
The Multi-Run
Simulation Environment

SimEnv

User Guide for Version 4.1alpha (Jan 18, 2016)

by M. Flechsig, U. Böhm, T. Nocke & C. Rachimow

-ii- Multi-Run Simulation Environment SimEnv User Guide for Version 4.1alpha (Jan 18, 2016)

ATTENTION
SimEnv pre-release 4.1alpha differs from the predecessor release mainly in adapting it to the job manage-
ment system SLURM which is now is now available at the PIK HLRS2015 cluster.

That’s why this User Guide is based on the User Guide of version 3.1 and differences are listed here.

To use this version at PIK please

 Set in your $HOME/.profile SE_HOME:
export SE_HOME=/p/projects/progress/simenv/41alpha

 Include in your $HOME/.profile for loading modules:
. $SE_HOME/.module_load

Peculiarities of 4.1alpha:

 To re-link your models check $SE_HOME/lib/simenv_mod_[f | c | cpp].sh for libraries to use

 Experiment parallelization method dis currently disabled

 In <model>.cfg always specify an email address for experiment end notification:
experiment <tab> email <tab> <your_address>

What is new in 4.1alpha?

 Link scripts for models and user-defined operators $SE_HOME/lib/simenv_[mod | opr]_[f | c | cpp
].lnk renamed to $SE_HOME/lib/link_simenv_[mod | opr]_[f | c | cpp].sh

 GAMS model interface:

Variable name of the current run number in the transformed GAMS main model renamed from si-
menv_runnnr to simenv_run_int

 Experiment type GSA_VB:

Operator gsa_vb_mask_run: character values of the only argument renamed:

[sample1+2 | sample1 | sample2 | all | resample_for_<factor_name> | resample_for_all]

 Experiment type BAY_BC:

Instead of the likelihood and probability of the prior the natural logarithms of these measures are re-
ported to the files <model>.blog and <model>.bmlog

Disclaimer of Warranty
The authors make no warranties, expressed or implied, that the programs and data contained in the software package and the formulas

given in this document are free of error, or are consistent with any particular standard of merchantability, or that they will meet the
requirements for any particular application. They should not be relied for solving a problem whose incorrect solution could result in injury

to a person or loss of property. Applying the programs or data or formulas in such a manner is on the user’s own risk. The authors
disclaim all liability for direct or consequential damages from the use of the programs and data.

3.1 (Ja 25, 2013) n -iii-

The Multi-Run
Simulation Environment

SimEnv
User Guide for Version 4.1alpha (Jan 18, 2016)

by

Michael Flechsig flechsig@pik-potsdam.de

Uwe Böhm uwe.boehm@dwd.de

Thomas Nocke nocke@pik-potsdam.de

Claus Rachimow rachimow@pik-potsdam.de

SimEnv on the Internet:
http://www.pik-potsdam.de/software/simenv/

Potsdam Institute for Climate Impact Research
Telegrafenberg
14473 Potsdam, Germany
Phone ++49 – 331 – 288 2604
Fax ++49 – 331 – 288 2640
WWW http://www.pik-potsdam.de

Multi-Run Simulation Environment SimEnv User Guide for Version

That is what we meant by science. That both question and answer are tied up
with uncertainty, and that they are painful. But that there is no way around them.
And that you hide nothing; instead, everything is brought out into the open.

Peter Høeg, Borderliners
McClelland-Bantam, Toronto, 1995, p. 19

-iv- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

Contents

EXECUTIVE SUMMARY .. 1

1 ABOUT THIS DOCUMENT.. 5
1.1 Document Conventions .. 5
1.2 Example Layout.. 7

2 GETTING STARTED ... 9

3 VERSION 3.1... 11
3.1 What is New? ... 11
3.2 Limitations / Problems and Their Workarounds.. 12
3.3 Known Bugs and Their Workarounds... 13

