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Recurrence-plot-based measures of complexity and their application to heart-rate-variability data
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The knowledge of transitions between regular, laminar or chaotic behaviors is essential to understand the
underlying mechanisms behind complex systems. While several linear approaches are often insufficient to
describe such processes, there are several nonlinear methods that, however, require rather long time observa-
tions. To overcome these difficulties, we propose measures of complexity based on vertical structures in
recurrence plots and apply them to the logistic map as well as to heart-rate-variability data. For the logistic map
these measures enable us not only to detect transitions between chaotic and periodic states, but also to identify
laminar states, i.e., chaos-chaos transitions. The traditional recurrence quantification analysis fails to detect the
latter transitions. Applying our measures to the heart-rate-variability data, we are able to detect and quantify the
laminar phases before a life-threatening cardiac arrhythmia occurs thereby facilitating a prediction of such an
event. Our findings could be of importance for the therapy of malignant cardiac arrhythmias.
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I. INTRODUCTION

Numerous scientific disciplines, such as astrophysics,
ology or geosciences, use data analysis techniques to g
insight into the complex processes observed in nature@1–3#,
which show generally a nonstationary and complex behav
As these complex systems are characterized by diffe
transitions between regular, laminar, and chaotic behavi
the knowledge of these transitions is necessary for un
standing the process. However, observational data of th
systems are typically rather short. Linear approaches of t
series analysis are often not sufficient@4,5# and most of the
nonlinear techniques~cf. @6,7#!, such as fractal dimensions o
Lyapunov exponents@7–10#, suffer from the curse of dimen
sionality and require rather long data series. The uncrit
application of these methods, especially to natural data,
therefore be very dangerous and it often leads to ser
pitfalls.

To overcome these difficulties other measures of co
plexity have been proposed, such as the Renyi entropies
effective measure complexity, the« complexity or the renor-
malized entropy@11,12#. They are mostly based on symbol
dynamics and are efficient quantities for characterizing m
surements of natural systems, such as in cardiology@13–15#,
cognitive psychology@16# or astrophysics@17–19#. In this
paper we focus on another type of measure of complex
which is based on the method of recurrence plots~RP’s!.
This approach has been introduced for the analysis of n
stationary and rather short data series@20–22#. Moreover, a
quantitative analysis of recurrence plots has been propo
to detect typical transitions~e.g., bifurcation points! occur-
ring in complex systems@23–25#. However, the quantities
introduced so far are not able to detect more complex tr
sitions, especially chaos-chaos transitions, which are
typical in nonlinear dynamical systems. Therefore in this
per we introduce measures of complexity based on re
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rence plots, which allow us to identify laminar states a
their transitions to regular as well as other chaotic regime
complex systems. These measures make the investigatio
intermittency of processes possible, even if they are o
represented by short and nonstationary data series.

The paper is organized as follows. After a short review
the technique of recurrence plots and some measures
introduce other measures of complexity based on recurre
plots. After that we apply this approach to the logistic equ
tion and demonstrate the ability to detect chaos-chaos t
sitions. Finally, we apply this technique to heart-ra
variability data@26#. We demonstrate that by applying ou
proposed methods we are able to detect laminar phases
fore the onset of a life-threatening cardiac arrhythmia.

II. RECURRENCE PLOTS AND THEIR QUANTIFICATION

The method of RP was first introduced to visualize t
time dependent behavior of the dynamics of systems, wh
can be pictured as a trajectoryxW iPR n ( i 51, . . . ,N) in the
n-dimensional phase space@21#. It represents the recurrenc
of the phase space trajectory to a certain state, which
fundamental property of deterministic dynamical syste
@27,28#. The main step of this visualization is the calculatio
of the N3N matrix,

Ri , jªQ~« i2ixW i2xW j i !, i , j 51, . . . ,N, ~1!

where« i is a cutoff distance,i•i is a norm~e.g., the Euclid-
ean norm!, and Q(x) is the Heaviside function. The phas
space vectors for one-dimensional time seriesui from obser-
vations can be reconstructed by using the Taken’s time d
method,xW i5(ui ,ui 1t , . . . ,ui 1(m21)t) @7#. The dimensionm
can be estimated with the method of false nearest neigh
~theoretically,m52n11) @7,27#. The cutoff distance« i de-
fines a sphere centered atxW i . If xW j falls within this sphere, the
state will be close toxW i and thusRi , j51. These« i can be
either constant for allxW i @22# or they can vary in such a wa
©2002 The American Physical Society02-1
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that the sphere contains a predefined number of close s
@21#. In this paper a fixed« i and the Euclidean norm ar
used, resulting in a symmetric RP. The binary values inRi , j
can be simply visualized by a matrix plot with the colo
black ~1! and white~0!.

