Typed Data Transfer (TDT) User’s Guide

Ciaron Linstead <linstead@pik-potsdam.de>

18th November 2004

Revision History:

04,/03/2002 CL - version 0.1

12/09/2003 CL - version 0.2, extensive revision

29/07/2004 CL - version 0.3, converted master document to ITEX from LyX
18/11,/2004 CL - version 0.4, minor mods to C section, added Python section

1 Introduction

The Typed Data Transfer (TDT) Library provides a simple, consistent interface
for the transmission of data between programs in a platform- and language-
independent way. It moves the complexities of handling data types and data
sources into a self-contained library of functions.

In this way, complex data types (i.e. data types composed of elements with
different data types, like a "struct" in C) can be passed between TDT-enabled
programs with a single function call.

The TDT library also takes care of byte swapping when transferring data be-
tween big-endian and little-endian architectures.

The speed of transferring blocks of homogenous data (like arrays) is practically
the same as with the non-TDT method.

The flexibility of the TDT approach means that modules can be coupled in var-
ious configurations and by various communications methods simply by altering
configuration files: no re-compilation of modules is necessary.

The TDT functions are written in C, and are provided with Fortran interface
functions for using the library in Fortran programs. Opening and closing of
sockets and files are handled by TDT functions, and data is written or read by
means of a call to the appropriate TDT function.

Apart from adding function calls the code, a programmer must also provide an
XML (eXtensible Markup Language) description of the data to be transferred
and a configuration file for each program, also in XML. Each data structure
being transferred needs its own XML description, each of which may be in
separate XML files, or in just one.

The purpose of this document is to explain the use of the TDT function library
when writing programs in C or Fortran. Some example programs are included
and will be explained.

2 Using the TDT in C

2.1 Prerequisites
2.1.1 "#include"s

To include the TDT library, simply

#include "tdt.h"

2.1.2 Declarations

It is necessary to declare a variable of type TDTState. This variable serves as
a unique identifier for each data item being transferred, by bundling an XML
description and a descriptor for the communication channel.

A variable of type TDTConfig is also required. This is used to refer to the data
which will be read from a configuration file.

Examples:

TDTState ts;
TDTConfig tc;

2.2 User functions
2.2.1 tdt_configure()

Purpose
Read and parse the specified configuration file.

Input parameter

String config filename /* the name of the config filex/
/* to be parsed */

Output parameter
TDTConfig tc /* a parsed copy of the configuration file */
Example:

tc = tdt_configure("config.xml");

2.2.2 tdt_open()

Purpose
tdt_open() opens the communication channel specified by the connection name

Input parameters

TDTConfig tc /* the TDTConfig variable */

String connection_name /* the connection to open */
Output parameter

TDTState ts /* a completed TDTState variable */
Example:

ts = tdt_open (tc, "client_to_server");

2.2.3 tdt_read()

Purpose

To read the data specified by the given XML identifier, from the connection
given in the TDTState parameter.

Input parameters

TDTState ts /* identifier for this data transfer */
void *value /* where to store the incoming data */
String name /* the name of the data to be read, */

/* as it appears in the datadesc */

Output parameters
None.

Example

tdt_read (ts, &astruct, "astruct");

2.2.4 tdt_write()

Purpose

To write data to the connection given by the TDTState parameter as per the
XML identifer string (parameter "name").

Input parameters

TDTState ts /* identifier for this data transfer */
void *value /* pointer to the data being written */
String name /* the name of the data to be written, */

/* as it appears in the datadesc */

Output parameters
None.

Example

tdt_write (ts, &astruct, "astruct");

2.2.5 tdt_size array()

Purpose

This function is used to redefine the size of an array given in a datadesc. If your
program uses dynamically sized arrays, you probably won’t know in advance
what size the array is when you create the datadesc XML. In this case, you can
set the array size to zero in the datadesc and adjust the size later.

Input parameters

TDTState ts /* identifier for this data transfer */
String name /* name of the array being resized */
int size /* the new size of the array */

Output parameters
None.

Example

tdt_size_array (ts, "dyn", new_int);

2.2.6 tdt_close()

Purpose
Closes the connection or open files and frees TDT-allocated memory.

