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Regular and chaotic phase synchronization of coupled circle maps
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We study the effects of regular and chaotic phase synchronization in ensembles of coupled nonidentical
circle maps(CMs) and find phase-locking regions for both types of synchronization. We show that synchro-
nization of chaotic CMs is crucially influenced by the three quantitigsrotation number differenceji)
variance of the phase evolution, afiid)relative duration of intervals of phase increase respect decrease. In the
case of regular CMs, only variance and rotation number difference are important. It is demonstrated that with
increase of noncoherence of phase evolutionsin the regular and chaotic regime, the regions of fielmain
synchronization are usually decreased. We present a chaotic synchronization in the systems of coupled non-
identical circle maps where phase entrainment occurs and it is not accompanied by bifurcations of the chaotic
set. For ensemblgghaing of coupled CMs with linear and random distributions of the individual frequencies
soft and hard transitions to global synchronization are found.
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[. INTRODUCTION individual frequencies of the uncoupled elements already co-
incide. We consider here coupled nonidentical elements, i.e.,
Synchronization of oscillations is one of the fundamentala more realistic case that usually arises in nature where sub-
nonlinear phenomena in biology, physics, chemistry, comsystems are never identical. In contrast to other time-discrete
munication, and many other branches of science and engdynamical systems, the CMs are such objects for which the
neering [1]. Synchronization of periodic systems studied phase variables yet exist that allows to use the criteria of
since Huygens is understood now sufficiently well. The ap-synchronization similar to criteria used by the detection of
pearance of periodic synchronization is manifested through @PS in time-continuous systems. Synchronization in en-
frequency entrainment that implies phase locking, i.e., th&embles of complex systems has found important practical
existence of bounded shifts between the phases of interactingpplications in electronics, radioengeneering or communica-
elements. Recently, the phenomenon of phase locking hafons, in particular, in networks of digital phase-locked loops
been also observed in systems of coupled chaotic oscillator(@pLL) [17-21]. Systems of coupled CMs can be used as a
[2]. That chaotic phase synchronizati@P$§ has been stud- rather simple but a paradigmatic model to investigate pro-
ied in the casesi) of an external force acting on a chaotic cegses of mutual synchronization in coupled relaxation sys-
system(3,4], (ii) of interaction between two chaotic Systems o g | this case, the phase variable can be interpreted as an
[5] and in ensgmble; fii) glo'bally [6] a_md(iv) locally [7] _onset of a new impulsgl,22]. The system under consider-
coupled chaotic oscillators. First examined for parad|gmat|cation belongs to the broad class of “pulse-coupled” systems

dynamical model systems: Ssier and Larenz oscn_lators,_ arising in many branches of science and technology; e.g.,
the CPS has been observed in many real systems, in IO'f:lrtlcuhlse—cou led systems have been investigated as models of
lar electrically coupled neuronf3,9], ecological systems P P Y 9

[10], human cardiorespiratory systel], and in magne- neural nfatwprks[23], .ca.rdiac pacemaker cel{24], or in.
toencephalogramil2] and electroencephalograrfis3]. Al communlcatlo_r[25]. Itis important to note that systems Wlt_h
these systems are time continuous. Many systems in the nf1€ Phase variable as a dynamical variable but time continu-
ture and technology and their corresponding mathematic&US aré subject of great interest in connection with different
models are discrete in time, because of that it is also nece§Pplications in biologica[26] and chemica[27] systems,
sary to consider analogous synchronization phenomena #Psephson junction array28], or laser array$29].
ensembles of coupled time-discrete elements. The paper is organized as follows. In Sec. Il we shortly
In this paper we study conditions for an onset of regulardeSCI’ibe the behavior of the CMs under study, and introduce
and chaotic phase synchronization in snfalvo elements  three main characteristics of the phase evolution of a single
and large(chaing ensembles of coupled nonidentical circle CM. A model of chains of coupled CMs and criteria of syn-
maps(CMs). For networks of coupled maps different prob- chronization in these chains are discussed in Sec. Ill. In Sec.
lems of synchronization, pattern formation, and spatiotempolV we present our numerical results of regular and chaotic
ral chaos have been extensively investigdtet-16. Butin ~ phase synchronization in two-element systems. Section V is
most previous studies identical coupled elements were anaevoted to synchronization in chains of coupled CMs with
lyzed. It is evident that for networks of coupled identical linear and random distribution of the natural frequencies.
elements the investigation of CPS has no sense because thiee results are summarized in Sec. VI.
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Il. DYNAMICS OF INDIVIDUAL CIRCLE MAP (a) For every value ob Eq. (1) has the only attractive set

(). For a rational rotation numbegr=p/q this set is an at-
?racting periodic trajectory of period; for an irrational ro-
tation number the sd is a Cantor set on which E@l) acts

We consider the circle map as the basic element of th
ensembles studied here,

XK= b X = F (xX). (1) as a rotation.
This map relates the phase variableat adjacent timek (b) With b varying, the rotation numbes depends con-
=1,2,...;be[0;27] is a positive parameter that can be tinuously onb and does not decrease monotonously.

