Typed Data Transfer (TDT) User’s Guide

Ciaron Linstead <linstead@pik-potsdam.de>

28th July 2004

Revision History:
04/03/2002 CL - First version.

12/09,/2003 CL - Second version, extensive revision

1 Introduction

The Typed Data Transfer (TDT) Library provides a simple, consistent interface
for the transmission of data between programs in a platform- and language-
independent way. It moves the complexities of handling data types and data
sources into a self-contained library of functions.

The purpose of this document is to explain the use of the TDT function library
when writing programs in C or Fortran. Some example programs are included
and will be explained.

The TDT functions are written in C, and are provided with Fortran interface
functions for using the library in Fortran programs. Opening and closing of
sockets and files are handled by TDT functions, and data is written or read by
means of a call to the appropriate TDT function.

Apart from adding function calls the code, a programmer must also provide an
XML (eXtensible Markup Language) description of the data to be transferred
and a configuration file for each program, also in XML. Each data structure
being transferred needs its own XML description, each of which may be in
separate XML files, or in just one.

2 Using the TDT in C

2.1 Prerequisites
2.1.1 "#include"s

To include the TDT library, simply



#include "tdt.h"

2.1.2 Declarations
It is necessary to declare a variable of type TDTState. This variable serves as

a unique identifier for each data item being transferred, by bundling an XML
description and a descriptor for the communication channel.

A variable of type TDTConfig is also required. This is used to refer to the data
which will be read from a configuration file.

Examples:

TDTState ts;
TDTConfig tc;

2.2 User functions
2.2.1 tdt_configure()

Purpose
Read and parse the specified configuration file.

Input parameter

String config_filename /* the name of the configuration file */
/* to be parsed */

Output parameter

TDTConfig tc /* a parsed copy of the configuration file */
Example:

tc = tdt_configure (‘‘config.xml”’);



2.2.2 tdt_open()

Purpose
tdt_open() opens the communication channel specified by the connection name

Input parameters

TDTState ts /* the TDTState variable */
TDTConfig tc /* the TDTConfig variable */
String connection_name /* the name of the connection to open */

Output parameter
TDTState ts /* a completed TDTState variable */
Example:

ts = tdt_open (ts, tc, "client_to_server");

2.2.3 tdt_read()

Purpose

To read the data specified by the given XML identifier, from the connection
given in the TDTState parameter.

Input parameters

void *value /* the location at which to store the incoming data */
String name /* the name of the data to be read, */

/* as it appears in the XML description */
TDTState ts /* The identifier for this data transfer */

Output parameters
None.

Example

tdt_read (&astruct, "astruct", ts);



2.2.4 tdt_write()

Purpose

To write data to the connection given by the TDTState parameter as per the
XML identifer string (parameter "name").

Input parameters

void *value /* pointer to the data being written */

String name /* the name of the data to be written, */
/* as it appears in the XML description */

TDTState ts /* The identifier for this data transfer */

Output parameters
None.

Example

tdt_write (&astruct, "astruct", ts);

2.2.5 tdt_close()

Purpose
Closes the connection or open files and frees TDT-allocated memory.

Input parameters

TDTState ts /*The identifier of the connection to be closed */

Output parameters
None.

Example

tdt_close(ts);

2.2.6 tdt_end()

Purpose
Frees memory allocated by the TDT for the configuration information.

Input parameters



TDTConfig tc /* The identifier of the */
/* configuration data */

Output parameters
None.

Example

tdt_close(tc);

2.3 Compiling and linking

2.3.1 Compiling the library

The TDT can be compiled as a library, 1ibtdt.a. This must be in the library
path of the development environment, or a directory specified by the -L flag

in gce. A makefile is included with the source files. Running 'make 1ib’ from
within the tdt source directory will rebuild the TDT library.

2.3.2 Linking with your own programs

First build the library 1ibtdt.a as explained above.