4 EXPERIMENT TYPES... 15
4.1 General Approach .. 15
4.2 Global Sensitivity Analysis – Elementary Effects Method GSA_EE ... 19
4.3 Global Sensitivity Analysis – Variance-Based Method GSA_VB.. 22
4.4 Deterministic Factorial Design DFD ... 25
4.5 Uncertainty Analysis – Monte Carlo Method UNC_MC .. 27
4.6 Local Sensitivity Analysis LSA.. 30
4.7 Bayesian Technique – Bayesian Calibration BAY_BC ... 31
4.8 Optimization – Simulated Annealing OPT_SA.. 34

5 MODEL INTERFACE... 37
5.1 General Approach .. 37
5.2 Coordinate and Grid Assignments to Variables.. 41
5.3 Model Output Description File <model>.mdf .. 42
5.4 Model Interface for Fortran and C/C++ Models .. 45
5.5 Model Interface for Python, Java and Matlab Models... 48
5.5.1 Standard Dot Scripts for Python, Java and Matlab Models... 50
5.6 Model Interface for Mathematica Models ... 51
5.7 Model Interface for GAMS Models ... 52
5.7.1 Standard Dot Scripts for GAMS Models ... 53
5.7.2 GAMS Description File <model>.gdf, <model>.edf, <model>.mdf.. 54
5.7.3 Files Created during GAMS Model Performance.. 58
5.8 Model Interface at Shell Script Level .. 58
5.9 Model Interface for ASCII Files... 61
5.10 Semi-Automated Model Interface ... 63
5.11 Supported Model Structures... 66
5.12 Using Interfaced Models outside SimEnv... 67

6 EXPERIMENT PREPARATION... 69
6.1 General Approach – Experiment Description File <model>.edf.. 69
6.1.1 Elements of <model>.edf for Experiment Types with Probabilistic Sampling 72
6.2 Global Sensitivity Analysis – Elementary Effects Method GSA_EE ... 76
6.2.1 Special Features in GSA_EE, Run Sequence .. 77
6.2.2 Example.. 77
6.3 Global Sensitivity Analysis – Variance-Based Method GSA_VB.. 78
6.3.1 Run Sequence.. 79
6.3.2 Example.. 79
6.4 Deterministic Factorial Design DFD ... 80
6.4.1 Formalisation of the Inspection Strategy, Run Sequence ... 80
6.4.2 Example.. 82
6.5 Uncertainty Analysis – Monte Carlo Method UNC_MC .. 84
6.5.1 Stopping Rule ... 85
6.5.2 Example.. 85
6.6 Local Sensitivity Analysis LSA.. 86
6.6.1 Sensitivity Functions, Run Sequence ... 87
6.6.2 Example.. 87
6.7 Bayesian Technique – Bayesian Calibration BAY_BC ... 88
6.7.1 Bayesian Calibration Description File <model>.bdf .. 89
6.7.2 Multiple Setting Likelihood Function Case .. 91
6.7.3 Bayesian Calibration Log Files <model>.blog and <model>.bmlog .. 92
6.7.4 Examples.. 93

3.1 (Ja 25, 2013) n -v- Multi-Run Simulation Environment SimEnv User Guide for Version

6.8 Optimization – Simulated Annealing OPT_SA.. 95
6.8.1 Special Features in OPT_SA.. 96
6.8.2 Example.. 97

7 EXPERIMENT PERFORMANCE... 99
7.1 General Approach .. 99
7.2 Model Wrap Shell Script <model>.run, Experiment-Specific Preparation and Wrap-Up Shell Scripts...... 100
7.3 Experiment Performance, Parallelization ... 102
7.3.1 Local Experiment Performance on the Login Node .. 103
7.3.2 Experiment Performance controlled by the Distributed Resource Manager 103
7.3.3 Experiment Partial Performance... 104
7.3.4 Peculiarities of Multi-Run Experiment Performance.. 105
7.3.5 Inter-Node Communication for Parallel Sub-Mode at Compute Clusters.. 106
7.4 Experiment Restart... 106
7.5 Experiment Related User Shell Scripts and Files ... 108
7.6 Saving Experiments ... 110