interpreted as frequencyF(x) is a piecewise linear (c) For eachp=p/q there is a corresponding interval lof
2-periodic function of the forni (x) =cx/# defined in the that is not reduced to a point. The dependence oh b is
interval[ — #, 7], andc is the control parameter. Systgih) shown for different values of in Fig. 1. With increasing of

is one of the basic models in nonlinear dynamics, and it has, the number and width of intervals bf in which the rota-
been studied in many mathematicef., Ref.[30]), physical tion numbers are rational, are increased. Thus at relatively
(cf., Ref.[31]) and technicalin particular, in the theory digi- large values even uncoupled CMs are synchronized. As we
tal phase-locked loop$20,32,33) issues. Recently, for will show below, this property plays a decisive role for the
piece wise functionF(x) diffusive like phenomena have synchronization in ensembles of coupled regular CMs.
been observed in such a systEdd]. Our choice of a piece- (ii) Case 2:
wise linear functior-(x) is motivated not only by simplicity

of consideratior(see, for example, Reff21,34)) but also by

the fact(see Case 3 belowthat chaos is observed in the ’1_ <
system for allc<0 and there is no stable periodic orbits for

any ¢c<0. Moreover, our numerical simulations show that
the effects observed in this paper also exist for other func-
tions F(x), in particular, forF(x)=c sin (x).

=1. 4

If 1 —c/7=1, then Eq(1) becomes a continuous map of
. ! ; S ircle rotating througtn. In this case the dynamics of two
First, we shortly recall basic properties of this circle map.a cire ; :
It has forb<(|c| a unique fixed poink;=b/c that is stable coupled CMs have been considered in Ras|. If 1-c/m
if x;e[0;7] (Case 1 belowand unstable ifx; e[ — ;0] =—1, then Eq.1) remains a continuous map of a circle.
(Case 3 ' ' (iii) Case 3:
The dynamics of an individual CMs can be determined by

the rotation numbelp, which in both types of dynamics c
(regular or chaoticis defined as the average growth rate of ’1— —|>1. %)
the phase m
XM_Xl
P=5- lim M 2 Here we are in a chaotic regime because the Lyapunov
M= exponent\ =In|1—(c/#)| is positive. Its nonwandering set
whereM is the number of iterations. consists of a finite number of intervals on which repelling
There are three types of behavior of Edj) [33,35 periodic orbits are dense, and there is a finite number
(i) Case 1: of repelling periodic orbits. For almost all values of the
c parameteb this set is a nontrivial attractor. The dependence
‘1_; <1 (3 of the rotation numbers on the individual frequency for

small|c| looks like the case of periodic motioKisig. 1), i.e.,
Here the map derivative is less than one, i.e., it is locallythere are a number of intervals with rational rotation
contracting. In the intervdd<<c the fixed point is stable and numbers. If —c increases, all these regions are firstly
there occur three variants: increase and then shrinking and consequently the rotation
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¢ FIG. 3. Phase evolution &= 0.6 for differentc for map(1).
FIG. 2. The varianc® of x* (6) vs ¢ for map (1) at different
values of the frequency parameter We will show below that for the synchronization of cha-
otic CMs the three parameters: variarizeparametery, and
numbers are irrational in an increasing part of the consideredifference of rotation numbers of interacting elements are
interval of b. As we will show below, this is manifested in crucial, whereas for regular CMs only the variafizand the
different synchronization properties of regular and chaotiadifference of rotation numbers are important.
motions at relatively large.
The parametet defines the coherence properties of the |, ENSEMBLES OF COUPLED CIRCLE MAPS AND
motions. As a measure of the power of coherence, we use the CRITERIA OF SYNCHRONIZATION
varianceD that can be defined for lardeas
As the main model we study a chain of nonidentical CMs
D = ((xk+ 21— xk— (xk+1_xky)2) (6)  thatare locally coupled

k+1 k k Lok Ky 4 cin( oK K
o . — by +xK—F(x$)+d —x5)+sin(xk_,—x5)].
(.) defines time averaging. So fa=0 (Case 2, the rota- Xn 0 Xn = FOtn) + dLSIN Oy = n) FSIN Ot 4 = %)}

tions are completely coherent af®=0. If |c| grows, the (7
noncoherence properties of rotation are increased. The deteren=1, ... N corresponds to the number of individual
pendence oD on the parametec at different values ob  CMs andd is the coupling coefficient. The parametdrs
shows rather different featur¢Big. 2): for periodic motions  characterize the partial frequencies. We assume that the sys-

it can be well fitted by the curvd =0.422%, but for chaotic  tem is subjected to free-end boundary conditiods: xX and
motions by the quadratic cuni@=0.2%2. We explain this