The recurrence plot exhibits characteristic large-scale
small-scale patterns that are caused by typical dynamica
havior @21,24#, e.g., diagonals~similar local evolution of dif-
ferent parts of the trajectory! or horizontal and vertical black
lines ~state does not change for some time!.

Zbilut and Webber have recently developed the recurre
quantification analysis~RQA! to quantify an RP@23–25#.
They define measures using the recurrence point density
the diagonal structures in the recurrence plot, therecurrence
rate, thedeterminism, themaximal length of diagonal struc
tures, the entropy, and thetrend. A computation of these
measures in small windows moving along the main diago
of the RP yields the time dependent behavior of these v
ables and, thus, makes the identification of transitions in
time series possible@23#.

The RQA measures are mostly based on the distribu
of the length of the diagonal structures in the RP. Additio
information about further geometrical structures such as
tical and horizontal elements are not included. Gao has th
fore recently introduced a recurrence time statistics that
responds to vertical structures in an RP@29,30#. In the
following, we extend this view on the vertical structures a
define measures of complexity based on the distribution
the vertical line length. Since we are using symmetric R
here, we will only consider the vertical structures.

III. MEASURES OF COMPLEXITY

We consider a pointxW i of the trajectory and the se
of its associated recurrence pointsSiª$xW k :Ri ,k

!

51;
kP@1, . . . ,N21#%. Denote a subset of these r
currence points siª $xW lPSi :(Ri ,l•Ri ,l 11) 1 (Ri ,l•Ri ,l 21)
.0; l P@1, . . . ,N#, Ri ,05Ri ,N11ª0%, which contains the
recurrence points forming the vertical structures in the RP
column i. In continuous time systems with high time resol
tion and with a not too small threshold«, a large part of this
setsi usually corresponds to the sojourn points described
Refs.@29,30#. Although sojourn points do not occur in map
the subsetsi is not necessarily empty. Next, we determine t
length v of all connected subsets$xW j¹si ;xW j 11 , . . . ,xW j 1v

Psi ;xW j 1v11¹si% in si . Pi(v)5$v l ; l 51,2, . . . ,L% denotes
the set of all occurring subset lengths insi and from
ø i 51

N Pi(v) we determine the distribution of the vertical lin
lengthsP(v) in the entire RP.

Analogous to the definition of the determinism@24,31#,
we compute the ratio between the recurrence points form
the vertical structures and the entire set of recurrence po

Lª

(
v5vmin

N

vP~v !

(
v51

N

vP~v !

, ~2!
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and call itlaminarity L. The computation ofL is realized for
v that exceeds a minimal lengthvmin . For maps we use
vmin52. L is the measure of the amount of vertical stru
tures in the whole RP and represents the occurrence of la
nar states in the system, without, however, describing
length of these laminar phases. It will decrease if the
consists of more single recurrence points than vertical st
tures,

Tª

(
v5vmin

N

vP~v !

(
v5vmin

N

P~v !

, ~3!

and call it astrapping time T. The computation also uses th
minimal lengthvmin as inL. The measureT contains infor-
mation about the amount and the length of the vertical str
tures in the RP.

Finally, we use the maximal length of the vertical stru
tures in the RP,

Vmax5max~$v l ; l 51,2, . . . ,L%!, ~4!

as a measure that is the analogue to the standard RQA
sureLmax @24#.

Although the distribution of the diagonal line lengths al
contains information about the vertical line lengths, the t
distributions are significantly different. In order to compa
the measures proposed with the standard RQA measures
apply them to the logistic map.

IV. APPLICATION TO THE LOGISTIC MAP

In order to investigate the potentials ofL, T, andVmax,
we first analyze the logistic map

xn115axn~12xn!, ~5!

especially the interesting range of the control parametea
P@3.5,4# with a step width ofDa50.0005. Starting with the
idea of Trullaet al. @23# to look for vertical structures, we ar
especially interested in finding the laminar states in cha
chaos transitions. Therefore we generate for each contro
rametera a separate time series. In the analyzed range oa
P@3.5,4# various regimes and transitions between them
cur, e.g., accumulation points, periodic, and chaotic sta
band merging points, period doublings, and inner and ou
crises@27,32,33#.

