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We study the noise-dependent dynamics in a chain of four very stiff excitable oscillators of the
FitzHugh–Nagumo type locally coupled by inhibitor diffusion. We could demonstrate frequency-
and noise-selective signal acceptance which is based on several noise-supported stochastic attrac-
tors that arise owing to slow variable diffusion between identical excitable elements. The attractors
have different average periods distinct from that of an isolated oscillator and various phase relations
between the elements. We explain the correspondence between the noise-supported stochastic at-
tractors and the observed resonance peaks in the curves for the linear response versus signal
frequency. ©2005 American Institute of Physics. fDOI: 10.1063/1.1899287g

Noise plays an important role in the understanding and
description of nature. In contrast to the usual role of
noise as a nuisance, under certain conditions noise can
also play a constructive (“ordering”) role in nonlinear
systems far from equilibrium. Properly stochastic
resonance1,2 (SR) is the most famous noise-induced effect
and describes the enhancement of the system response to
a signal due to optimal noise. We study a spatial extended
excitable neuron-like system with an inhibitory coupling
between oscillators. The excitable property provides a
high nonlinear sensitivity to perturbations and to the sig-
nal near the rest state. The inhibitory coupling is re-
quired to induce stochastic multiresonance and can be
found in many natural systems, e.g., in chemical systems
with inhibitory diffusion 3 or in biological systems with
competition.4 Such a coupling provides coexistence of
several average periods distinct from that of an isolated
oscillator and several phase relations between the
elements.5,6 In the present work we exploit the multi-
rhythmicity evoked by the inhibitory coupling to enhance
information exchange along a noisy chain of oscillators in
certain frequency bands. In this case, noise plays two
roles: it stimulates firing because the signal is below the
excitation threshold, and causes switches between differ-
ent attractors with varying phase relations in the en-
semble. The appearance of these distinct stochastic at-
tractors can be controlled by varying the signal period,
noise intensity, and the point of signal application. The
frequency- and noise-selective signal acceptance and pen-
etration along the chain can be viewed as a particular
kind of SR. The understanding of frequency-dependent
SR should be useful in the analysis of multifrequency
mechanisms of information exchange in neural networks
and various diffusively coupled activator–inhibitor oscil-
lator arrays in other fields, e.g., in chemistry or biology.

I. INTRODUCTION

The dynamics of self-oscillatory and excitable systems
near the generation threshold has been a focus of interest for
a long time because it is the region where their controllabil-
ity is greatest. A recent surge of interest in this domain was
initiated by studies on coherence resonance7,8 and stochastic
resonancesSRd in nonlinear excitable units.1,9–11The param-
eter region near the Hopf bifurcation is also popular in mod-
els of isolated neurons12,13 and was shown to be a likely
source of multimodal oscillations in models of neuron
ensembles.14

Spatiotemporal SR is the extension of the classical SR to
networks and considers the noise-enhanced propagation of
structures which could be found, e.g., in neural networks15 or
in the well-known photosensitive Belousov–Zhabotinsky.16

Although there are several investigations of array-enhanced
SR,17,18signal amplification in a spatial extended system as a
function of the signal frequency has not yet been examined.
In the studies cited, coupling was of a type that resulted in
amplification of signals of any frequency. For isolatedexcit-
ablesystems, the dependence of SR on the signal period has
only one maximum per period, and the latter nearly coin-
cides with the excursion time of an excitable element. This
time is the sole natural reference point for the time scale of
the process.19,20 Recently, it has been shown that frequency
and phase locking in an ensemble of noise-stimulated excit-
able FitzHugh–NagumosFHNd oscillators can be enhanced
by optimizing the number of the coupled elements;21,22how-
ever, the frequency dependence of signal enhancement was
very similar to that for an isolated element. Analogous re-
sults have been obtained in the framework of the
Hindmarsh–Rose neuronal model.23