effect as follows. For regular rotatiof€ases 1 and)2the 15 . ; ; ; .
phasex® only monotonously increases. For chaotic motions, g
however, we can distinguish two different types of phase
evolution: In the first type< only monotonously increases.
The second type is represented as an alternation of intervals y ,
where the phase increases, with intervals, where the phas 190 ' .
decreases. Both types of phase evolutions in the cases ¢ g t
regular €=0,0.5) and chaoticqd=—-0.5-1.0-1.5-2.0,
—2.5-3.0) motions are presented in Fig. 3. Hor0 the
mean duration of phase increase intervals is usually consid
erably larger than the mean duration of phase decrease inte
vals. Therefore, this type of motion looks like intermittency
of relatively large intervals of phase increase and short inter-
vals of phase decrease. It can be easily shown that the firs
type of the motion exists fdo<<—c. Both types of behavior
can be characterized by the ratio of the number of iteration g, - N -
where the phase is increasing and where the phase is decree 30 25 20 15 1.0 05 0.0
ing. Let us denot®, the number of phase increase iterations
and Ny the number of phase decrease iteration and look at F|G. 4. Ratio of the duration of phase decrease intervals to the
the parametery=N4/Ny. Then, we easily see that fdr  duration of phase increase intervals in dependenceairdifferent
<-—c, y=0, but otherwisey#0 (Fig. 4). values ofb.
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X§ 4 1=X& . System(7) can be regarded as a model of a mul-
tichannel chain of partial DPLL connected in parallel by 25 . 1
phase-mismatching signals. To realize these connections i
the chain in its simplest variant, it is necessary to compare
the output signals of two neighboring DPLL generators with
the help of a separate phase discriminator and then to appl
the obtained phase-mismatching signal for the frequency
control of both generators. Some similar one dimensional®
and two dimensional in space models of coupled identical
CMs have been studied in R¢R21]. 1.0 8
We analyze the nonlinear coupling between partial ele- 1:1 synchronization

ments in the form okinusof phase differences also because
such kind of coupling naturally arises in models of en- 05 7
sembles of weakly coupled time-continuous oscillators. Re-
spectively, pattern formation and synchronization in net- 0.0 ‘ ‘ ‘ ‘
works of phase oscillators with coupling between nearest 0.0 0.5 1.0 1.5 20 25
neighbors have been investigated in R&6]. For popula- d

tions of such periodic elements with different partial frequen- FIG. 5. Critical values of coupling* andd* correspondingi)

cies, the existence of global synchronization is observed, -84 the transition from nonsynchronous to synchronous mafiefo

all elements of the populatllon are Synchronlzed, but also Se\{:'urve) and (ii) to the transition from synchronous to nonsynchro-
eral clusters of synchronized rotators exist.

] h A ) > In contrast_ tc?1ous motion(right curve in the model(13) vs frequency mismatch
often used types of diffusive coupling like linear phase dif- s Between both curves there is the region of 1:1 synchronization.
ference between neighbors,

20 r 1

1.5 | b

d(xk 1—xk)+d(xk 1_Xk)1 (8) loss of synchronization in the two-element mod@). This
nekoon e effect will be discussed in more detail in Sec. IV A. Also for
or through the same nonlinear functions as individual functhe N-element systent7) in dependence on the number of

tions for each element elements and on the parametetthere is a critical coupling
valued* corresponding to the transition from synchronous to
d(F[xX, ;1—F[xK]) +d(F[x_;1—F[xX]), (99  nonsynchronous behavior. Note thatiesynchronizatioti-

furcation (see Ref[37]) in which the increase of the cou-
thesinustype of coupling exhibits some special properties ofpling between elements in the coupled ensembles may desta-
the dynamics of populations of time discrete elements. It igjilize the synchronous state are observed in many physical
important to emphasize that tisenuscoupling(7) generates  systemg38]. The phenomenon, calleshort-wavelength bi-
mutual synchronization already for a very small couplthg furcation has been also seen in systems with phase variables,
compared to the casé8) and(9). To give one example for a such as phase-locked loops or Josephson juncfzm8d.
two-element system at=0.05 andb;=0.1, the critical We will use two criteria to test fom; :m, synchroniza-
value of Ab=b,—b, for which 1:1 synchronization can be tion, wherem, , are integersm, :m, phase synchronization
achieved isAb=0.01 for Egs.(8) and (9), whereas we get of regular rotations as well as chaotic regimes between two
for the nonlinear coupling7) synchronization in the large CMs can be defined as phase entrainment or locking
rangeAbe[0:6] (see also Fig. b

Another speciality here is that all presented types of cou- " ‘

pling can lead to a loss of synchronization when the coupling |MyX5—MyXq ., 4| <const, (13)
parameterd is increasedsee also Ref[37]). To show that

we consider the system of wo cohereat{0) CMs coupled for all k=1,2,... . Aweaker criterion for the analysis of

. . . . k__ k_ K
as in Eq.(7). BY introducing a new vana_ble XXy, the_ both types of synchronization in a chain of coupled CMs is
mutual dynamic of two CMs can be defined by the following based on their rotation numbe(@), i.e., we test for

sinuscircle map:

0*"1=Ab+ ¢*—2d sin 6. (10 Mypn=Mopns 1. (12)
The fixed point6* =arcsinA\b/2d) is stable ford<1 and
corresponds to a 1:1 regular synchronization in the originaBecause of its simplicity of calculation and convenience of
model (7) with constant in time phase differen& . With presentation we often use in the following the criter{@d).
increasing of parametat, a period doubling cascade takes By the study of synchronization effects in a chain of coupled
place that ends up in a chaotic behavior of the oscillatoryCMs, the fulfillment of the condition$l1l) and (12) for all
type (i.e., #* is boundedl Note that the rotation numbers of n=1,... N—1 means the existence of global synchroniza-
the coupled CMs coincide here. But at some critical valuetion. If these conditions are satisfied only for several neigh-
d*, the oscillatory chaotic attractor is changed into a rota-oring elements, we have a regime of cluster synchroniza-
tionally chaotic on€i.e., 6 is unboundeyithat leads to the tion.
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IV. SYNCHRONIZATION OF TWO COUPLED CIRCLE
MAPS

First, we investigate systems of two coupled CMs, de
scribed by the following equations:

X5 =py+xK— F(x¥) +d sin(x§—x¥),

k+1_ (13

x5 t=b,+x5— F(x5) +d sin(x—x).

