS numbers: 05.45.Xt

INTRODUCTION

The study of cooperative behavior in ensembles of
chaotic oscillators is a topical problem of nonlinear dy-
namics. Chaotic synchronization in such spatially ex-
tended systems has been considered for populations of
locally and globally coupled maps [1-8] as well as for en-
sembles of locally and globally coupled continuous-time
chaotic oscillators [9-14]. The theoretical knowledge ob-
tained has been often applied to describe dynamical pro-
cesses in various biological and physical systems. In spa-
tially extended systems the effect opposite to synchro-
nized oscillations is spatio-temporal disorder, in particu-
lar spatio-temporal intermittency (STI). It is one of the
most fascinating phenomena appearing in a wide range
of extended systems in several experimental situations,
such as chemical reactions [15], Rayleigh-Benard convec-
tion [16], planar Couette flow [17], fluid flows between ro-
tating electrical cylinders [18], Taylor-Couette flows [19]
etc as well as in theoretical models, as coupled map lat-
tices [20] or partial differential equations [21]. Among ba-
sic types of synchronization (complete and generalized)
chaotic phase synchronization (CPS) is a subject of ac-
tive investigations (see [22]). CPS in ensembles of locally
coupled chaotic elements was firstly studied in chains of
weakly diffusively coupled chaotic Rossler oscillators [11].
Time-discrete systems were also under study.

Synchronization phenomena in ensembles of locally
coupled circle maps were considered in [7]. Many phe-
nomena, observed in populations of periodic oscillators
were found there too, especially to mention the formation
of several clusters of mutually synchronized elements and
global synchronization. The study of CPS requires the
existence of equations for the evolution of phase variables
(as it is for coupled Rosller oscillators or circle maps) or

at least the existence of appropriate definition of phases
[23]. However, there are so far no unambiguous methods
to obtain such equations and definitions. But in some
cases specific properties of the chaotic attractors allows
to define the phases of chaotic oscillations in a rather sim-
ple way. Besides oscillators, where chaos appears through
a period doubling cascade, it is possible to introduce a
suitable phase for typical systems with intermittent-like
behavior, especially for systems with type-I intermittent
chaotic oscillations, or spiking neurons [24]. In this paper
we investigate the collective dynamics in chains of such
maps. Our study is motivated by high importance of un-
derstanding mechanisms behind the transition from low-
dimensional chaos (which may correspond to synchro-
nized chaotic systems) to developed (spatio-temporal)
turbulence that often looks like intermittent chaotic be-
havior.

The paper is organized as follows. In Sec.Il we
shortly describe the behavior of the quadratic map gen-
erating chaotic type-I intermittent behavior, introduce
definitions of the phase and the frequency of oscilla-
tions, and give criteria for synchronization in chains of
coupled maps. Synchronization phenomena as well as
synchronization-desynchronization transitions with lin-
ear and random distribution of control parameter are
discussed in Secs. III and IV. In Sec. V we present
results of numerical study of chaotic phase synchroniza-
tion in a chain of coupled spiking maps. The results are
summarized in Sec.VI.



MODEL OF COUPLED INTERMITTENT MAPS.
PHASE AND FREQUENCY.
SYNCHRONIZATION CRITERIA

In the focus of this study is the synchronization prob-
lem in chains of coupled non-identical maps with the
intrinsic type-I intermittent chaotic behavior. In order
to measure the degree of synchronized motion, we will
first introduce frequency and phase of intermittent oscil-
lations. Chaotic intermittent motion has a distinct char-
acteristic time scale (CTS). For type-I intermittency a
very large laminar stage (with duration 7) is followed by
a very short turbulent stage (with duration T') and then
the next laminar stage begins. Sometimes (for example,
in the model map studied below) the turbulent stage has
only one jump from a practically fixed variable value and
back. This event is reminiscent of firing - a special behav-
ior, which is typical for neuronal systems. Regarding this
specific character of behavior we will distinguish between
the laminar and the firing stages. The average length of
the laminar stage (ALLS) for a single element is defined
as [25]
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where ¢ is a bifurcation parameter and " is the critical
value when chaos sets in. For coupled maps studied below
CTS < T, >=< 7+ T > can be calculated numerically
as:

N
. 1
<T,>= ngnoo N I;(kl_u — ki), (2)

where k; is the moment when the /th laminar stage sets
in or in other words when the [th firing occurs. We will
note, that in studied maps because of 7/T >> 1 the
time of full cycle T, = 7 4+ T, i.e. the time between the
beginning of two sequential laminar stages, practically
equal to 7. Therefore, the coincidence of averaged 7 leads
to the coincidence of averaged T,.. One can also introduce
a phase of the intermittent oscillations, attributing to
each interval between the starts of the laminar stage (or
in other words between two firings) a 27 phase increase:
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where k is discrete time.