In this study, we examine effects of the signal frequency
on the signal processing in a linear chain of four excitable
oscillators coupled via inhibitor diffusionsslow variable ex-
changed. Models of oscillatory media with inhibitory cou-
pling exhibit very rich dynamics and are commonly used to
describe various physical,24 electronic,25 or chemical
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systems.26,27 In chemistry, an effective increase in inhibitor
diffusion, which is usually attained by reducing the activator
diffusivity through a complexing iodidesactivatord with
starch macromolecules, leads to a Turing structure
formation.3 In biology, the inhibitory form of coupling is
used to explain morphogenesis in Hydra regeneration and
animal coat pattern formation.28 Recently, experimental stud-
ies of artificial gene networks have been summarized in
mathematical models describing oscillators synchronized via
slow autoinducer diffusion.29,30 Competition in biological
system is a source of spatial nonuniformities and motivates
inhibitory coupling.4 The dominance of this kind of coupling
between identical oscillators was shown to give rise to many
limit cycles of different periods and with different phase
relations5,6 which are stable in large regions of the control
parameter space. This kind of coupling is usually referred to
as “dephasing”31,32 or “phase-repulsive”33 interaction, be-
cause large regions in the phase space exist where the phase
points repel one another owing to this interaction. Dephasing
was shown to be a source of multirhythmicity in different
systems.25,34–36

With excitable noisy elements, a dephasing interaction of
stochastic limit cyclessinstead of deterministic onesd may
result in the coexistence of spatiotemporal regimes selec-
tively sensitive to external signal periods. In such systems,
noise plays at least two roles: First, it stimulates firing of
stable elements and, thereby, their interaction during return
excursions. Second, it stimulates transitions between
coupling-dependent attractors if the lifetime thereof is suffi-
ciently long. Our previous work37 was limited to two and
three elements coupled by inhibitor diffusion, for which the
attractor structure is relatively simple. In a chain offour
oscillators, only two simple antiphase modes can be ob-
served. In one mode, the two middle elements move in phase
with each other and in antiphase with the edge ones. In the
other mode, every two adjacent elements move in antiphase.
Under the same set of parameters, a four-oscillator chain can
also oscillate in a complex manner with different partial limit
cycles and complex phase relations between the elements. In
this regime, its eight-dimensional limit cycle is such that the
edge elements make two turns, generating two spikes at dif-
ferent interspike intervals, while the middle elements make
only one turn. When attractors which have such different
periods and phase relations compete among one another,
multiple resonances in signal processing are likely to occur.

The paper is structured as follows. After the explanation
of the model equations and the method used to estimate the
signal processing, we review the dynamics evoked by inhibi-
tory coupling. Then, we study the signal acceptance of the
linear chain of four inhibitor-coupled excitable oscillators.
Thereby, we investigate the signal response of the coupled
system to a global signal, a local signal at the first element,
and a local signal at the second element for different signal
periods. A very rich multiresonance behavior appears in a
noisy environment which is based on different phase rela-
tions between the oscillators. Since the signals are below the
threshold of excitation, the stochastic limit cycle oscillations
are noise evoked. After that, we explain the different phase
relations and the associated distinct resonance frequencies at

an unforced deterministic chain of four self-oscillatory ele-
ments. Next, we discuss every resonance peak and link these
peaks with the favored phase relation of the stochastic attrac-
tor.

II. MODEL

We study an array of diffusively coupled stationary but
highly excitable FitzHugh–Nagumo modelssFHNd in the
presence of white additive noise and forcing with subthresh-
old periodic signals applied to selected elements. The FHN
model is a paradigmatic model describing the firing behavior
of neurons38 and, more generally, the activator–inhibitor dy-
namics of excitable media.39

