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Measuring Phase Synchronization of Superimposed Signals
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Phase synchronization is an important phenomenon that occurs in a wide variety of complex oscillatory
processes. Measuring phase synchronization can therefore help to gain fundamental insight into nature. In
this Letter we point out that synchronization analysis techniques can detect spurious synchronization, if
they are fed with a superposition of signals such as in electroencephalography or magnetoencephalog-
raphy data. We show how techniques from blind source separation can help to nevertheless measure the
true synchronization and avoid such pitfalls.
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Phase synchronization (PS) is a ubiquitous phenomenon
in nature [1]. It can occur in many oscillatory processes and
has been studied in a wide variety of systems such as
mechanical oscillators, electrical circuits, and chemical
or biological systems (e.g., [2–7]).

So far in order to measure synchronization all methods
implicitly use the assumption that the data analyzed do not
consist of a superposition of signals. However, if synchro-
nization between superimposed signals is measured one
can find high synchronization although, in fact, the under-
lying signals might not be synchronized at all. For ex-
ample, in electroencephalography (EEG) recordings on
the scalp, since the underlying brain sources cannot be
measured separately, but only superpositions of their sig-
nals are accessible, brain sources might erroneously appear
to be synchronized, which could ultimately lead to wrong
biological conclusions. The same reasoning applies for
many multichannel measuring devices. So it is of high
importance to devise a test that can decide whether a
high synchronization can be explained by superposition
effects or not. Recently, Dolan et al. [8] developed a
surrogate data test that addresses this problem. In this
Letter we approach the problem from a different perspec-
tive by using modern techniques from the field of blind
source separation (BSS).

In the last decade, there has been an increasing interest
in the development of BSS methods (see, e.g., [9–13]).
These methods allow us to reconstruct the original source
signals from a given set of superpositions. The term blind
refers to the fact that these methods do not use any addi-
tional information about, e.g., time courses or spectra of
these unknown sources. However, they all presuppose
certain conditions on the data. The most widely used class
of BSS methods, known as independent component analy-
sis (ICA), assumes that the given data are a linear and
instantaneous mixture of mutually independent source sig-
nals. In order to test for synchronization on mixed data, it
seems to be quite straightforward, to apply ICA to the data
to obtain the true source signals and use them to estimate a
synchronization index. However, if we assume the sources
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to be coupled or synchronized, the independence condition
of ICAwill be violated. So there is a fundamental dilemma:
mixing effects cause the synchronization analysis to fail;
synchronization effects in turn might harm the ICA. We
show how BSS-related techniques can nevertheless be used
for synchronization analysis of superimposed signals.

PS between two oscillators is typically measured by
examining the difference between their instantaneous
phases ���t� � �2�t� ��1�t�. Practically, the instanta-
neous phase of a measured oscillatory signal can be ob-
tained by using the analytical signal approach (i.e., the
Hilbert transform [14,15]) or wavelets. In the following,
we use the phase locking value

� � jhexp�i���t��itj (1)

as a synchronization index. This index ranges from 0 (no
phase synchronization, i.e., the phase difference ���t� is
uniformly distributed) to 1 (perfect phase synchronization,
i.e., ���t� is constant). Please note that the following
considerations apply as well to more sophisticated syn-
chronization measures like those based on stroboscopic
phase observations (see, e.g., [16]).

If it is not possible to measure the source signals sj�t�,
which are produced by the oscillators, directly, but only
linear superpositions xi�t� of them, i.e.,

xi�t� �
X
j

Aijsj�t�; (2)

calculating the above mentioned synchronization index
from the mixtures xi�t� will generally lead to the wrong
results. As a simple example consider two sine waves of
different frequencies (see the Appendix). Although there is
no phase locking between them (in fact, they do not even
stem from coupled dynamical systems), the mixtures will
reveal an arbitrary high synchronization index, depending
on the mixing coefficients Aij. So, ideally, the mixing
process should be undone before applying the synchroni-
zation measure.
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FIG. 1. The synchronization index � at different driving fre-
quencies � and different coupling strengths c of the driven
Rössler system [Eq. (5)] calculated on the original ‘‘sources’’
[i.e., x�t� and sin��t�, (left column), the mixtures (middle col-
umn), and the TDSEP estimates (right column)]. The upper row
shows a surface plot of the synchronization index and the lower
row the result after setting a threshold at �0 � 0:6. (The white
regions indicate PS.)
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BSS methods allow us to estimate the mixing coeffi-
cients Aij and to invert Eq. (2) under some technical
assumptions (i.e., the number of mixtures xi�t� must be
greater or equal to the number of sources sj�t� and the
columns of A must be linearly independent [9]). However,
these methods typically assume the source signals si�t� to
be mutually independent (ICA, e.g., [10,11]) or temporally
uncorrelated (see, e.g., [13,17]), which is not true for
coupled oscillators, especially not, if the oscillators are in
a synchronous regime. In this case, we cannot expect that
ICA algorithms will recover the original source signals.

But, fortunately we do not really need to find the basis of
the true source signals. To estimate the synchronization
index, it suffices to find a transformation that removes any
spurious synchronization but does not destroy real
synchronization.