A useful tool for studying the chaotic behavior is the r
cursively formedsupertrack functions

si 11~a!5asi~a!@12si~a!#, s0~a!5
1

2
, ~6!

which represent the functional dependence of stable st
@33#. The intersection ofsi(a) with si 1 j (a) indicates the
occurrence of aj-period cycle and the intersection ofsi(a)
with the fixed point (121/a) of Eq. ~5! indicates the point of
an unstable singularity, i.e., laminar behavior~Fig. 1, inter-
2-2
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section points are marked with dotted lines!. For eacha we
compute a time series of the lengthN52000. In order to
exclude transient responses we use the last 1000 value
these data series in the following analysis.

We compute the RP after embedding the time series w
a dimension ofm51, a delay oft51, and a cutoff distance
of «50.1 ~in units of the standard deviations). Since the
considered example is a one-dimensional map,m51 is suf-
ficient. In general, a too small embedding leads to false
currences, that are expressed in numerous vertical struc
and diagonals from the upper left corner to the lower rig
corner@30#. In contrast, an overembedding should theore
cally not distort the reconstructed phase trajectory. Wher
false recurrences and overembedding do not strongly in
ence the measures based on diagonal structures@30#, the
measures based on vertical structures are, in general, m
more sensitive to the embedding. This is due to the fact
the embedding method causes higher-order correlation
the phase-space trajectory, which will be of course visible
the RP. A theoretical and more detailed explanation of t
effect within the analysis of RPs is in preparation and beyo
the scope of this paper. For the logistic map, however,
increasing ofm slightly amplifies the peaks of the vertica
based complexity measures~up to m53), but it does not
change the result significantly. The cutoff distance« is se-
lected to be 10% of the diameter of the reconstructed ph
space. Smaller values would lead to a better distinction

FIG. 1. ~a! Bifurcation diagram of the logistic map.~b! Low
ordered supertrack functionssi(a)( i 51, . . .,10) and the fixed
point of the logistic map 121/a ~dashed!. Their intersections rep-
resent periodic windows, band merging, and laminar states.
vertical dotted lines show a choosing of points of band merging
laminar behavior (a53.678, 3.727, 3.752, 3.791, 3.877, 3.927!.
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small variations~e.g., the range before the accumulati
point consists of small variations!. However, the recurrence
point density decreases in the same way and thus the s
tics of continuous structures in the RP soon becomes in
ficient. Larger values cause a higher recurrence point den
but a lower sensitivity to small variations.

A. Recurrence plots of the logistic map

For various values of the control parametera we obtain
RPs that already exhibit specific features~Fig. 2!. Periodic
states ~e.g., in the periodic window of length 3 ata
53.830) cause continuous and periodic diagonal lines in
RP of width of 1. There are no vertical or horizontal line
@Fig. 2~a!#. Band merging points and other cross points
supertrack functions@e.g., a53.720, Fig. 2~c!# represent
states with short laminar behavior and cause vertically
horizontally spread black areas in the RP. The band merg
at a53.679 causes frequent laminar states and therefore
of vertically and horizontally spread black areas in the
@Fig. 2~b!#. Fully developed chaotic states (a54) cause a
rather homogeneous RP with numerous single points
rare short diagonal or vertical lines@Fig. 2~d!#.

B. Complexity measures of the logistic map

Now we compute the known RQA measuresD, Lmax,
and in addition^L& ~average length of diagonal lines! and
our measuresL, Vmax, and T for the entire RP of each
control parametera. As expected, the known RQA measur
D, Lmax, and^L& clearly detect the transitions from chaot
to periodic sequences and vice versa@Figs. 3~a!, 3~c!, and
3~e!# @23#. However, it seems that one cannot get more
formation than the periodic-chaotic/ chaotic-periodic tran
tions. Near the supertrack crossing points~band merging
points included!, e.g.,a53.678, 3.791, 3.927, there are n
significant indications in these RQA measures. They clea
identify the bifurcation points ~periodic-chaotic/chaotic-
periodic transitions!, without, however, finding the chaos
chaos transitions and the laminar states.

Calculating the vertical based measuresL andT, we are
able to find the periodic-chaotic/ chaotic-periodic transitio
and the laminar states@Figs. 3~b! and 3~f!#. The occurrence
of vertical lines starts shortly before the band merging fro
two to one band ata53.678 . . . .