PHYSICAL REVIEW B5 016216

such a way that for all considered valuesofthe rotation
numbers of the uncoupled CMs gi¢identical or(ii) can be
different. The structure of the synchronization regions, their

number and transitions from one synchronous region to an-
other one can become very rich now. The dependence of
on the coupling parametet for both casegFigs. §a) and
6(b)] demonstrates clearly the existence of a lot of phase-
locking regions; the number and width of them are increas-
ing with increasing ofc. So forc=0 only the 1:1 synchro-
nization regior{ Figs. §a) and Gb)] exists. For large enough

As mentioned above, the effects of mutual regular anq,5)yes ofc, synchronization between coupled CMs occurs

chaotic phase synchronization of two coupled systems can Qg

characterized by the ratio of their individual rotation num-
bersp; , or by thewinding number:w=p,/p; and by the
evolution of the phase differences of CMs in time. It is

t only as 1:1 synchronization but also as genaralm,
synchronizatior(i.e., m; ,m,# 1). Thism; :m, synchroniza-
tion is typical for coupled relaxation periodic oscillators for
which the motions are noncoherent. For instance, in the sys-

important to emphasize that there is a remarkable differencgyy of two coupled strongly nonlinear van der Pol oscillators

in the synchronization for regular and chaotic CMs.

A. Regular synchronization
First, synchronization of two coupled CMs in regular re-
gimes is studied.
1. Coherent case 0)

In the coherent case, i.ec=0, the critical value of the
couplingd™ corresponding to the transition from nonsyn-

the synchronization occurs firstly as, :m, synchronization

and only for larger coupling as 1:1 synchronization. As we
can see from Fig. 2 with increasing the varianceD in-
creases too, and as a result of that the region of 1:1 self-
synchronization becomes smaller for the first case of fre-
guency parametef&ig. 6)]. If cis larger than some critical
value c*, the 1:1 synchronization is impossible because of
very strong noncoherence of the rotations. In the second case
the size of the 1:1 synchronization region can surprisingly
increase or decrease. In dependence on the valueadb,

chronous to 1:1 synchronous rotations can be easily founfhe rotation number differencp can increase or decrease.

from the conditions of existence and stability of the fixed
point for thesinusCMs (10): d* =ADb/2. Also the other criti-
cal value of couplingl* corresponding to the transition from

Therefore, at fixed parametelps and b,with increase ofc,
synchronization can occur sometimes at smaller coupling
and sometimes at larger couplifigig. 6(b)].

synchronous to nonsynchronous rotations can be found from

the map(10) (cf., Refs.[40,41]). With increase ofl the tran-

sition to chaos occurs via the period doubling scenario. This
way we get chaos of an oscillatory type. The chaotic trajec-

tory belongs always to the intervpl 7; 7], i.e., the phase
difference 6% is bounded. In spite, that the rotation in our
model(13) is chaotic, both criterial1) and(12) are satisfied

and 1:1 synchronization still exists. At some critical value of
d*, the chaotic regime becomes rotational, i.e., the phas

difference ¥ unrestrictedly increases. This transition from
oscillatory to rotational behavior of the phase difference i

accompanied with a change in the geometry of the chaoti
set. A sudden change in the type of the chaotic set occurs v

an interior criseg42]; at this transition the 1:1 synchroniza-
tion in the model(13) is violated. In Fig. 5 the dependences
of the critical valuesi* andd* on the frequency mismatch

Ab are presented. As we will show below, these both value
d* and d* can be usually regarded as the lower and th

upper estimates of the boundaries of the 1:1 synchronizatio

region for both regular and chaotic rotations.

2. Noncoherent case 0)

S

B. Chaotic synchronization

In systems of two coupled chaotic CMs some different
synchronization properties are observed. We have performed
numerical simulations for fixeh;=0.6 and different values
of b, (Fig. 7). Usually there exists only the region of 1:1
synchronization. Only in rather small intervals @fregions

f m;:m, synchronization can occur. It should be noted that
in all our presented experiments onty, : 1 synchronization
with different m;=2,3,4 ... areobserved. Figure 7 indi-
I(i‘fates that the geometrical structure and the sizes of the syn-
Shronization regions strongly depend enwhich, as dis-
cussed above, defines the complexity of the behavior of the
uncoupled elements. It is obvious that the processes of rota-
tion locking in the system of coupled elements cannot be

e%xactly predicted from the properties of motion of the un-

coupled elements. As it was demonstrated in the regular case,
Bven a weak coupling can already lead to a strong change in
the mutual dynamics. But some common rules of appearance
and disappearance of synchronization can be obtained and
explained by knowing properties of the behavior of single

Now we analyze the synchronization properties of theelements. Considering the effect ®bn the synchronization

regular CMs at different values of the coherence paranteter
As one can see from Fig. 1 for fixed valulegs andb, with
increasing parametes, the individual rotation numberg;
and p,, and therefore, the winding numbercan be varied.