The model is given by the following equations:

dx1

dt
= a − y1 + j1 + As1cosS2p

Ts
tD + Csx2 − x1d, s1d

dx2

dt
= a − y2 + j2 + As2 cosS2p

Ts
tD

+ Csx1 − x2d + Csx3 − x2d, s2d

dx3

dt
= a − y3 + j3 + As3 cosS2p

Ts
tD

+ Csx2 − x3d + Csx4 − x3d, s3d

dx4

dt
= a − y4 + j4 + As4 cosS2p

Ts
tD + Csx3 − x4d, s4d

«
dyi

dt
= xi −

yi
3

3
+ yi , s5d

where, in a neural context,yistd represents the membrane
potential of the neuron andxistd is related to the time-
dependent conductance of the potassium channels in the
membrane.38 The dynamics of the activator variableyi is
much faster than that of the inhibitorxi, as indicated by the
small time-scale-ratio parameter«. It is well known that for
uau.1 the only attractor is a stable fixed point. Foruau,1,
the limit cycle generates a periodic sequence of spikes. We
fix a close to the bifurcation in the intervalf1.01, 1.03g in
order not to use high-level noise to excite oscillations and
thereby to avoid masking of the fine structure of the inter-
spike interval histograms. Here,« is in the rangef0.0001,
0.001g, which is significantly smaller compared to those that
are commonly used. This stiff excitation is needed to ensure
a fast jumping between the attractors. The stochastic forcing
is represented by a Gaussian white noisejistd with zero mean
and intensity sa

2: kjistdj jst+tdl=sa
2dstddi,j. The harmonic

signal is subthreshold,Asi,a−1.0 and is added to the slow
variables inputs. Previous investigations of isolated FHN
sRef. 1d show that SR properties do not depend on which
variables signal and noise are applied. To evaluate the am-
plitude of the input frequency in the output signal, we calcu-
late the linear responseQ at the input frequency
v=2p /Ts:

2,40
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Qsin =
v

2np
E

0

2pn/v

2ystdsinsvtddt, s6d

Qcos=
v

2np
E

0

2pn/v

2ystdcossvtddt, s7d

Q = ÎQsin
2 + Qcos

2 , s8d

whenn is the number of periodsTs, covered by the integra-
tion time. Equationss6d ands7d represent the Fourier coeffi-
cients of the signal frequency in the output.

The equations were solved numerically using a fourth-
order double-precision Runge–Kutta routine, the Heun
algorithm,41 and the Helfand algorithm.42 To ensure that the
results were not a numerical artifact or long-lived transients,
we tested whether they varied depending on the method used
and the accuracy set in computations. The algorithms for
seeking and identifying the attractors were based on ran-
domly varying the initial points and observing the dynamics
of interspike intervals of each oscillator during the settling of
the systems on the attractor. After an attractor was detected,
its boundaries were determined by slowly varying one or two
parameters and correcting the step size for given parameter
values in case stability was lost.

III. REVIEW OF THE DYNAMICS EVOKED BY
INHIBITORY COUPLING

In order to get a reference frame for further comparisons,
we begin with noise-induced interspike intervalsISId distri-
butions for our excitable systemsa=1.01d in the absence of
external forcing. Figure 1 shows the ISI histograms for the
first two elements calculated for a noise levelsa

2=5310−6

and a small coupling strength. This noise level was found to
be optimal in demonstrating multimode behavior of coupled
identical excitable elements. The multimode behavior is
caused by the different stochastic attractors with different
typical spike distances and the stochastic switching between
them. In contrast to that, the multimode behavior in the ISI
histograms of a single bistable system subjected to a sub-
threshold signal and weak noise43 is equal spaced and caused

by integer multiple of the signal period, and so the mecha-
nism of multimode behavior in the ISI histogram is different
from our setup. Noise amplitude variation results in changes
in the extent of coherence in the system’s behavior, because
the attractors with different time scales are induced by dif-
ferent noise intensities. The possibility of manipulating the
extent of coherence in this way has already been demon-
strated experimentally44 and numerically45 for systems of
two and three coupled excitable elements.