Input parameters
TDTState ts /* The connection to be closed */

Output parameters
None.

Example

tdt_close (ts);

2.2.7 tdt_end()

Purpose
Frees memory allocated by the TDT for the configuration information.

Input parameters
TDTConfig tc /* The config data to be freed */

Output parameters
None.

Example

tdt_end (tc);

2.3 Compiling and linking

2.3.1 Compiling the library

The TDT can be compiled as a static library, 1ibtdt.a. This must be in the
library path of the development environment, or a directory specified by the -L

flag in gcec. A makefile is included with the source files. Running "make 1ib"
from within the tdt source directory will rebuild the TDT library.

2.3.2 Linking with your own programs

First build the library 1ibtdt.a as explained above.

Compile your application...
gcc -c -I<location of tdt.h> -Wall <program>.c

. and link:

gcc <program>.o -L<location of TDT library> \
-1tdt -lexpat_linux -o<program>

where <program>.o is the output from the compilation of <program>.c

This assumes that the Expat XML parser library is available system-wide on
your machine. If it is not, and you want to use the Expat library supplied with
the TDT, use the following link command:

gcc <program>.o -L<location of TDT library> -1tdt \
-L<location of Expat library> -lexpat -o<program>

2.4 An example program

The following client program and it’s associated server and a Makefile can be
found in the tdt/tests subdirectory of the TDT distribution.

/* CLIENT (WRITER) EXAMPLE x/

#include <stdio.h>
#include <stdlib.h>
#include "tdt.h"

int
main (int argc, char **xargv) {

11

12

13

16

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

/* a loop counter */
int i;

/* declare the variables we’re going to write */
double vardouble;

struct {
int elem1[2];
double elem2;

} astruct;

int varint;
double *dynarray;

/* declare some variables required by TDT */
TDTConfig tc;
TDTState ts;

/* Now make up some meaningful data to write... */
astruct.eleml1[0] = 10;

astruct.eleml[1] = 20;

astruct.elem2 = 199.99;

vardouble = 123.45;
varint = 12345;

dynarray = (double *) malloc (varint * sizeof (double));
for (i = 0; i < varint; i++) {

dynarray[i] = i * 0.33;
}

/* Get the configuration */
tc = tdt_configure ("clntconf.xml");

/* Establish the connection */
ts = tdt_open (tc, "clnt_to_serv");

/* now write the data */

tdt_write (ts, &vardouble, "vardouble");
tdt_write (ts, &astruct, "astruct");
tdt_write (ts, &varint, "varint");

/* we haven’t yet told TDT how big dynarray will be, so do that now ...

tdt_size_array (ts, "dyn", varint);

*/

55

56

57

58

59

60

61

62

63

/* ... and write it */
tdt_write (ts, dynarray, "dyn");

/* tidy up, close connections etc. */
tdt_close (ts);
tdt_end (tc);

return O;

}

The TDT-specific lines to note are these:
5: Includes tdt.h

25, 26 : Declare TDTState (for connection-specific configuration) and TDTConfig
(for program-specific configuration)

42: Calling tdt_configure () gets all the configuration data required

45: Open the connection. clnt_to_serv is the name in clntconf.xml which
uniquely identifies the connection to open.

48, 49, 50: Each call to tdt_write() does just that: it write the data. On line
48 for example, the variable vardouble is written to connection ts, and the
description comes from vardouble. Note that the name of the decl in the data
description does not have to be the same as that of the variable, but it makes
it clearer if it is.

53: Using tdt_size_array to dynamically size an array. Note that we've al-
ready written the variable varint to the server. It will use this variable in a
similar call to tdt_size_array before reading the dynamic array.

59, 60: Tidying up. tdt_close closes the connection ts. We could re-open
it later, but not after we’ve called tdt_end which removes the configuration
information from memory.

2.5 Error conditions

The user functions of the TDT will crash, returning with error code 1, if an
error occurs. It will also output a debugging message to stderr.