Hence, we will study the two different cases of frequency

distribution. We choose the individual frequencies, in

properties, we can roughly distinguish three intervals:of

(i) small —c where only a monotonously increase of the
phases is possible in the interacting elements; in our experi-
ments it was the intervdD,:ce[ —b;=—-0.6,0];

(i) large —c for which the varianced is very large(see
Fig. 2 and due to a high noncoherence of the motions, syn-
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FIG. 6. The winding numbew vs the coupling coefficiend at differentc and b;=#/2, b,=27/3 (a), respectivelyb,=4=/7, b,
=177/23 (b).

1.0

chronization cannot be achieved; in our simulation it was theexists at the very small frequency mismatakp=0.0001.
interval D5:c<—2.25, and Therefore, a very small frequency mismatch and as a result
(iii ) intermediatec that do not belong to the two previ- of that a very small rotation number difference does not al-
ously defined intervals; this is the intenBl:ce[—2.25;  ways guarantee the occurrence of synchronization. The com-
—0.6]. plexity, specifically noncoherence, of the behavior quantified
For each of these intervals we analyze influence of théy the variance of rotation® can be crucial. The existence
three parameters on synchronization discussed in Sec. I, i.ef time intervals with a strongly different phase growth rate
the varianceD, the parametety characterizing the relative makes the processes of locking of rotations impossible.
duration of intervals of phase increase, and phase decrease
and the rotation number differendegp=p,—p;. 2. Intermediate noncoherence

A quite different situation is observed in the inteniy.
For relatively small[(Figs. 4a) and qb)] as well as large

In the intervalD, the difference of rotation numbersp [(Figs. Th)-7(j)] frequency mismatches the main influence
plays the crucial role in the synchronization. As in the caseon synchronization is exerted by the rotation numbers differ-
of regular coherent CM$Sec. IV A, the critical value of enceAp and the varianc®. But for intermediate values of
couplingd™, at which the transition to 1:1 synchronization Ab [(Figs. 7Ac)—7(g)] initially synchronization is not
occurs, depends on the value of the rotation number differachieved with an increase of for any values of coupling.
enceAp. At larger valuesAp a larger value of coupling is For further increase of, synchronization can appear again.
needed to achieve synchronization. The sizes of the synchrdhe existence of such “islands” of synchronization can be
nization regions become smaller with increase.dfhis hap-  qualitatively explained as follows. As it was mentioned
pens due to increase of noncoherent properties of rotation. Atbove for chaotic rotations, two types of phase increase are
chosen valueb; andb, in the intervalD ; synchronization is  possible: monotonous increase or alternation of intervals of
in general impossible due to the highly noncoherent properphase increase and phase decrease. The transition to the sec-
ties of rotations. For instance, at= —2.5 andb;=0.6 re- ond type of rotation occurs atc>b. So for the first element
spectivelyb,; = 2.6 we find that imperfect phase synchroniza-with b;=0.6 this critical value is equal te-0.6. Figure 4
tion [43] (i.e., seldomly occurring phase slips are possible indicates thaty (the ratio of the duration of the phase

1. Small and large noncoherence
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decrease intervals to the duration of the phase increase inteBince the first Lyapunov exponexy is constant and positive
vals for the first elementbecomes strongly increasing @t  for all values ofd, we expect that only the sign of the second
~—1. If in the second element the phase is still monoto-Lyapunov exponenh, is important for the occurrence of
nously increasing, then time intervals, where the phases reepPs. If both Lyapunov exponents are positive, we have
tate in opposite direction, are existing for coupled elementshyperchaotic regimehat determines usually a nonsynchro-
This makes the phase entrainment rather difficult and usuallijized regime. If with increase of coupling the second
phase synchronization does not ex#]. If with increase of | yapunov exponent becomes negative, we have a strong in-
¢ in the second element phase decrease intervals appear, feation for the occurrence of phase synchronization. This
tations in both elements becomes more similar, i.e., in bothjyation takes place at the transitions to 1:1 synchronization

eIe_ments the phases can grow and vamsh, and a phase &0 all simulations presented in Figs. 7 and 8. Such bifurca-
trainment can happen. We assume that this mechanism le Sh is observed in CPS of time-continuous systémg., see

Loe:)g?tf?gcﬁecr):c 'Sﬁgﬁat%s¥1Ch{g)T€?tgﬁngggasfgsrtﬂe\;ael' Ref. [5]). But this is not the only one scenario for the tran-
q Y gs-. 9. sition from nonsynchronous to synchronous behavior for

“islands” appear at such values ofthat approximately cor- . o 2 . .
respond to the transition to the second type of rotations in th?é"_hICh criteria(11) and (12) are satls_ﬂe_d. We illustrate this
with plots of dependences of the winding numbeand the

second CMs. ) -
second Lyapunov exponeRt, on the coupling coefficiend

C. Synchronized hyperchaos (Fig. 8 and phase diagrams for nonsynchronfkigis. 9a)

h ig. i .Inthei I
Next we use the Lyapunov exponents to describe the ocand db)] and synchronougFig. A(c)] regimes. In the interva

currence of regimes of chaotic phase synchronization Fode[0.285,0.32 the winding number is equal=3/1 that
u gl Ic P y! Ization. (Eorresponds to 3:1 synchronization, but the second Lyapunov
system(13) the Lyapunov exponents are given by

exponent remains positive,~0.05, i.e., synchronized hy-
perchaos exists. Also there are intervalsdoin which 2:1
, and 1:1 hyperchaos synchronizations are observed. The tran-
sition to (or from) synchronized hyperchaos are accom-
M c (14 plished with a change in the structure of the chaotioBig.
A= lim — > Inj1— ——2d cos(x5—x¥) 9). In the case of nonsynchronous hyperchidégs. 9a) and
M—aM k=1 ™ 9(b)] the chaotic trajectory covers practically the whole