In Fig. 1, one can clearly see several time scales differ-
ent from the excursion time of an isolated elementsTexc

<2.8d. Despite the fact that the elements are identical, the
distances between the peaks in the histogram are different.
The interspike intervals from oscillators 1 and 2 are the ma-
jor contributors to the first and third peaks, respectively,
whereas the second peak contains the intervals produced by
both elements but with different frequency. This structure of
the ISI histograms suggests that the system has more than
one noise-induced stochastic limit cycle. The stochastic
switching between two dominant regimes can be seen in the
time series of Fig. 2 also. The first oscillator exhibits prefer-

FIG. 3. The dependence of the linear responseQ fEq. s8dg for the 4 FHNs
on the signal periodTs for the noise level 1310−5 by global subthreshold
signal sAs1,2,3,4=0.01d. The other parameters are«=0.0001,a=1.01, andC
=0.1.

FIG. 1. ISI distributions for the oscillatorssos.d 1 and 2 of Eqs.s1d–s5d for
a=1.01,C=0.1, «=0.0001, no signalsi.e., Asi=0.0d and sa

2=5310−6. The
histograms observed for elements 3 and 4 are similar. All histograms are
based on time series of a fixed length of 9600 time units.

FIG. 2. Manifestation of the two stochastic regimes in the time series of the
activator sfastd variable of oscillators 1 and 2 to illustrate the dynamics
behind Fig. 1. The parameter are the same as in this figure for the ISI
distribution: a=1.01, C=0.1, «=0.0001, no signalsi.e., Asi=0.0d, and sa

2

=5310−6.
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entially spike distances of about 3.0 and 4.8, whereas spike
distances of about 5.1 and 8.0 dominate in the dynamics of
the second oscillator. The time series demonstrate the phase
relations between the spikes in different oscillators also, and
make clear the inhibitory nature of the coupling via the slow
inhibitor variable.

IV. SIGNAL ACCEPTANCE BY EXCITABLE SYSTEMS

Next, we add an external periodic signal capable of in-
teracting with the stochastic attractors and analyze the dy-
namics for different noise levels. Our goal is to select the
most representative results that hold in large intervals of
noise intensities. Figure 3 shows the presence of a global
subthreshold signal in the output of each element. Multiple
resonances in the signal acceptance are clearly seen.

One can clearly see in Fig. 3, atT<1.5 andT<3.9
sregions of resonanced, theQ curves for the middle and edge
elements behave oppositelysi.e., the Q maximum for the
edge elements corresponds to theQ minimum for the middle
onesd, suggesting that a signal applied simultaneously to all
elementssglobal signald can selectively suppress its own
manifestation in the middle elements, while stimulating an
acceptance in the edge elements.

When a signal is applied to the first element 1sFig. 4d,
multiple resonances are even more pronounced than in Fig. 3
and the curves for all elements become similar in shape.

However,Q4.Q2,3 aroundTs=3.9, i.e., if the signal period
is Ts<3.9, the signal travels throughout the chain despite
low values ofQ2,3. The multipeak structure ofQsTsd is con-
served if the entry of the signal is the second elementsFig.
5d. However, the peak amplitudes are changed. Let us high-
light again the resonance peak atTs<3.9: The response of
the first and last oscillator is much higher than the response
of the middle onesQ1,4.Q2,3d, despite the fact that the sec-
ond elementsfilled circuits in Fig. 5d is the driven element
and is the one most affected by the signal. This unexpected
order illustrates the high reliability of the underlying phase
regime, which we refer to and explain in the next section as
the intricate Rs2,1,1,2d attractor.

This frequency selectivity is reflected in the appearance
of additional peakssFig. 6d in the standard characteristic of
SR ssystem responseQ versus noise intensityd. In contrast to
isolated excitable elements or fast-variable-coupled arrays, a
chain of four elements coupled via a slow variable exchange
exhibits additional SR peaks, whose positions and ampli-
tudes depend on the periods of the applied signals. This ob-
servation pertains to the9stochastic multiresonance9 phe-
nomenonssee, e.g., Ref. 46 and reference thereind, extended
to encompass its dependence on the external signal period.

