Consistently weighted measures for complex network topologies

Jobst Heitzig, J.F. Donges, Y. Zou, N. Marwan, J. Kurths Potsdam Institute for Climate Impact Research Transdisciplinary Concepts and Methods

Motivation: Climate Networks

Nodes represent grid cells, cell size varies ≈ cos(latitude)

Network measures are based on counting (nodes, links, paths...)

Motivation: Climate Networks

Nodes represent grid cells, cell size varies ≈ cos(latitude)

Network measures are based on counting (nodes, links, paths...)

Polar regions are over-represented

Results can get biased or show artificial features

Motivation: Climate Networks

Nodes represent grid cells, cell size varies ≈ cos(latitude)

Network measures are based on counting (nodes, links, paths...)

Polar regions are over-represented

Results can get biased or show artificial features

Natural idea: Use weights

Cell size → Node weight

Natural idea: Use weights

Cell size → Node weight

Almost no network measures use *node* weights already

Existing measures using link weights don't help

Natural idea: Use weights

Cell size → Node weight

Almost no network measures use *node* weights already

Existing measures using link weights don't help

Find node-weighted versions of measures (degree, clustering coeff., betweenness, spectrum, ...)

Simple example: The "degree" measure

Nodes v_i , ... node weights w_v , w_i , ...

Degree: $k_v = \text{no. nodes linked to } v$

Area-weighted connectivity: $k'_{v} = \text{sum of } w_{i}$ for all i linked to v(Tsonis et al. 2006)

Simple example: The "degree" measure

Nodes v_i , i_i , ... node weights w_v , w_i , ...

Degree:

 k_{v} = no. nodes linked to v

Area-weighted connectivity: $k'_{v} = \text{sum of } w_{i}$ for all i linked to v(Tsonis et al. 2006)

Better version of weighted degree:

$$k^*_{v} = k'_{v} + w_{v}$$

Why *k** and not *k*′? And what about more complex measures?

Goal: Find the right way of using the node weights w_i in some given measure f

(degree, clustering coeff., betweenness, spectrum, ...)

Idea: Consider what happens to *f* when the grid is refined!

Why *k** and not *k*′? And what about more complex measures?

Goal: Find the right way of using the node weights w_i in some given measure f

(degree, clustering coeff., betweenness, spectrum, ...)

Idea: Consider what happens to *f* when the grid is refined!

Example:
Under typical refinements,
f should get more realistic →

Redundant refinements / General guideline

Under "redundant" refinements → f should *not* change

Redundant refinements / Guiding notion

Under "redundant" refinements → <u>f should not change</u>

This vague requirement helps to find the weighted formula f^* for a given measure f!

Redundant refinements / Guiding notion

Under *redundant* refinements, → *f* should *not* change

This vague requirement helps to find the weighted formula f^* for a given measure f!

Guiding notion: Call f*
"node splitting invariant"
if it doesn't change under
this kind of node splitting:

Jobst Heitzig

2nd Example: Clustering coefficient

Measures how closely linked the neighbours of v are.

Usual formula:

 C_v = rate of links between neighbours of v

 $= \Sigma_i \overline{\Sigma_j a_{vi} a_{ij} a_{jv} / k_v (k_v - 1)}$

Node splitting invariant formula:

 $C_{v}^{*} = \Sigma_{i} \Sigma_{j} a_{vi}^{\prime} w_{i} a_{ij}^{\prime} w_{j} a_{jv}^{\prime} / k_{v}^{*} k_{v}^{*}$

= link density in the region linked to v

In this, $a_{ij} = 1$ means i and j are linked, and $a'_{ij} = 1$ means i and j are linked or equal

Useful techniques for formula construction

Consider each node a neighbour of itself (e.g. replace a_{ij} with a'_{ij})

Replace edge counts by sums of weight products

Replace node counts by sums of weights

Plug in weighted instead of unweighted measures (k*, instead of k, in this case)

Verify the result is indeed node splitting invariant!

Effect in climate networks

Clustering coefficient averaged by latitude

latitude south

north

(dark is high)

Final example: Newman's random walk betweenness

Measures "importance" of nodes based on Kirchhoff's equations

Unweighted and weighted versions highlight slightly different features

References

J. Heitzig, J.F. Donges, Y. Zou, N. Marwan, J. Kurths (2010), Consistently weighted measures for complex network topologies, under review.

A.A. Tsonis, K.L. Swanson, P. Roebber (2006), Bull. Am. Meteorol. Soc. 87, 585.

Contact

Jobst Heitzig heitzig@pik-potsdam.de www.pik-potsdam.de/ members/heitzig