3 Using the TDT in Fortran

3.1 Prerequisites
3.1.1 Declarations

The following declarations are needed:

INTEGER tdtstate
INTEGER tdtconfig

3.2 User functions
3.2.1 tdt_fconfigure()

Purpose
Read and parse the specified configuration file.

Input parameter

C the name of the configuration file
configfilename

Output parameter

C a parsed copy of the configuration information
tdtconf

Example

CALL tdt_fconfigure(tdtconf, "config.xml");

3.2.2 tdt_fopen()

Purpose

tdt_fopen() opens the communication channel specified by the connection
name.

Input parameters

C a TDTState variable
tdtstate

C a TDTConfig variable
tdtconf

C the connection name
connection

Output parameter

C a completed TDTState variable
tdtstate

Examples:

CALL tdt_fopen (tdtstate, tdtconf, "client_to_server")

3.2.3 tdt_fwrite()

Purpose

To write data to the connection given by the TDTState parameter as per the
XML identifer string (parameter "name").

Input parameters

C The identifier for this data transfer
tdtstate

C the data being written
val

C a string containing the name of the data to be written,
C as it appears in the XML description
name

Output parameter
None.

Example

CALL tdt_fwrite (tdtstate, astruct, "astruct");

3.2.4 tdt_fread()

Purpose

To read data from the connection given by the TDTState parameter as per the
XML identifer string (parameter "name").

Input parameters

C The identifier for this data transfer
tdtstate

10

C the data being read
val

C a string containing the name of the data to be read,
C as it appears in the XML description
name

Output parameter
None.

Example

CALL tdt_fread (tdtstate, astruct, "astruct");

3.2.5 tdt_fclose()

Purpose
Closes the connection or open files and frees TDT-allocated memory.

Input parameters

C The identifier of the connection to be closed
ts

Output parameter
None.

Example

CALL tdt_fclose (tdtstate);

3.2.6 tdt_fend()

Purpose
Frees memory allocated by the TDT for the configuration information.

Input parameters

C The identifier of the stored configuration data
tc

Output parameter
None.

Example

CALL tdt_fend (tdtconf);

11

3.3 Compiling and linking
3.3.1 Compiling the library

The TDT can be compiled as a library, 1ibtdt.a. This must be in the library
path of the development environment, or a directory specified by the -L flag
in gce. A makefile is included with the source files. Running 'make 1ib’ from
within the tdt source directory will rebuild the TDT library.

3.3.2 Linking with your own programs

First build the library 1ibtdt.a as explained above.

Compile your application...
x1lf -c -Wall <program>.f
. and link:

x1f <program>.o -L../tdt -o <program> -1ltdt -lexpat_linux \
-0 <program>

where <program>.o is the output from the compilation of <program>.f

This assumes that the Expat XML parser library is available system-wide on
your machine. If it is not, and you want to use the Expat library supplied with
the TDT, use the following link command:

x1f <program>.o -L<location of TDT library> -1tdt /
-L<location of Expat library> -lexpat

3.4 An example program

PROGRAM fclnt

INTEGER: : datal(2,5)
REAL#*8:: data2(10,15,10,10)
INTEGER tdtstatel

INTEGER tdtstate2

INTEGER tdtconf

DOk = 1,2
D01=1,5
datal(k,1) = kx10 + 1
PRINT *, datal(k, 1)

12

12 END DO

13 END DO

14

15 CALL tdt_fconfigure (tdtconf, ’clntconf.xml’)
16

17 CALL tdt_fopen (tdtstatel, tdtconf, ’connl’)
18 CALL tdt_fwrite (tdtstatel, ’a’, datal)

19

20 CALL tdt_fopen (tdtstate2, tdtconf, ’conn2’)
21 CALL tdt_fread (tdtstate2, ’b’, data2)

22

23 PRINT *, ’I read:’

24 PRINT *, data2

25

26 CALL tdt_fclose (tdtstatel)

27 CALL tdt_fclose (tdtstate2)

28 CALL tdt_fend (tdtconf)

29

30 END

The TDT-specific lines are the following:

4, 5: Declare two TDTStates. Onme is for a tdt_fread and the other for a
tdt_fwrite.