The effects described above depend not only on the very
large stiffness, but also on the other model parameters: the
coupling strength and the proximity of the bifurcation pa-

FIG. 4. The dependence of the linear responseQ fEq. s8dg for the 4 FHNs
on the signal periodTs for the noise level 1310−5. The signal is applied to
the first element onlysAs1=0.01 andAs2,3,4=0.0d. The other parameters are
«=0.0001,a=1.01, andC=0.1.

FIG. 5. The dependence of the linear responseQ fEq. s8dg for the 4 FHNs
on the signal periodTs for the noise level 1310−5. The signal is applied to
the second element onlysAs2=0.01 andAs1,3,4=0.0d. The other parameters
are«=0.0001,a=1.01, andC=0.1.

FIG. 6. The dependencies of the linear
responseQ for a chain of four ele-
mentsfEqs. s1d–s5dg as a function of
the noise intensity for different signal
periods:Ts=3.9 sleftd and 4.5srightd.
The signal of the amplitudeAs1=0.01
is applied to the first oscillator only
sAs2,3,4=0.0d. The other parameters are
a=1.01,«=0.0001, andC=0.1.
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rametera to the bifurcation value. Our analysis showed that
the results remain valid over an at least twofold range of
coupling strengths and over a twofold range of values of the
differencesa−1.0d.

In order to clarify how multiple resonances arise, we
shall draw on the similarity between stochastic and determin-
istic limit cycles. The proximity of the bifurcation parameter
to the Andronov–Hopf bifurcation and the large stiffness of
oscillators allow us to compare our excitable chain to its
deterministic self-oscillatory version.

V. COUPLED DETERMINISTIC OSCILLATORS

Discussing the possible dynamic modes, we have to con-
sider first the in-phase attractor, which is formally stable with
this type of coupling but has a small basin of attraction. Our
numerical analysis shows that the system leaves this attractor
if the slow variable of one of the oscillators is more than
s2% –3%d smaller than those of the other ones. For a chain
of four units, two antiphase modes are possible. In one mode
referred to as A1 below, strictly antiphase waveforms are
observed: unit 2 moves in phase with unit 3 and in antiphase
with units 1 and 4sFig. 7d. In mode A2, the phase shift
between units 1 and 3 is almost vanishing, whereas units 2
and 4 oscillate almost in antiphase relative to units 1 and 3,
respectivelysFig. 8d. Obviously, mode A1 coincides with the
antiphase mode in a system of two units because, due to the
synchronous run of the units 2 and 3 in this regime, the
diffusion between these elements goes effectively to zero and
does not affect these neighbors. Hence, units 2 and 3 are not
coupled by a slow variable exchange. Similar to the pure
in-phase motion, the basin of attraction of this mode A1 is
not large: even if the representative points of units 2 and 3
diverge only slightly, the systems are brought out of mode
A1.

Mode A2 is one of the basic attractors in the configura-
tion under considerationsFig. 8d. Variation in the number of
neighbors soscillators 1 and 4 each have one neighbor,
whereas oscillators 2 and 3 each have two neighborsd results
in a behavior not exactly antiphase. An analysis of how the
waveform changes as the parametera approaches the bifur-
cation point shows that, the closer the approach, the more
clearly the oscillations observed are of the antiphase type. In
addition, variation in the number of neighbors leads to the
trajectories of units 1 and 4 near the firing point behaving
differently compared with the trajectories of units 2 and 3.

It is essential to include this variation in the analysis of
the effects due to the external signals and noise on such a
chain, because it is this part of the trajectory that is most
sensitive to external forcing. In this study, we examine only
the range ofa values from 0.95 close to 1.0, which is of
crucial importance for understanding the dynamics of excit-
able systems with inhibitory coupling. Mode A2 can be de-
tected at low coupling strengths, say, atC=0.02. However,
the in-phase and antiphase modes have very close periods in
this region of small coupling strength. Despite the differ-
ences in phase relations, the periods of attractors A1 and A2
are very close to each other in a broad range of coupling
strengthssTanti=5.2 if C=0.1d.