In the following, we see that under mild assumptions,
ICA-BSS methods provide such transformations. Here we
use the temporal decorrelation separation method (TDSEP
[13]), which is a powerful BSS strategy for signals with a
strong (and distinct) temporal structure. TDSEP—a gen-
eralization of [12]—determines the mixing matrix by per-
forming a joint approximate diagonalization of several
time-lagged covariance matrices; i.e., TDSEP minimizes
temporal cross correlations between the output signals. To
estimate the source signals, the algorithm first removes all
instantaneous linear correlations by a whitening transfor-
mation (i.e., rescaling along the principal component di-
rections such that the covariance matrix becomes the
identity matrix). The remaining rotation is then achieved
by a simultaneous diagonalization [18,19] of a set of time-
lagged covariance matrices E�x�t�xT�t� 
k��, where the

k are arbitrary numbers. (A more detailed description of
TDSEP can be found at [13]; the MATLAB source code is
available at [20].)

To show that synchronized signals will stay synchro-
nized if they are linearly transformed in the signal space
(i.e., mixed or demixed), consider two general phase-
synchronous oscillatory time series

si�t� � Qi�t� cos��i�t��; i � 1; 2 (3)

with positive, slowly varying amplitude functionsQi�t�>0
and monotonous phase functions �i�t� with �2�t� �
�1�t� 
 �. After applying a linear transformation xi�t��P
j�1;2Aijsj�t� in the signal space, the transformed signals

(i.e., mixtures) read

xi�t� � Bi�t� cos��1�t� 
  i�t�� (4)

with

Bi�t� �
���������������������������������������������������������������������������������
�Ai1Q1 
 Ai2Q2 cos��2 
 �Ai2Q2 sin��2

q
;

 i�t� � � arctan
Ai2Q2 sin�

Ai1Q1 
 Ai2Q2 cos�
:

Since Bi�t�> 0, these functions can be interpreted as am-
plitudes; the superpositions are still phase synchronized
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[21]. This ensures that even though in the synchronous case
ICA does not succeed in finding the original source signals,
the ICA estimates are still synchronized. If, on the other
hand, the original source signals are independent (not
synchronized), ICA will be able to find them and by this
remove any spurious synchronization. This reasoning jus-
tifies us to apply BSS as a preprocessing step before
estimating a synchronization index of superimposed sig-
nals. The following simulations show the practical useful-
ness of this approach.

As a toy example we look at a Rössler oscillator that is
driven by a periodic external force:

_x � �y� z
 cy cos��t�;

_y � x
 0:2y� cx sin��t�; _z � 1
 �x� 9�z:
(5)

The driving frequency � is varied between 1 and 1.03 and
the coupling strength c between 0 and 0.1. For each com-
bination of these two parameters, the system Eq. (5) is
integrated and the synchronization index � between the
driving sine wave and x�t� from the Rössler system [Fig. 1
(left column)], between random mixtures of them [i.e., the
mixing coefficients are drawn from a normal distribution
(middle column)], and the TDSEP source estimates (right
column) is calculated.

The first row of Fig. 1 shows surface plots of the syn-
chronization index, the lower row the results after setting a
threshold at �0 � 0:6. For the original sources, the syn-
chronization region (white) reveals the typical shape of an
Arnold tongue (i.e., the frequency band �� that allows PS
increases with the coupling strength c). Although this
structure is invisible in the mixed signals (in fact, most
time series are classified as synchronized), the TDSEP
solutions again reveal the synchronization region.

However, although none of the time series is spuriously
classified as phase synchronized on the TDSEP data set,
2-2
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FIG. 2. Synchronization index calculated in shifting windows
on the original data set [true Rössler time series (upper panel)],
the mixtures (middle panel), and the TDSEP solutions (bottom
panel). The gray boxes indicate regions of nonzero coupling.
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FIG. 3. Synchronization between EEG signals during finger
movements measured by electrodes located over the motor
cortex. The high phase locking values of the originally measured
signals (upper curve) do not reveal any interesting temporal
structure and can in large part be explained by superposition
effects. The TDSEP-source estimates show a significant syn-
chronization peak directly before the movement.
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the right column of Fig. 1 shows that there is a part of the
Arnold tongue missing. This is because in this region x�t� is
not just phase synchronized, but exactly in phase with
sin��t� and almost identical to the driving force. In fact,
identical signals due to identical synchronization might as
well be caused by strong superpositions. Since these two
cases are not distinguishable, our test does not recognize
synchronization in the case of identical signals. So, per-
forming TDSEP ensures that signals which are perceived
as synchronized are synchronized indeed. It avoids the
problem of spurious synchronization. The reverse, how-
ever, is not always true: If the synchronization index on
TDSEP data is low, this does not mean that there cannot be
synchronization. It just means that mixing effects cannot
be ruled out.