The presence of a CTS and a suitable phase allows to
formulate the problem of chaotic phase synchronization
in ensembles of coupled units with intermittent behavior.
So, if CTS < 7; > or the corresponding frequencies

Q=2r/<T1; > (4)

of all units become equal, this manifests their global 1:1
frequency entrainment. If the conditions

ol — @k, | < Const (5)

for all k£ are fulfilled, one can speak about a 1:1 phase
locking between the /th and the mth units.

Let us demonstrate mutual phase synchronization of
chaotic intermittent oscillations for a chain of diffusively
locally coupled non-identical quadratic 1-D maps:

k
xj+1 — fj(x§)+

d(xétl - 2$? + 93?+1)7 (6)

where, N is the number of elements in the chain, f;(z)
consists of the standard quadratic part that produces a
laminar motion and a somewhat arbitrary chosen return
part that acts as a firing stage:

gj+x+ a2, if x <0.2,

file) = (7)
gz —02) —¢g; —0.24, if £ > 0.2

Here g regulates the coherence properties of the chaotic
attractor. In case g < 5 the laminar stage duration is
distributed in a rather narrow band, i.e. the chaotic be-
havior is highly coherent, but for g > 5 this distribution
is rather broad. We will focus on the case of a coherent
chaotic attractor and set ¢ = 2. We remind that the
uncoupled map (d = 0 in (6)) demonstrates a type-I in-
termittent behavior for €; > 0, i.e. " = 0. Fig. 1
shows a typical motion of the considered map.
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FIG. 1: Intermittent chaotic oscillations in a single quadratic
map (6),(7). Parameters are: ¢ = 0.0001, g = 2.

The parameter ¢; defines CTS in the individual j-th
oscillator. In our study we treat two cases: (i) a linear
distribution of the parameter ¢;: ¢; = &1 + Ae(j — 1),
where Ac¢ is the parameter mismatch between neighbor-
ing elements, and (ii) a random uniform distribution of



natural frequencies in the range [e1,e1 + Ae(N —1)]. We
assume free-end boundary conditions:

wo(t) =ay(t) 5 2k (t) = ak(t) (8)

for all k.

LINEARLY DISTRIBUTED CONTROL
PARAMETER. SOFT TRANSITION TO GLOBAL
SYNCHRONIZATION

First, a chain with a linear distribution of the param-
eters ¢; is explored. The evolution of the observed fre-
quencies §2; in dependence on the coupling is presented in
Fig. 2. In all diagrams with an increase of coupling from
zero the tendency to a more coherent behavior is clearly
seen. Then in dependence on the mismatch Ae, global
synchronization is observed (Fig. 2a) or is not (Fig. 2b,c).
But in all cases the increase of coupling leads to a fully
incoherent behavior. The detailed analysis of the fre-
quency distribution §; vs coupling (see Fig. 3) shows
that the transition to global synchronization is smooth,
i.e. a gradual adjustment of frequencies is observed. The
reason of such "soft" route to global synchronization is
the existence of two quite different time scales: slow lam-
inar stage and fast firing stage. It is well known (see,
for instance [26]) that the appearance and interaction of
many time scales (at least two) can lead in the oscillatory
systems to a chaotic behavior. Another consequence of
the slow-fast motion is a large value of the frequency of
global synchronization. It is close to the maximal indi-
vidual frequency [27] (see Fig.3(a)). The reason for this
effect is the following. For a sufficiently large coupling
the strong change (firing) of the dynamical variable in
the elements close to the right end of the chain is faster
than in other elements. This provokes analogous strong
change of the dynamical variable in the neighboring ele-
ment which also provokes his neighbor and so on. This
process leads to a sequential firing in all elements in the
chain. The transition to de-synchronization appears also
through a "soft" change of the observed frequencies. Cor-
responding results are presented in Fig. 3b. A detailed
analysis of synchronization - de-synchronization transi-
tions is presented for the case of randomly distributed
parameter €; in the next section.