If the coupling strength is not very low, an intricate limit
cycle can arise in a linear chain that we designate as
Rs2,1,1,2d. This designation indicates that the cycle period is
equal to one interspike interval for units 2 and 3 but contains
two interspike intervals for units 1 and 4sFig. 9d; sT1=T4

=2.8+4.7,T2=T3=7.5d.
The basis for the formation of this attractor is a kind of

“internal” synchronization of individual oscillators. Their pe-
riods become prolonged in the presence of inhibitory cou-
pling, because it takes them longer to reach the firing point.
The number of spikes that individual units generate depends
on their phase relations. The inner units experience three
delays, which are clearly seen in the waveforms of unit 2 and

FIG. 7. Waveforms of the slow variables for the antiphase attractor A1
calculated fora=0.99 andC=0.2. Moving along a segment of the trajectory
nearxi =−0.66, the representative point slowly approaches the firing point.
After the spike, an abrupt increase in the slow variable is observed. No
signal sAs1,2,3,4=0.0d and no noisessa

2=0.0d are added to demonstrate the
pure unperturbed mode A1.

FIG. 8. Waveforms of the slow variables for the antiphase attractor A2
calculated forC=0.2 anda=0.99. No signalsAs1,2,3,4=0.0d and no noise
ssa

2=0.0d are added to demonstrate the pure unperturbed mode A2.
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3 shown in Fig. 9 by three local subthreshold maxima be-
tween large spikesshighlighted by the three arrows between
two consecutive spikesd. The firing of element 2 is delayed
first by interaction with unit 1. Their interaction draws the
representative point away from the firing point. The second
delay is due to its interaction with unit 3, and the third delay
is again because of an interaction with unit 1. For the outer
oscillators, only one delay is possible. Their periods are de-
termined mainly by the parametera, i.e., by the time re-
quired for an isolated oscillator to pass though the cycle. In
the two-dimensional phase plane of each oscillator, this
mode for unit 1 and 4 looks like a doubled limit cycle, along
which the phase points make two turns per period, while the
inner oscillators make just one turn. The farther parametera
is from the bifurcation, the shorter is the main cycle, and the
shorter are the delays. In this way, other phase relations arise,
forming the mode Rs4,3,3,4d and other similar modes, which
are beyond the scope of this study, because we are interested
only in modes near the oscillation threshold of isolated os-
cillators.

VI. DISCUSSION

We suggest that it is the complex structure of the intri-
cate attractor Rs2,1,1,2d sFig. 9d that provides for the exis-
tence of the large peaks atTs<1.5, Ts<3.9, while the an-
tiphase regime is responsible for the peaks atTs<1.25, Ts

<2.5, andTs<5. Obviously, the latter arise as a result of
1:4, 1:2, and 1:1 synchronization with stochastic antiphase
oscillations. The average period of this stochastic regime
skTl=4.8; see Figs. 1 and 2d is slightly shorter than that of
the deterministic onesT=5.2d because noise induces the pre-
mature jumping of representative points to the other branch
of the N-shaped null cline and thereby reduces the attractor
period.

In order to demonstrate the influence of interesting sig-
nal periods on the probability of emergence and existence of
a particular attractor during a long noise-induced process, the
ISI histograms were calculated for the signal periodsTs

=3.1 ssmall Qd andTs=3.9 slargeQd ssee Fig. 10 and com-
pare with Fig. 1d.

As can be seen in Fig. 10sleftd, for a signal periodTs

=3.1, the histogram peaks are slightly lower and broader
than in the absence of external forcing. In contrast, a signal
of period Ts=3.9 fFig. 10srightdg increases significantly the
relative height of the peak atT<7.6. This peak contains the
ISIs emerging from the regime Rs2,1,1,2d. Interestingly, the
ISI values of about 3.9 are absent in the histograms, although
such signals support the stochastic version of Rs2,1,1,2d and
their acceptance is goodsthe largest value ofQd. In other
words, in the presence of a signal of periodTs=3.9, the re-
gime Rs2,1,1,2d is more likely to be observed than the an-
tiphase one. The last statement concerningTs=3.9 is less
obvious compared with the statement that the signal of pe-
riod Ts=2.4 swhich is half theTantid is compatible with the
antiphase regime. Therefore, we present segments of sto-
chastic time series for units 1 and 2 and the signal waveform
that demonstrate microscopically how the signal increases
the probability of the Rs2,1,1,2d regimesFig. 11d.

