
The Challenge of Data Transfer

Ciaron Linstead

Potsdam Institute for Climate Impact Research

Mistra-SWECIA Seminar, 28th May 2008

linstead@pik-potsdam.de

Why data transfer?

 Programs are most flexible when they can be
combined to produce useful effects
 in Unix, "ls" lists files in a directory
 "wc" counts word in a list
 ls | wc

 the data is the interface between programs
 output from one program is input to another
 an idiomatic way to do things in the tradition of Unix

operating system development

The problems with data transfer

 Technical
 the programming language (C, Fortran, Python,

Java...)
 the OS (Linux, IBM AIX, Windows, Mac OS X, Sun

Solaris...)
 the architecture (Intel x86, PowerPC, SPARC)
 communication protocols
 programming style

 Semantic
 does the output of one program make sense as the

input to another?

Typical technical problems

 Endianness
 the order of bytes in a word in memory:

 Big-endian (Motorola 68000 series, PowerPC, SPARC)
0x0A → 0x0B → 0x0C → 0x0D

 Little-endian (Intel x86)
0x0D → 0x0C → 0x0B → 0x0A

 Sizes of datatypes, with my compiler and PC:
struct test {
 unsigned char field1;
 unsigned short field2;
 unsigned long field3;
} __attribute__((__packed__));

 8 bytes unpacked, or 7 bytes packed

 C and Fortran arrays: row vs. column first

Typical technical problems

There are 10 types of people in the world...

those who understand binary and those who
don't.

those who understand ternary, those who don't,
and those who mistake it for binary.

Problems of model semantics

 Are units compatible?
 Does coupling make sense?

 Higher-level problems, but maybe we can help

So, we need to think about...

 the work needed at each end...
 establish point-to-point connections

 sockets, files, shared memory?
 the same protocol at each end?

 check sizes of data
 share information about layout of data in memory
 normalise data

 ...but this is hard
 it's complicated; more bugs are introduced
 it's repetitive and boring

An aside on software design

 A software design philosophy
 software development is about managing

complexity
 do one thing, do it well
 simple design patterns are the most successful

 Rule of Thumb: an API should have about 7 functions
 design and build software to be tried early
 bottom-up development

The Art of UNIX Programming*

 Rule of Modularity
 simple parts connected by clean interfaces

 Rule of Composition
 design programs to be connected to other programs

 Rule of Representation
 Fold knowledge into data, so program logic can be

stupid and robust

 Rule of Extensibility
 Design for the future, it will be here sooner than you

think
* Eric Raymond, 2004

Solving the data transfer problem

 Technology exists for doing this, and often
much more, for example
 OASIS (Ocean-Atmosphere-Sea Ice-Soil)
 CORBA (Common Object Request Broker

Architecture)
 MCT (Model Coupling Toolkit)

But...

 OASIS:
 Ocean-Atmosphere-Sea Ice-Soil

 CORBA: Common Object Request Broker
Architecture
 a standard for connecting software components

defined by the Object Management Group (OMG)
 The specification document index is 14 pages and

750kB

 MCT:
 API (Application Programming Interface) document

is 284 pages

Typed Data Transfer (TDT) Library

 software library for transferring data with known
type (e.g. integer, floating point, or structures)

 programs use simple statements (like "read"
and "write") to move data around

 data should have a description
 connections should have a description
 make all this transparent and easy to extend

TDT - data descriptions

 sending side
int mymatrix[3][4]={0, 1, 2, 3,

 4, 5, 6, 7,
 8, 9, 10, 11};

write(socket, mymatrix, size_of(mymatrix));

 receiving side:
{0, 1, {0, 1, 2, 3, 4, 5,
 2, 3, 6, 7, 8, 9, 10, 11}
 4, 5,
 6, 7,
 8, 9, ???
10, 11}

 How do we interpret "mymatrix"?

TDT - data descriptions

 TDT knows about data types:
 <decl name="mymatrix">

<array size=3>
<array size=4>

int
</array>

</array>
</decl>

 tdt_write(mymatrix, "mymatrix",
connection);

 Side effect: we're writing down our interface

TDT - data descriptions

 Logic is separate from data
 This works transparently where row/column

order are different
 e.g. in C, matrices are organised Row x Column

in Fortran, they're Column x Row

 Also handles the endian problem

TDT – connection descriptions

 creating socket connections by hand...

TDT – connection descriptions

 Or...
 tdt_open(connection);

 Connections, like data, are described
externally:

<channel name="clnt_to_serv”>
mode="out"
host="pc61.pik-potsdam.de"
port="2424"
type="socket"
datadesc="datadesc.xml">

</channel>

TDT – connection descriptions

 We can also use intermediate files for
communication
 dump data for use later
 connect programs that can only read files, e.g.

GAMS (General Algebraic Modeling System) code

 And we don't have to re-write chunks of our
model to do so
 type=socket or type=file

TDT in service

 @PIK: prototyping the Climber 3 alpha climate
system model

 @PIK: modularisation of Integrated
Assessment models

 @PIK: Prototype internet-coupled models with
Centre for Novel Computing, Manchester

 Netherlands Environmental Assessment
Agency hydrological modelling

 Geoforschungs-Zentrum Potsdam hydrological
modelling

TDT in service

 Distributed Model Coupling with Centre for
Novel Computing, Manchester
 communication over the internet via Secure Shell

(ssh)
 TDT-based models at PIK
 CNC's BFG (Bespoke Framework Generator)-

based models at CNC
 Minimal changes to connection descriptions to get

this working in a distributed way
 and no code changes!

TDT in service

 3000 lines of C code
 7 API functions (configure, open, read, write,

close, plus a couple of specialised functions)
 Interfaces exist for Fortran, Python, Java,

MATLAB, Visual Basic
 but any language supporting foreign function

interfaces can be added
 ...and some without (e.g. GAMS)

 TDT is Free Software (GNU GPL)

Conclusions

 Design software to be
 easy to learn
 easy to use
 easy to extend

 Use TDT to
 rapidly prototype a coupled model system, across

different computer platforms and networks
 abstract away low-level, error-prone technical work

 No Silver Bullet

Thanks!

References

 These slides, the TDT software (including sample code) and user
guide: http://www.pik-potsdam.de/software/tdt/

 OASIS:http://www.cerfacs.fr/globc/software/oasis/

 CORBA: http://www.corba.org

 MCT: http://www.mcs.anl.gov/mct

 The Art of UNIX Programming, Eric S. Raymond, Addison-Wesley
2004

 GNU GPL: http://www.gnu.org/licenses/gpl.html

 http://xkcd.com for the comics

 No Silver Bullet - Essence and Accidents of Software Engineering,
Fred Brooks, 1986

http://www.pik-potsdam.de/software/tdt/
http://www.cerfacs.fr/globc/software/oasis/
http://www.corba.org/
http://www.mcs.anl.gov/mct
http://www.gnu.org/licenses/gpl.html
http://xkcd.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