Consider now two coupled Rössler systems

_s1;2 � �!1;2u1;2 � v1;2 
 c�s2;1 � s1;2�;

_u1;2 � !1;2s1;2 
 0:15u1;2;

_v1;2 � 0:2
 v1;2�s1;2 � 10�

(6)

with different eigenfrequencies !1 � 1:015, !2 � 0:985
and a piecewise constant coupling function c � c�t�, jump-
ing between two values coff � 0 and con � 0:04. The
Rössler systems are integrated between t � 0 and t �
30 000, with a step width of �t � 0:5. The synchronization
index � has been calculated on sliding windows of length
400 with an overlap of 375, i.e., shifted in steps of 25 on
(i) the original source signals sj�t�, (ii) on the mixtures
xi�t�, which are generated according to Eq. (2) with a
mixing matrix A � �1; 0:95; 0:9; 1� plus some additional
white Gaussian �-correlated noise (snr � 4), and (iii) on
the TDSEP-source estimates.

The upper panel of Fig. 2 shows that the Rössler systems
switch between a synchronized and an unsynchronized
state, depending on the coupling. Calculating the synchro-
nization index on the mixtures (middle panel) yields uni-
formly high values in both the synchronous and the asyn-
chronous regimes of the time series. In the TDSEP basis
(lower panel) these two states can be well differentiated.

Real-world examples of synchronization phenomena
that are masked by strong superpositions are, for example,
EEG measurements. It is believed that synchronization
effects play an important role in information processing
of the human brain [1]. In the experimental setup that is
considered here, a subject is asked to press a key with the
left or the right index finger at self-chosen time instances
(with intervals of at least 2 s). For the left keystrokes, the
synchronization index between two adjacent electrodes
(C2 and C4) over the motor cortex of the contralateral
hemisphere has been computed [Fig. 3 (upper curve); for
a detailed experimental setup, see [22] ]. To obtain this
high temporal resolution, we evaluate the mean in Eq. (1)
as an average over trials rather than over time. The syn-
chronization index � shows uniformly high values that are
spurious. In contrast, the TDSEP solutions reveal a pro-
nounced synchronization peak lasting approximately from
08410
500 ms before the keypress until 300 ms after it. The
dashed lines show 95% quantiles with respect to back-
ground brain activity without movement. This finding al-
lows us to observe the well-known movement preparation
(see, e.g., [23]) as a synchronization effect in the mu-band
(for this subject �11 Hz).

This demonstrates that BSS methods are a suitable
preprocessing step in the synchronization analysis of
superimposed real-world signals. Superpositions are inevi-
table in every experimental setup or physical system where
one has access only to surface measurements, while the
interesting dynamical processes are hidden underneath this
surface. Scalp measurements of EEG or magnetoencepha-
2-3
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lography are very important examples, but the same rea-
soning applies to the study of active stars, to some ex-
periments in materials science research, or to seismology.
So synchronization phenomena that are hidden in multi-
variate time series of this kind will be masked by these
mixing effects. The proposed method is applicable even
for time-varying coupling (which is typical for many
physical processes) and in the presence of observational
noise. Even though in general the assumptions of the BSS
algorithms are violated in the case of coupled oscillators,
and they do not succeed in finding the original source
signals, they can still transform the data into a basis that
allows a more reliable estimation of synchronization in-
dices. Instead of comparing the synchronization index of
the measured data with those of suitably chosen surrogates
(as proposed in [8]), we directly remove any spurious
synchronization due to linear mixtures while maintaining
the true synchronization.

In conclusion, we have devised a test to decide whether a
high sychronization index stems from the measurement of
intrinsically mixed signals or whether ‘‘true’’ sychroniza-
tion is observed. Thus, our work contributes to a better
understanding of complex physical systems.

This work has been supported by the DFG within the
research group on ’’conflicting rules in cognitive systems’’
and by the EU PASCAL NOE.

Appendix: Spurious Synchronization due to Mixing
Effects.—To see how a linear superposition can lead to
spurious synchronization, consider two simple os-
cillatory time series of the form si�t� � cos�!it�,
i � 1; 2 with !1 � !2. These time series are indepen-
dent and consequently the synchronization index van-
ishes. If we apply a linear transformation xi�t� �P
j�1;2Aijsj�t� in the signal space, the transformed sig-

nals (i.e., mixtures) read xi�t� � Bi�t� cos�!1t
  i�t��

with Bi�t� �
��������������������������������������������������������������
A2
i1 
 2Ai1Ai2 cos��!t� 
 A2

i2

q
,  i�t� �

arctan Ai2 sin��!t�
Ai1
Ai2 cos��!t�

, and �! � !2 �!1. Since Bi�t�> 0

(except for the case of jAi1j � jAi2j), these functions
can be interpreted as instantaneous amplitudes, while
the instantaneous phases �i�t� are given by the argument
of the cosine.

We now consider the one-parametric group of trans-
formations of the form A11 � A22 � 1, A12 � 0, and
A21 � �. The phase term of the first mixture then simpli-
fies to �1�t� � !1t, and the phase difference between the
two mixtures is given by ��t� �  2�t� � arctan sin��!t�

�
cos��!t� .
With rising � the phase difference concentrates around
zero and therefore the synchronization index rises as
well. In the extreme case of �! 1, the observed phase
values are all the same (i.e., spurious perfect PS). So linear
mixing can lead to false detection of synchronization, even
if the original signals are not synchronized at all.
08410
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