Compile your application...
gcc -c¢ -I<location of tdt.h> -Wall <program>.c

. and link:

gcc <program>.o -L<location of TDT library> -1ltdt -lexpat -o<program>

where <program>.o is the output from the compilation of <program>.c

This assumes that the Expat XML parser library is available system-wide on
your machine. If it is not, and you want to use the Expat library supplied with
the TDT, use the following link command:

gcc <program>.o -L<location of TDT library> /
-1tdt -L<location of Expat library> -lexpat -o<program>



3 Using the TDT in Fortran

3.1 Prerequisites
3.1.1 Declarations
The following declarations are needed:

INTEGER tdtstate
INTEGER tdtconfig

3.2 User functions

3.2.1 tdt_fconfigure()

Purpose
Read and parse the specified configuration file.

Input parameter

C the name of the configuration file
configfilename

Output parameter

C a parsed copy of the configuration information
tdtconf

Example

CALL tdt_fconfigure(tdtconf, ’config.xml’);

3.2.2 tdt_fopen()

Purpose
tdt_open() opens the communication channel specified by the connection name.

Input parameters

C a TDTState variable
tdtstate

C a TDTConfig variable
tdtconf

C the connection name
connection



Output parameter

C a completed TDTState variable
tdtstate

Examples:

CALL tdt_fopen_socket (tdtstate, tdtconf, ’client_to_server’)

3.2.3 tdt_fwrite()

Purpose

To write data to the connection given by the TDTState parameter as per the
XML identifer string (parameter "name").

Input parameters

C The identifier for this data transfer

tdtstate

C the data being written

val

C a string containing the name of the data to be written,
C as it appears in the XML description

name

Output parameter
None.

Example

CALL tdt_fwrite (tdtstate, astruct, ’astruct’);

3.2.4 tdt_fread()

Purpose

To read data from the connection given by the TDTState parameter as per the
XML identifer string (parameter "name").

Input parameters



C The identifier for this data transfer
tdtstate
C the data being read
val
C a string containing the name of the data to be read,
C as it appears in the XML description
name
Output parameter
None.

Example

CALL tdt_fread (tdtstate, astruct, ’astruct?’);

3.2.5 tdt_fclose()

Purpose
Closes the connection or open files and frees TDT-allocated memory.
Input parameters
C The identifier of the connection to be closed
ts
Output parameter

None.

Example

CALL tdt_fclose(tdtstate);

3.2.6 tdt_ fend()

Purpose
Frees memory allocated by the TDT for the configuration information.
Input parameters
C The identifier of the stored configuration data
tc
Output parameter

None.

Example

CALL tdt_fend(tdtconf);



3.3 Compiling and linking

3.3.1 Compiling the library

The TDT can be compiled as a library, 1ibtdt.a. This must be in the library
path of the development environment, or a directory specified by the -L flag

in gcc. A makefile is included with the source files. Running 'make 1ib’ from
within the tdt source directory will rebuild the TDT library.

3.3.2 Linking with your own programs

First build the library 1ibtdt.a as explained above.

Compile your application...
x1f -c -Wall <program>.f
. and link:
x1f <program>.o -L../tdt -o <program> -1ltdt -lexpat

where <program>.o is the output from the compilation of <program>.f

This assumes that the Expat XML parser library is available system-wide on
your machine. If it is not, and you want to use the Expat library supplied with
the TDT, use the following link command:

x1f <program>.o -L<location of TDT library> /
-1tdt -L<location of Expat library> -lexpat

3.4 Error conditions

The user functions of the TDT will crash, returning with error code 1, if an
error occurs. It will also output a debugging message to stderr.

4 TDT Data descriptions in XML

This section will not explain XML syntax. For a short introduction to XML,
see here:

http://www.w3schools.com/xml/default.asp



4.1 <data desc> tags

This is the root element (or document element) required by XML.

Attributes : none.

4.2 <decl> tag

Each XML description of a model is made up of one or more variable declara-
tions, which are identified by <decl> tags.

Attributes : name="abcde" where abcde is one or more alphanumeric characters.

4.3 <struct> tag

The <struct> and </struct> tags surround one or more declarations, analo-
gous to a struct declaration in C.