For smallera values the consecutive points jump betwe
the two bands and it is therefore impossible to obtain a la
nar behavior. A longer persistence of states is not poss
until all bands are merged. However, due to the finite ran
of neighborhood searching in the phase space, vertical l
occur before this point.

Vertical lines occur much more frequently at supertra
crossing points~band merging points included! than in other
chaotic regimes, which is revealed byL @cf. Fig. 3~b!, again,
supertrack crossing points are marked with dotted lines#. As
in the states before the merging from two to one band, v
tical lines are not found within periodic windows, e.g.,a
53.848. The mean of the distribution ofv is the introduced
measureT @Fig. 3~f!#. It will vanish if a is smaller than the
point of merging from two to one band.T increases at those

e
d

2-3
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FIG. 2. Recurrence plots~RPs! of the logistic map for various control parametersa, near different qualitative changes: 3-period windo
a53.830 ~a!; band merginga53.679 ~b!; supertrack intersectiona53.720 ~c!; and chaos~exterior crisis! a54 ~d!, with embedding
dimensionm51, time delayt51, and distance cutoff«50.1s.
026702-4
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RECURRENCE-PLOT-BASED MEASURES OF . . . PHYSICAL REVIEW E 66, 026702 ~2002!
FIG. 3. Selected RQA parametersD, Lmax, and^L& and the measuresL, Vmax, andT. The vertical dotted lines show some of the poin
of band merging and laminar behavior~cf. Fig. 1!, whereby not all of them have been marked. WhereasD ~a!, Lmax ~c!, and^L& ~e! show
periodic-chaotic/ chaotic-periodic transitions~maxima!, L ~b!, Vmax ~d!, andT ~f! exhibit in addition to those transitions~minima! chaotic-
chaotic transitions~maxima!. The differences betweenL andVmax are caused by the fact thatL measures only the amount of laminar state
whereasVmax measures the maximal duration of the laminar states. Although some peaks ofVmax andT are not at the dotted lines, the
correspond to laminar states~not all can be marked!.
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points where more low ordered supertrack functions
crossing@Fig. 3~f!#. This corresponds to the occurrence
laminar states. AlthoughVmax also reveals laminar states,
is quite different from the other two measures, becaus
gives the maximum of all of the durations of the lamin
states. However, periodic states are also associated with
ishing T and Vmax. Hence, the vertical length based me
sures yield periodic-chaotic/chaotic-periodic as well
chaos-chaos transitions~laminar states!.

We have also computedL, Vmax, andT for the logistic
map with transients using the same approach as describ
@23#. The qualitative statement of the measures is the sam
above.

V. APPLICATION TO HEART-RATE-VARIABILITY DATA

Heart-rate variability~HRV! typically shows a complex
behavior and it is difficult to identify disease specific patte
@34#. A fundamental challenge in cardiology is to find ear
02670
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signs of ventricular tachyarrhythmias~VT! in patients with
an implanted cardioverter-defibrillator~ICD! based on HRV
data @26,35–37#. Therefore standard HRV parameters fro
time and frequency domains@38#, parameters from symbolic
dynamics@13,14# as well as the finite-time growth rates@39#
were applied to the data of a clinical pilot study@26#. Using
two nonlinear approaches, we have recently found signific
differences between control and VT time series based ma
on laminar phases in the data before a VT. Therefore the
of this investigation is to test whether our RP approach
suitable to identify and quantify these laminar phases.

The defibrillators used in the study cited~PCD 7220/
7221, Medtronic! are able to store at least 1000 beat-to-b
intervals prior to the onset of VT~10-ms resolution!, corre-
sponding to approximately 9–15 min. We reanalyze th
intervals from 17 chronic heart failure ICD patients just b
fore the onset of a VT and at a control time, i.e., withou
following arrhythmic event. Time series including more th
2-5
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one nonsustained VT, with induced VTs, pacemaker acti
or more than 10% of ventricular premature beats are
considered in this analysis. Some patients had several
we finally had 24 time series with a subsequent VT and
respective 24 control series without a life-threatening
rhythmia. In order to analyze only the dynamics occurri

TABLE I. Results of maximal diagonal and vertical line leng
shortly before VT and at control time, and nonparametric Ma
Whitney U-test:p represents significance; * is forp,0.05; ** for
p,0.01; ns for not significant,p>0.05.