6: Declare a TDTConfig variable.

15: Parse the configuration data

17: Open the first connection

18: Write data on the open connection
20: Open another connection

21: Read data from the new connection

26, 27, 28: Close connections and tidy up.

3.5 Error conditions

The user functions of the TDT will crash, returning with error code 1, if an
error occurs. It will also output a debugging message to stderr.

13

4 Using the TDT in Python

4.1 Prerequisites
4.1.1 Imports

The line from tdt import TDT should appear at the start of your programs.
This requires that tdt.py be in your PYTHONPATH.

4.1.2 Declarations

Declare a new instance of a TDT object like this: tdt = TDT()

4.2 User Functions
4.2.1 config

Purpose
Read and parse the given configuration file.

Input parameter
config_filename /* the name of the config file to be parsed */

Output parameter
None

Example

tdt.config ("clntconf.xml")

4.2.2 open

Purpose
open() opens the communication channel specified by the connection name

Input parameters
channel_name /* the name of the channel to be opened */
Example

tdt.open("channell")

14

4.2.3 read

Purpose
To read the data specified by the given XML identifier.

Input parameters

datadesc /* the description of the data being read */
variable /* the data to be read */
Example

tdt.read(d, "a_double")

4.2.4 write

Purpose
To write data identified by the given string.

Input parameters

datadesc /* the description of the data being written */
variable /* the data to be written */
Example

tdt.write(d, "a_double")

4.2.5 size array

Purpose

This function is used to redefine the size of an array given in a datadesc. If your
program uses dynamically sized arrays, you probably won’t know in advance
what size the array is when you create the datadesc XML. In this case, you can
set the array size to zero in the datadesc and adjust the size later.

Input parameters

array /* the array being resized */
size /* the new size of the array */
Example

tdt.size_array("dynarray", 10)

15

20

21

22

23

4.2.6 end

Purpose

Closes connections or open files and releases TDT structures.

Input parameters
None

Example

tdt.end ()

4.3 Example programs
from tdt import TDT
tdt = TDT ()

tdt.config ("servconf.xml")
tdt.open ("inputi")

d = tdt.read ("new_double")
print ’d = ’, str (d)

astruct = tdt.read ("astruct")
print ’astruct = ’, repr (astruct)

i = tdt.read ("new_int")
print ’i = ’, str (i)

tdt.size_array ("dyn", i)
dyn = tdt.read ("dyn")
print dyn

tdt.end ()

5 TDT Data descriptions in XML

XML (eXtensible Markup Language) is a widely used format for structured data
and documents. For a more detailed introduction to XML, see

http://www.w3schools.com/xml/default.asp

16

5.1 <data desc> tags

This is the root element (or document element) required by XML.

Attributes : none.

5.2 <decl> tag
Each XML description of a model is made up of one or more variable declara-
tions, which are identified by <decl> tags.

Attributes : name="abcde" where abcde is one or more alphanumeric characters.

5.3 <struct> tag
The <struct> and </struct> tags surround one or more declarations, analo-
gous to a struct declaration in C.

Attributes : none.

5.4 <array> tag
The <array> and </array> tags surround a text element indicating the primi-
tive type, or a declaration if the array is made up of composite types.

Attributes : size="n" where n is an integer. If the size of the array is unknown
at the time the datadesc is being created, it can be set to zero and later given
a size with the tdt_size_array() function.

5.5 <addr> tag

The <addr> and </addr> tags surround declarations, indicating that this is a
pointer to a value, not the value itself.

Attributes : none.

5.6 Text elements

Text elements are the value which appear between start and end tags. For TDT
XML, text elements are used to indicate the primitive data type of a declaration
(<decl>) or an array (<array>).

The allowed values are "int", "double", "float", and "char".

17

5.7 Example

The following XML

<?xml version="1.0" encoding="IS0-8859-1"7>
<data_desc>

<decl name="vardouble">double</decl>

<decl name="astruct">
<struct>
<decl name="eleml">
<array size="2">int</array></decl>
<decl name="elem2">double</decl>
</struct>
</decl>

<decl name="varint">int</decl>
<decl name="dyn">
<array size="0">double</array>

</decl>

</data_desc>

represents describes the data being transferred in the client program above. It
describes the following C declarations:

double vardouble;
struct {
int eleml[2];
double elem2;

} astruct;

int varint;
double *dynarray;

6 TDT Configuration files

The configuration files used by TDT are also written in XML.