C
1— —

Ai=In
1 ar
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4.0 . . V. SYNCHRONIZATION AND CLUSTERING IN A CHAIN
— o w OF COUPLED CMS

30
To investigate synchronization in chains Nf coupled

201 ] CMs, we take first a linear increase of the individual frequen-
1.0 F //M’ cies:
0.0 = 4 b,=b,+Ab(n—1), n=1,...N, (15)
-1.0 t . . . .

ot o whereAb is the uniform frequency mismatch, and second a

20+ : random distribution of the frequencies:

-3.0 o e ol |7 b,=b;+Abé&,, n=1,... N, (16)

+0 where Ab=const and¢, are uniformly distributed in the
=5.0 100 ‘ 29 ‘ ] interval[ —0.5;0.5. In dependence oo we study three dif-
60 025 030 03 , 025 030 03 ferent cases which correspond to the three types of behavior
0.0 05 1.0 1.5 2.0 of a single CMs:(i) coherent regular rotation€0), (ii)
d noncoherent regular rotations>0), and(iii) chaotic rota-
tions (c<0).

FIG. 8. The winding numbew and the second Lyapunov expo-
nent\, vs the coupling coefficiendl for b;=0.6, b,=2.0, andc o
=—0.15. Regions of 3:1, 2:1, and 1:1 synchronization are existing. A. Synchronization of coherent CMs

Enlargements of the intervf).25;0.39 are presented in the insets. The system(7) for c=0 and a linear distribution of the

partial frequencie®,, can be rewritten as
phase space: the squdre 7 ; — 7r: 7] with different den- Kt 1 K o
sities. When the value of coupling is close to the critical X1 “=by+x3+dsin(67), (17
value corresponding to the transition to the synchronized hy- il ‘ o o
perchaos, we observe localization of areas visited by chaotic ~ 0n ~=Ab+ 6y +d(siny,;—2sin+sind;_,),
trajectory. The appearance of more dense bands of motions (18)
can be clearly seefFig. Ab)]. From the synchronization
point of view the attendances of gaps between bands are
corresponding to slips in the phase differemei.e., jumps
of 27 [45]. A decrease of the number of slips exhibits thegitions: 05: 0'§,=0. The stable fixed poimﬁﬂz 0ﬁ= . for

tendency of the system to the perfect synchronization wher . .
y y P y eachn=1, ... N—1 in system(18) corresponds to a regime

no slips exist. At synchronized hyperchaos, the chaotic tra-

jectory is placed only in relatively narrow bands in the phaseOf global synchronization in the chain. Then the system of

spacelFig. 90)]. Like in the case of 1:1 synchronization of equations for the stationary phase differenégsan be writ-
regular coherent CM&ee Sec. IV A1, the transition to syn- €N as
chronous motions corresponds to the transition of the phase
differenced*=x5— 3xX from rotation to oscillation. Thus the
transition from nonsynchronous to synchronous behavior in a o S
two-element CMs system occurs throuigkerior crisis [42] Ab+d(sinfy1—2sin6,+sin6,_1)=0, (19
of the hyperchaotic set, i.e., for both regimes both Lyapunov
exponents are positive.

with Ab=b,, ;—b,, 6K=xX, ,—x¥ and the boundary con-

Ab+d(sin6,—2sin6;) =0,

Ab+d(sinfy—2 sinfy_,)=0.

FIG. 9. Phase portraits of systeth0) for b,
=0.6,b,=2.0,c=—0.15 and differentd within
(c) (d=0.3) and outsidda) (d=0.25) and(b)
(d=0.275) of the 3:1 synchronization region. In
all three cases a hyperchaotic regime; (A,
>0) exists.

016216-8
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FIG. 10. Rotation numbegs,, distribution in the transition to global synchronization in cohe@ntc) and noncohererb),(d) regimes.
For a linear(a),(b) individual frequency distributiorb,=b;+Ab(n—1) we takeb;=0.6, Ab=0.005,c=0 (a), c=0.00005(b) and
coupling from bottom to tomd=0, 0.03,0.042, 0.08, 0.106, 0.158. In the coherent case only clustered structures of synchronization are
presented. For a randofw),(d) individual frequency distributiom,=b;+ Ab¢,, we takeb;=0.6, Ab=0.025,c=0 (c), c=0.05(d) and
coupling from bottom to tom =0, 0.004, 0.008, 0.016, 0.02, 0.05%, are uniformly distributed in the intervg0.5;0.5.

As follows from Ref.[46], the distribution of6, is nization takes place. For a long chain the two cluster syn-
chronization occurs, i.e., the chain is divided into two
clusters of equal sizes that consist of mutually synchronized
CMs of different rotation numbers.