RANDOMLY DISTRIBUTED CONTROL
PARAMETER. TRANSITION TO
SPATIO-TEMPORAL INTERMITTENCY

For randomly distributed ¢;, the evolution of the ob-
served frequency distribution is shown in Fig. 4. Three
types of transitions to global synchronization is observed
here: (i) two adjacent elements (clusters) with close fre-
quencies can be easily synchronized and a new cluster
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FIG. 2: The evolution of 2; (4) in dependence on coupling for
€ = 0.000001 and for three different values of Ae in the chain
of 50 coupled maps. (a) Ae = 0.000001; (b) Ae = 0.000005;
(c) Ae = 0.00001
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FIG. 3: The evolution of observed frequencies 2; for dif-
ferent couplings for (a) the transition de-synchronization -
synchronization and (b) the transition synchronization - de-
synchronization. € = 0.000001, Ae = 0.0000001, and N = 50

appears; (ii) nonlocal synchronization can occur, i.e. an
element (a cluster of elements) becomes synchronized not
to a nearest-neighbor element (cluster), but to some other
element (cluster) having a close rotation number. At
that the observed frequencies of the elements (clusters)
in-between are considerably different; (iii) one element
(group of elements) at the edge of one cluster can go
to another neighboring cluster. Similar to the case of
linearly distributed parameters €; in case of random dis-



tribution of €; the regime of global synchronization can
disappear with the increase of coupling. At the some
critical value d* this regime becomes unstable. In the
chain triangular embeddings are formed. The onset of
such embeddings in some places in the chain leads to the
propagation of firing processes in one or more typically
in both directions. Propagating firing fronts are usually
unstable and new triangular embeddings are appearing
and this process repeats. Therefore the domains with a
large synchronized intermittency are changed by domains
of complex spatio-temporal behavior, which in the pre-
sented context we call spatially turbulent regime. This
spatially turbulent regime appears suddenly and extends
to the whole chain, then it suddenly disappears and in the
whole chain the regime of synchronized intermittency is
again realized. With an increase of coupling the duration
of the spatially turbulent regime grows and correspond-
ingly the duration of the synchronized regime becomes
shorter. After some critical value d**, the synchronized
regime is no more observed and the regime of fully devel-
oped spatio-temporal intermittency (STI) sets on. The
rich spatio-temporal dynamics in the synchronous and
non-synchronous regimes is illustrated in Fig. 5. The left
panel corresponds to a non-synchronous behavior (small
values of coupling). There are several clusters of mutually
synchronized elements. Only panel (b) corresponds to a
synchronous regime. Panel (c) corresponds to the inter-
mittency of synchronized and turbulent regimes. Panels
(d) and (e) show highly developed STI. The tendency to
the complication of collective oscillations with increase of
coupling is clearly seen. In all plots the darker regions
mark higher values of the presented variables.

It is interesting to analyze these observed processes
by using our phase definition (3). Hence, we can state
that in the regimes of perfect (Fig. 5(b)) and intermit-
tent (Figs. 5(c)) chaotic phase synchronization, the phase
distribution ¢; is a sequence of intervals with constant
phase, separated by +2w-kinks. The position of the
kinks at constant time corresponds to a phase slips. In
the synchronous regimes the phase slips appear with the
frequency of synchronization. In the non-synchronous
regimes phase slips appear suddenly and rather fast.

In the presented model STI appears due to the rel-
atively strong interaction of many units. The specific
property in our observation consists in the existence of
a transient regime from fully coherent (synchronous) to
fully non-coherent (turbulent) behavior. In order to
demonstrate this transition, we plot in Fig. 6 the ratio D
of number of laminar stages corresponded to the synchro-
nization regime and the full number of laminar stages. It
is clearly seen that (i) for d 2 d* the turbulent stages
appear very rarely, and (ii) for d S d** there are very
short intervals of laminar stages.

In our numerical study we also examined the chain
of different sizes and different boundary conditions, in
particular periodic boundary conditions. Qualitatively
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FIG. 4: The evolution of observed frequencies €; (4) for dif-
ferent couplings (a) d = 0, (b) d = 0.0005, (c) d = 0.001,
(d) d = 0.0015, and (¢) d = 0.0025. e = 0.000001, Ae =
0.0000001, and N = 50

COLLECTIVE OSCILLATIONS IN THE CHAIN
OF SPIKING MAPS

There is a type of behavior often observed in neurobi-
ological systems that resembles intermittency and is usu-
ally called "spiking". Rich collective dynamics of coupled
intermittent systems urges analogous studies of neural
ensembles. In simulations we next study a chain of lo-
cally coupled non-identical model maps (replicating neu-
ral spiking activity) proposed in [28]:

k41 _ E k=1 & 1 g0,k k k
T = f(xjﬂmj 7yj) + Ed(xj+1 — 27 + xj—1)7

yy T = yf = plef + 1) + poy + pgd(afy - 205 +af ),

j=1,..,N,

9)
where x; and y; are the fast and slow variables respec-
tively. p = 1073,0;, and a = 3.5 are the parameters
of the individual map, d is the coupling. The function
f(,+,+) has the form:

a/(1 — k) +yF if 2% <0,

a+yF, if0<ak <
a+y* and 2F1 <0, (10)