At the signal minima, the parametera is brought closer
to the bifurcation pointa=1 ssignal is negatived. At the sig-
nal maxima,a is pulled away from the bifurcation point,
making firing less probable. It is easy to see that firings fre-
quently occur when the signal is negative, and that the two

FIG. 9. Waveforms of the slow variables for the intricate Rs2,1,1,2d attrac-
tor, as calculated fora=0.98 andC=0.2. No signalsAs1,2,3,4=0.0d and no
noise ssa

2=0.0d are added to demonstrate the pure unperturbed mode
Rs2,1,1,2d. The arrows highlight the corresponding subthreshold response to
spikes of the neighbor oscillators due to the inhibitory coupling.

FIG. 10. The ISI distributions for ele-
ment 2 for a=1.01, C=0.1, sa

2=5
310−6, «=0.0001,Ts=3.1 ssolid line
in both diagramsd andTs=3.9 sdashed
line, rightd, respectively. The signal is
applied to unit 1 withAs1=0.01. For
comparison, the dashed line in the left
diagram denotes the unforced situation
sAs1,2,3,4=0.0d as in Fig. 1. All histo-
grams are based on time series with a
fixed length of 9600 time units.
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periods of this signal are usually equal to the sum of two
consecutive ISIs.

The same explanation of resonance is valid for a signal
of periodTs=1.5 applied to unit 1sFig. 4d. The most prob-
able ISIs observed for unit 1 are around 4.5 and 3.0, which
are 3Ts and 2Ts, respectively. However, forcing with a high-
frequency signal results in the fuzzy control of the ISIs along
the chain. This means that the signal is consistent with the set
of the phase relations of Rs2,1,1,2d but fluctuations of ISIs
values grow with the unit number and hence decrease the
signal penetration along the chain. Therefore,Q1@Q4 for
Ts=1.5.

VII. CONCLUSION

In summary, we have demonstrated that both signal
propagation and acceptance are frequency selective in a
noisy system of excitable inhibitory coupled units, to which
a subthreshold harmonic signal is applied. In such systems,
the constructive role of noise depends strongly on the signal
period. The multiresonances detected by calculating the lin-
ear responseQ versus the signal periodTs for global and
local signals at appropriate noise levels are even more pro-
nounced than SR that are detected in a standard way by
calculating the well-known functionQ versus noise intensity
sa

2 for a fixed signal period.
The mechanism behind this selectivity is that new reso-

nance frequenciessother than the resonance frequency of an
isolated FHNd arise in a system of coupled oscillators be-
cause of the phase shifts between them. Shifting the control
parametera from the excitable to the oscillatory regime, we
have found a set of stable deterministic attractors and sug-
gested that a very small shift in the parametera and a very
large stiffness ensure the similarity between the deterministic
and the stochastic isolated limit cycles. In the presence of
coupling, the deterministic set of attractors may be richer
than the stochastic set because noise can mask attractors with
small basins. In a noisy environment, the antiphase regime
and the complex Rs2,1,1,2d regime are more or less long-
lived attractors, which exist one at a time. When one of both

disappears, the other sets in. Forcing an element of the net-
work in resonance with one of these coupling-dependent
resonance frequencies, we obtain not only the typical bell-
shaped curve of standard SR, but remarkable additional reso-
nance peaks too.

The study of frequency-dependent SR will be useful in
gaining a better understanding of multifrequency mecha-
nisms of information exchange in neural networks. Because
of the generality of these effects across various diffusively
coupled activator–inhibitor oscillator arrays, including FHN
systems, we expect that these findings can also be applicable
in other fields, e.g., in chemistry or biology.
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