18

6.1 <program> tag

The document-level tag for a configuration file is the <program> tag.

Attributes: name="abcde", where "abcde" is an alphanumeric string.

6.2 <channel> tag

The <channel> tag specifies all the information required to establish a TDT
connection and send or receive the data in the correct format.

Attributes:

name : the name by which the channel will be referenced in the code.
mode : the mode of the channel, i.e. input or output ("in" | "out")
type : the type of the connection: "socket" | "file"

host : if type is "socket", the hostname to use

port : if type is "socket", the port to use

filename : if type is "file", the filename to read/write from/to

datadesc : the name of the datadesc XML which describes the data that will
pass on this channel

6.3 Example configuration file

<program name="client">
<channel name="clnt_to_serv"

mode="out"
host="localhost"
port="2222"

type="socket"
datadesc="datadesc.xml">
</channel>
</program>

This configuration describes a program called "client" which has one com-
munication channel, namely output socket 2222 from machine "localhost".
The datadesc for this connection is in the file "datadesc.xml". Note that the
attribute "filename" is not required in this example.

7 Sample applications

The sample applications are provided with Makefiles in order to compile and
link the programs.

19

7.1 C Examples

The sample C programs (testclnt.c and testserv.c in the tests subdirec-
tory of the TDT source directory) demonstrate writing data from a client ap-
plication (testclnt) to a server application (testserv). testclnt writes three
variables (a double, a struct containing an array of int and a double, and an
int) to testserv. In this case, only one TDTState (for one XML description
and one communication channel) is required.

Building the examples
Type "make all" from within the tdt/tests directory.

In tdt/tests this will create the programs "serv" and "clnt".

7.2 Fortran examples

The sample Fortran applications are two programs (progl.f and prog2.f in
the ftdt/tests subdirectory) which read and write data to/from each other.
progl writes a 2x5 matrix of INTEGERs for prog2 to read and reads a 5x2
matrix of doubles (REAL*8) which is written by prog2.

Two XML files are provided ("example.xml" and "example2.xml"). These
describe the two matrices. In these examples the XML files are expected to be
in the same directory as the programs reading them.

Two TDTState variables are used by each program (tdtstatel and tdtstate2).
Each TDTState contains information about one matrix and the channel by which
that data will be transferred.

Building the examples
Type "make all" from within the ftdt/tests directory.

In ftdt/tests, the programs will be called "progl" and "prog2".

8 '"make" parameters

The following parameters can be passed to make:
FF : specifies the name of the Fortran compiler (default is x1f).
EXPAT : specifies the location of the Expat libraries (default is ../../expat).

0S : specifies the operating system (Linux or AIX). This is used to select the
appropriate Expat library (default is Linux).

Example:

make FF=g77 EXPAT="/expatl1.95.2 0S=AIX all

20

"make clean" will remove old object (*.0) files and executable programs from
the tdt/tests and tdt directories (or ftdt/tests and ftdt).

8.1 Python examples

The Python examples are two programs clnt.py and serv.py in the python/tests
subdirectory which read and write data between each other. clnt.py writes four
items to serv.py: a double, a dictionary, an integer and a dynamic array (a
Python list).

To run the examples, go to the python/tests directory and run python clnt.py
and serv.py (in any order).

If the following error occurs:

Traceback (most recent call last):
File "clnt.py", line 1, in 7
from tdt import TDT
ImportError: No module named tdt

you need to adjust the PYTHONPATH variable on your system to include the
location of the tdt.py file.

9 Further information

If you need further information, have comments or requests for enhancements,
or you’ve found a bug, you can contact the authors:

Ciaron Linstead <linstead@pik-potsdam.de>
Cezar Ionescu <ionescu@pik-potsdam.de>

Dan Beli <beli@pik-potsdam.de>

21