m « VT Control p

Maximal diagonal line lengthLmax

3 77 396.66253.8 261.56156.6 ns
6 110 447.66269.1 285.56160.4 *
9 150 504.66265.9 311.66157.2 *
12 170 520.76268.8 324.76180.2 *

Maximal vertical line lengthVmax

3 77 261.46193.5 169.26135.9 *
6 110 283.76190.4 179.56134.1 **
9 150 342.46193.6 216.16137.1 **
12 170 353.56221.4 215.16138.6 **
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just before a VT, the beat-to-beat intervals of the VT itself
the end of the time series are removed from the tachogra

We calculate all standard RQA parameters described
Ref. @24# as well as the measures laminarityL, trapping time
T, and maximal vertical line lengthVmax ~similar to the
maximal diagonal line lengthLmax) for different embedding
dimensionsm and nearest neighboring radii«. We find dif-
ferences between both groups of data for several of the
rameters mentioned above. However, the most significant
rameters areVmax and Lmax for rather large radii~Table I!.
The vertical line lengthVmax is more powerful in discrimi-
nating both groups than the diagonal line lengthLmax, as can
be recognized by the higherp values for Vmax ~Table I!.
Figure 4 gives a typical example of the recurrence plots
fore a VT and at a control time with an embedding of 6 a
a radius of 110. The RP before a life-threatening arrhythm
is characterized by large black rectangles (Vmax5242 here!,
whereas the RP from the control series shows only sm
rectangles (Vmax5117).

VI. SUMMARY

We have introduced three more RPs based measure
complexity, the laminarityL, the trapping timeT, and the
maximal length of vertical structures in the RP,Vmax. These

-

trol series

FIG. 4. Recurrence plots of the heart beat interval time series at a control time~a! and before a VT~b! with an embedding of 6 and a

radius of 110. The RP before a life-threatening arrhythmia is characterized by big black rectangles, whereas the RP from the con
shows only small rectangles.
2-6
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RECURRENCE-PLOT-BASED MEASURES OF . . . PHYSICAL REVIEW E 66, 026702 ~2002!
measures of complexity have been applied to the logi
map and heart-rate-variability data. In contrast to the kno
RQA measures@23,25#, that are able to detect transition
between chaotic and periodic states~and vice versa!, our
measures enable us to identify laminar states too, i.e., ch
chaos transitions. These measures are provided by the v
cal lines in recurrence plots. The occurrence of vertical~and
horizontal! structures is directly related to the occurrence
laminar states.

The laminarityL enables us generally to detect lamin
states in a dynamical system. The trapping timeT contains
information about the frequency of the laminar states a
their lengths. The maximal lengthVmax reveals information
about the time duration of the laminar states thus making
investigation of intermittency possible.

If the embedding of the data is too small, it will lead
false recurrences, which is expressed in numerous ver
structures and diagonals perpendicular to the main diago
Whereas false recurrences do not influence the meas
based on diagonal structures, the measures based on ve
structures are sensitive to it.

The application of these measures to the logistic equa
for a range of various control parameters has revealed po
of laminar states without any additional knowledge about
characteristic parameters or dynamical behavior of the s
cific systems. Nevertheless,L, Vmax, andT are different in
their magnitudes. Further investigations are necessary to
derstand all relations between the magnitudes ofVmax and
the recognized chaos-chaos transitions.

The application of these complexity measures to the I
d
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stored heart-rate data before the onset of a life-threate
arrhythmia seems to be very successful for the detection
laminar phases thus making a prediction of such VT p
sible. The differences between the VT and the control se
are more significant than in Ref.@26#. However, two limita-
tions of this study are the relatively small number of tim
series and the reduced statistical analysis~no subdivisions
concerning age, sex, and heart disease!. For this reason, our
results should to be validated on a larger database. Fur
more, this investigation could be enhanced for tachogra
including more than 10% ventricular premature beats.
conclusion, this study has demonstrated that the RQA ba
complexity measures could play an important role in the p
diction of VT events even in short term HRV time series.

Many biological data contain epochs of laminar stat
which can be detected and quantified by the RP based m
sures. We have demonstrated differences between the
sures based on the vertical and the diagonal structures
therefore we suggest the use of the method proposed in
paper in addition to the traditional measures.

A download of the Matlab implementation is available
www.agnld.uni-potsdam.de/˜ marwan
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