Attributes : none.

4.4 <array> tag

The <array> and </array> tags surround a text element indicating the primi-
tive type, or a declaration if the array is made up of composite types.

Attributes : size="n" where n is an integer.

4.5 <addr> tag

The <addr> and </addr> tags surround declarations, indicating that this is a
pointer to a value, not the value itself.

Attributes : none.

4.6 Text elements

Text elements are the value which appear between start and end tags. For TDT
XML, text elements are used to indicate the primitive data type of a declaration
(<decl>) or an array (<array>).

The allowed values are "int", "double", "float", and "char".

10



4.7 Example

The following XML

<data_desc>
<decl name="astruct">
<struct>
<decl name="anarray">
<array size="2">int</array></decl>
<decl name="adouble">double</decl>
</struct>
</decl>
</data_desc>

represents the C declaration:

struct {
int anarray[2];
double adouble;
} astruct;

5 TDT Configuration files

The configuration files used by TDT are also written in XML.

5.1 <program> tag

The document-level tag for a configuration file is the <program> tag.

Attributes: name="’abcde’’, where ‘‘abcde’’ is an alphanumeric string.

5.2 <channel> tag

The <channel> tag specifies all the information required to establish a TDT
connection and send or receive the data in the correct format.

Attributes:

name : the name by which the channel will be referenced in the code.

mode : the mode of the channel, i.e. input or output ("in" | "out")

type : the type of the connection: "socket" | "file"

host : if type is "socket", the hostname to use

11



port : if type is "socket", the port to use
filename : if type is "file", the filename to read/write from/to

datadesc : the name of the datadesc XML which describes the data that will
pass on this channel

5.3 Example configuration file

<program name="clnt">
<channel name="clnt_to_serv"

mode="in"
host="localhost"
port="2222"

type="socket"
datadesc="example.xml">
</channel>
</program>

6 Sample applications

The sample applications are provided with Makefiles in order to compile and
link the programs.

6.1 C Examples

The sample C programs (testclnt.c and testserv.c in the tests subdirec-
tory of the TDT source directory) demonstrate writing data from a client ap-
plication (testclnt) to a server application (testserv). testclnt writes three
variables (a double, a struct containing an array of int and a double, and an
int) to testserv. In this case, only one TDTState (for one XML description
and one communication channel) is required.

Building the examples
Type "make all" from within the tdt/tests directory.

In tdt/tests this will create the programs "serv" and "clnt".

6.2 Fortran examples

The sample Fortran applications are two programs (progl.f and prog2.f in
the ftdt/tests subdirectory) which read and write data to/from each other.
progl writes a 2x5 matrix of INTEGERs for prog2 to read and reads a 5x2
matrix of doubles (REAL*8) which is written by prog2.

12



Two XML files are provided ("example.xml" and "example2.xml"). These
describe the two matrices. In these examples the XML files are expected to be
in the same directory as the programs reading them.

Two TDTState variables are used by each program (tdtstatel and tdtstate?2).
Each TDTState contains information about one matrix and the channel by which
that data will be transferred.

Building the examples
Type "make all" from within the ftdt/tests directory.

In ftdt/tests, the programs will be called "progi" and "prog2".

7 "make" parameters

The following parameters can be passed to make:
FF : specifies the name of the Fortran compiler (default is x1f).
EXPAT : specifies the location of the Expat libraries (default is ../../expat).

0S : specifies the operating system (Linux or AIX). This is used to select the
appropriate Expat library (default is Linux).

Example:
make FF=g77 EXPAT="/expat_1.95.2 0S=AIX all

"make clean" will remove old object (*.0) files and executable programs from
the tdt/tests and tdt directories (or ftdt/tests and ftdt).

8 Further information

If you need further information, have comments or requests for enhancements,
or you've found a bug, you can contact the authors:

Ciaron Linstead <linstead@pik-potsdam.de>
Cezar Ionescu <ionescu@pik-potsdam.de>

Dan Beli <beli@pik-potsdam.de>

13