We have performed numerical simulations with a chain of
It follows from Eq.(20) that the systeni18) can have Y1 50 elements with lineafEq. (15)] [Figs. 10a) and 1QGb)]
fixed points. As the frequency mismatdib is increased, the and random distribution of individual frequenci=g. (16)]
condition of the existence of fixed points [Figs. 1@Qc) and 1Qd)]. For each CMs we calculate the rota-
tion numberp,. If all the rotation numbers are equal, we
have global synchronization. If the rotation number are only
equal for some groups of neighboring elements, cluster syn-
chronization is formed. We have found that analogous to the
is violated first forn=N/2 at evenN, i.e., for the middle self-synchronization in chains of periodic oscillatp43] and
element in the chain. Thus, the condition for the existencehains of chaotic phase coherentsRler oscillator§7], mu-
of a fixed point in theN-element chain is given by the tual global synchronization in chains of coupled CMs can
inequality appear or vanish in two ways: soft and hard. The soft tran-
sition, i.e., transition without cluster formation, is character-
ized through a smooth locking of the rotation numbers and
can be observed in the chains with very small frequency
mismatch. But for the hard transitigirig. 10@)], transition
This condition of global synchronization in systéif coin-  through clusters, the appearance or disappearance of global
cides with the results of our numerical experiments. Then theynchronization is accompanied by the existence of cluster
rotation numbers for all elements are equal to the rotatiorsynchronization. This hard transition happens in long chains
number of the middle elemepl,,. However, with increas- with relatively large frequency mismatch. As shown before,
ing of the frequency mismatchb a loss of global synchro- the loss of global synchronization leads to the appearance of

— Ab
sin 0n=%(Nn—n2). (20

<1, (21)

Ab N 5
%( n—n<)

(22

AbN? _
2d
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i 1 FIG. 11. Critical value of cou-
0.5 . y . h ;

. s 1 pling d™ corresponding to the
504 o—ob-=10 ] transition to global synchroniza-
03 [ e—=12 ] tion vs ¢ for different valuesb,
02 1'2 ] and fixed N=20 and frequency

01 | ' — mismatchAb=0.01.
00 [ n 1 2 1 2 1 2 1 L 1 " 1 " 1 " 1 2 & " M 1 " 1 2 i
00 01 02 03 04 05 06 07 08 09 10 14 12 13 14

c

two clusters of elements that rotate at the same rotation nunthe absence of coupling, some neighboring elements can
ber. With further increase of the frequency mismatch the aphave the same rotation numbers, i.e., they belong to one
pearance of new clusters is possible. The values of rotatioimterval of equal rotation numbef§ig. 1). Thus clusters of
number for each clustdexcept the edge oneare close to  synchronization can exist without coupling. If the difference
those obtained by averaging the individual rotation numberdetween rotation numbers of elements is small enough, then
over all the elements forming the cluster. For the soft transithe occurrence of global synchronization happens for smaller
tion after the loss of global synchronization most elements otoupling than in the case of weak noncoherence. There the
the chain(except, perhaps, the edge onestate with differ-  common rotation number coincides with the rotation number
ent rotation numbers. of the elements in the largest cluster. Usually this situation is
observed for intermediate values @fFor strong noncoher-
ence the rotation number difference can be very large. Then
in spite of the existence of synchronous clusters in an un-
coupled chain, global synchronization can be observed only

In this section we are going to elucidate how the increasg¢or stronger couplingFig. 11). Moreover, the transition to
of noncoherenced0) influences the synchronization in global synchronization in a chain of coupled regular CMs is
chains. Our first finding is that the noncoherence can destrosather complex in dependence oifFig. 11) that is in accor-
the clusters of synchronization that are excited at coheremtance with the two element caé€ig. 6).
rotations. As our numerical experiments show for the linear
distribution of individual frequenciel, even for very weak C. Chaotic phase synchronization
noncoherencec=0.0001), the transition to global synchro-
nization is usually soft, and only the transition from a two-
cluster structure to a one-cluster structure is hgFil.
10(b)]. The boundaries of clusters existing in the noncoher
ent case become first slightly smooth if the parameter-
creases[Fig. 10b)]. If the noncoherence increases (
~0.001), all clusters except the edge ones are complete
destroyed. Since there still exist a possibility of synchroniza
tion at relatively largec of uncoupled CMs, synchronization
cluster structures can appear with further increase of

For randomly distributed frequencies, synchronization
clusters are more stalEigs. 1Gc) and 1@d)]. Smallc does

B. Effect of nhoncoherence of rotation on the regular
synchronization

Phase synchronization in ensembles of locally coupled
chaotic elements was first studied in chains of weakly diffu-
sively coupled chaotic Rssler oscillatorg7]. Many phe-
nomena already observed in a population of periodic oscilla-
tors were found there too, especially to mention the existence

f several clusters of mutually synchronized elements and

lobal synchronization. The collective behavior in a chain of
coupled chaotic<0) CMs (7) exhibits similar properties.
We have explored such a chain with linear and random indi-
vidual frequency distributions. As in the case of regular non-
coherent rotations for linearly distributed frequencies, both

not practically change the number of clusters, the number O?Oft and har_d transitions to global synch_romzatlon are pb—
elements in the clusters and mean rotation numbers. Witﬁerved. But in the case of randomly distributed frequencies,

increase of noncoherence the transition to global synchronf?nly_a ha}rd transition is. possiblg. For allinear distribution .Of
zation through the appearance of clusters is still observedhe individual frequencies the rich spatiotemporal dynamics