—1, if 2 > a + ¥
or zF1 >0

In dependence on the parameters the individual dy-
namics of the map (in 9 d = 0) is ranging from a regular
spiking to a chaotic spiking or bursting behavior and can,
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FIG. 5: Space time plots of z; for ¢; randomly distributed
in the interval [0.000005;0.000015]. Panel (a) shows non-
synchronous regime at small coupling. Only some interval
of synchronous oscillations are seen. Panel (b) corresponds to
the regime of global synchronization. On panel (c) the inter-
mittent regime of synchronous (in time intervals ¢ € [0 : 5000]
and t € [32000 : 35000]) and non-synchronous behaviors is
shown. Panels (d) and (e) present regime of spatio-temporal
intermittency. Parameters: N = 50, d = 0.001 (a), d = 0.04
(b),d = 0.0056 (c),d = 0.07 (d),d = 0.15 (e).

therefore, be used for the effective modeling of neuron-
like elements. Several main spatio-temporal regimes (in-
cluding pulse and spiral wave propagation) for networks
of identical maps (9),(10) were presented in [8]. Here,
we show synchronization phenomena in a chain of locally
coupled non-identical maps. As well as for maps with
a type-I intermittent behavior the phase and frequency
of oscillations can be defined by Eqs.3,4, implying a 27
increase between subsequent spikes. Computer simula-
tions show that as the coupling increases, three different
kinds of spatio-temporal dynamics are observed. Simi-
lar to the case of a chain of intermittent maps at small
coupling neurons are spiking asynchronously (Fig.7(a)),
at a medium coupling they synchronize (Fig.7(b)), but at
large coupling synchronization gets destroyed and spatio-
temporal chaos sets on (Fig.7(c,d)). However, the na-
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FIG. 6: The dependence of the ratio D on the coupling for
50th elements chain with ¢; randomly distributed in the in-
terval [0.000005; 0.000015]

ture of spatio-temporal chaos is different: initially rare
spikes appear and act as phase slips or defects; further
they evolve into synchronized in phase chaotic bursts
(Fig.7(d,e)). Note, that spikes forming these bursts are
correlated in space, as they appear as triangular embed-
ding with a fractal-like spatio-temporal structure. The
transition observed shows how spiking maps can produce
bursting behavior if they form a spatially extended sys-
tem. Why collective chaos differs for intermittent and
spiking maps? This is due to the interplay between fast
and slow dynamics that produces spiking behavior. The
slow variable regulates the threshold value and when the
threshold gets too high, it forces spike events to stop
propagating along the chain and the burst ends. Until
the fastest neuron is recovered, no spiking is observed
in the chain and that separates bursts clearly. Quite on
the contrary, there is no slow variable in the intermittent
map that would regulate turbulent outbursts and they
multiply freely in the regime of spatio-temporal chaos.
A more detailed consideration of this phenomenon will
be reported elsewhere.

CONCLUSIONS

In conclusion, we have found the existence of global
and cluster phase synchronization effects in a chain
of non-identical chaotic oscillators with a type-I inter-
mittent behavior. A very important feature is that
an increase of the coupling strength can also lead to
desynchronization phenomena, i.e. global or cluster
synchronization is changed by a regime where syn-
chronization is intermittent with the incoherent state.
Then a regime of fully incoherent non-synchronous state,
spatio-temporal intermittency, appears. Analogous
synchronization phenomena, especially synchronization-
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FIG. 7: Space time plots of z; for synchronous (b) and non-
synchronous regimes (a,c,d) for o; randomly distributed in the
interval [0.15;0.16]. N = 100, d = 0.005 (a), d = 0.05 (b),d =
0.09 (c),d = 0.2 (d) and (e). Panel (e) is an enlargment of
panel (d).

desynchronization transitions with increase of coupling
have been observed in a chain of locally coupled non-
identical maps demonstrating spiking activity. It is
important to note that the appearing chaotic travel-
ing spikes (forming triangular embedding), which corre-
spond to fully developed turbulence, construct nothing
but space-time fractal bursting. Our results shows that
transition to spatiotemporal intermittency is quite typ-
ical for intermittent discrete in time and space systems
(see also [20]), which often used for modelling of dynam-
ical processes in oscillatory media. We hope that ob-
tained finding elucidate complex and intriguing collective
dynamics of intermittent and spiking spatially extended
systems, and may be used in applied problems like devel-
oped (spatio-temporal) turbulence and complex behavior
in neurobiological networks. We also expect experimen-
tal studies on these results in various fields, where type-I
intermittency has been reported so far (see [29-35]).
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