Only the structure of intermediate clustered states can b f_the noncluste(smooth distribution of rotation numbers

. . . 12a)] and cluster synchronization structur¢big.
different[Fig. 10d)]. We have also observed nonlocal syn- 9. L4 N .
chronization[48,49], where an oscillator or a cluster of os- 12(b)] is illustrated in Fig. 13. In all plots the darker regions

cillators is synchronized not to a nearest oscillator or clustergnark higher values of the p_resented varlables._The tyvo left

of oscillators, but to a next-to-the-nearest-neighbor oscillatoPa"€ls show the quantity sif, so that the white stripes

or cluster. correspond to the phase3/2 and the black stripes to the
Two opposite effects are observed in the study of the inPhase~ /2. The right panel shows the quantity

fluence of the noncoherence on the global synchronization in WKk

the chain. As in the case of two-element systems, a rather sn=sin2(u>, (23)

small increase of noncoherence of rotations practically does 2

not change the size of the global synchronization region. But

with a further increase of noncoherence even in the case ofhich characterizes the instantaneous phase difference be-

016216-10
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FIG. 12. Hard(a) and soft(b) transitions to
global chaotic phase synchronization. Relative
rotation numberg,, /p, for different coupling co-
efficients d for linear distribution of individual
frequencies forb,;=0.6, frequency mismatch
Ab=0.002,c=—-0.002(a) andc=—0.4 (b).

0 10 20 30 40 50 0 10 20 30 40 50
n n

tween neighboring oscillators. We have then that 0 if the  These defects are clearly seen as maxihiack regiong of
phases are equal argl=1 if they differ by . The spa- s,. They can follow regularly in time at certain positions on
tiotemporal behavior of the boundaries between clusters cothe chain; this case corresponds to the existence of strong
responds to the positions where phase slips or defects occijumps between clustef&ig. 13c)]. If cluster structures do

(a) (b)

=== 4000

~
(¢]
~

(d)

3200

FIG. 13. Space-time plots of evolution of
(a),(b) sin(&) and's, [Eq. (23] (c),(d) by hard
(a),(c) and soft(b),(d) transitions to global cha-

2400

otic phase synchronization for a linear distribu-
tion of individual frequencies. The parameters are
N=50, b;=0.6, frequency mismatchAb
=0.002, couplingdl=0.39 andc= —0.002(a),(c)
andc=—0.4 (b),(d).

1600

800

}l‘l‘l(l"(l‘l‘l‘

—

501 50

=]

n
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not exist or the borders between clusters are smooth, then We have found a chaotic synchronization: In systems of
defects appear irregularly in both space and tifRég.  coupled nonidentical circle maps a phase entrainment occurs
13(d)]. not through bifurcations, but through interior crises of a hy-
We have explored synchronization properties in a chain operchaotic set.
50 chaotic CMs with a linear distribution of individual fre- In the case of chains of coupled CMs, typical features of
guenciesb, [Eqg. (15)] for b;=0.6, different values of fre- the onset and existence of gloljall-to-all) and clusterpar-
qguency mismatciAb and different values of. For all per- tial) synchronization have been explored. We have found two
formed simulations the following has been observed: Withscenarios of transition to global synchronization. First, a
an increase of the parameterc the critical value of cou- gradual adjustment of the rotation numbers is observed,
pling d* that corresponds to the transition to global synchro-while second, the transition occurs through the appearance of
nization first slightly increases and then can decrease argynchronized clusters.
increase again, and finally increases. After some critical Our study supports the idea that phase synchronization is

value —c* a synchronization is impossible. a general phenomenon of coupled chaotic systems that de-
pends on phase-coherent properties of motions.
VI. CONCLUSIONS These findings in chains of coupled maps should be a

subject of further experimental studies, especially to mention
We have observed a rich variety of phenomena in theyre the study of soft and hard transitions in chains of coupled
formation of regular and chaotic phase synchronization irchemical oscillator§50] or in coupled laser§51] and the
systems of coupled nonidentical circle maps. Two-elemenétudy to check whether there are also transitions to phase
systems and chains of coupled elements have been examynchronization via interior crises.
ined. The main attention has been focused on the StUdy of the Our result that Synchronization can be destroyed through
influence of the power of the coherence of phase evolutionfycreasing coupling strength is of special importance for the

on the synchronization processes. In order to characterize thfesign of DPLL in order to realize stable synchronization in
phase evolution, we have analyzed three parameigrtie  engineering applications.

rotation numbep, (ii) the varianceD of the phase evolution,

and (iii ) the parametey that defines the relative duration of

the intervals of phase increase and phase decrease. We have
shown thatD, y, andAp are crucial for the synchronization We thank A. Pikovsky, M. Rosenblum, and M. Zaks for
of chaotic CMs, whereas in the case of regular CMs dhly many useful discussions. G.O. acknowledges financial sup-
andAp are important. It has been demonstrated that with afport as Visiting Professor in Cognitive Science at the Pots-
increase of the coherence parameter in the regular and chdam University and Russian Foundation for Basic Research
otic regime, regions of maifil:1) synchronization are usu- (projects 99-02-17742 and 00-15-96582K. acknowledges
ally decreased. support from SFB 555 and EC RTN 158.
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