8 EXPERIMENT POST-PROCESSING.. 111
8.1 General Approach .. 111
8.1.1 Post-Processor Results .. 111
8.1.2 Operands.. 113
8.1.3 Model Output Variables .. 114
8.1.4 Operators.. 116
8.1.5 Operator Classification, Flexible Coordinate Checking... 117
8.2 Built-In Generic Standard Aggregation / Moment Operators .. 119
8.3 Built-In Elemental, Basic, and Advanced Operators... 120
8.3.1 Elemental Operators... 120
8.3.2 Basic and Trigonometric Operators .. 121
8.3.3 Standard Aggregation / Moment Operators .. 122
8.3.4 Advanced Operators... 126
8.3.5 Examples.. 135
8.4 Built-In Experiment Specific Operators... 136
8.4.1 Multi-Run Operators ... 136
8.4.2 Global Sensitivity Analysis – Elementary Effects Method GSA_EE.. 138
8.4.3 Global Sensitivity Analysis – Variance-Based Method GSA_VB .. 139
8.4.4 Deterministic Factorial Design DFD.. 141
8.4.5 Uncertainty Analysis – Monte Carlo Method UNC_MC... 145
8.4.6 Local Sensitivity Analysis LSA.. 149
8.4.7 Bayesian Technique – Bayesian Calibration BAY_BC ... 151
8.4.8 Optimization – Simulated Annealing OPT_SA.. 153
8.5 User-Defined and Composed Operators / Operator Interface .. 154
8.5.1 Declaration of User-Defined Operator Dynamics.. 154
8.5.2 Undefined Results in User-Defined Operators.. 160
8.5.3 Composed Operators ... 160
8.5.4 Operator Description File <model>.odf ... 162
8.6 Macros and Macro Definition File <model>.mac .. 163
8.7 Wildcard Operands &v& and &f& ... 164
8.8 Undefined Results .. 165
8.9 Saving Results ... 165

9 VISUAL EXPERIMENT EVALUATION .. 167

10 MODEL AND EXPERIMENT POST-PROCESSOR OUTPUT DATA STRUCTURES 169
10.1 NetCDF Model and Experiment Post-Processor Output .. 169
10.1.1 Global Attributes ... 170
10.1.2 Variable Labeling and Variable Attributes... 170
10.1.3 NetCDF Attribute Description File <model>.ndf .. 175
10.2 IEEE Compliant Binary Model Output .. 177
10.3 IEEE Compliant Binary and ASCII Experiment Post-Processor Output .. 178

11 GENERAL CONTROL, SERVICES, USER FILES, AND SETTINGS .. 181
11.1 General Configuration Files simenv_settings.txt and <model>.cfg... 181
11.2 Main and Auxiliary Services ... 186
11.3 Experiment Performance Tuning.. 188
11.4 Model Interface Scripts, Include Files, Link Scripts .. 188
11.5 User-Defined Files and Shell Scripts, Temporary Files .. 190
11.6 Built-In Names.. 195
11.7 Case Sensitivity.. 197

-vi- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

11.8 Numerical Nodata Representation ... 198
11.9 Operating System Environment Variables.. 200

12 STRUCTURE OF USER-DEFINED FILES, COORDINATE TRANSFORMATION FILES, VALUE LISTS 203
12.1 General Structure of User-Defined Files .. 203
12.2 Coordinate Transformation File .. 205
12.3 ASCII Data Files and Value Lists ... 208

13 SIMENV PROSPECTS .. 211

14 REFERENCES AND FURTHER READINGS .. 213

15 APPENDICES.. 215
15.1 Version Implementation.. 217
15.1.1 System Requirements .. 217
15.1.2 Technical Limitations .. 219
15.1.3 Linking User Models and User-Defined Operators ... 220
15.1.4 Example Models and User Files ... 220
15.1.5 Example User-Defined Operators... 222
15.2 Examples for Model Interfaces ... 223
15.2.1 Example Implementation of the Generic Model world... 223
15.2.2 Fortran Model ... 224
15.2.3 Fortran Model with Semi-Automated Model Interface... 225
15.2.4 C Model .. 226
15.2.5 C++ Model .. 228
15.2.6 Python Model.. 230
15.2.7 Java Model ... 231
15.2.8 Matlab Model .. 232
15.2.9 Mathematica Model .. 233
15.2.10 GAMS Model .. 234
15.2.11 Model Interface at Shell Script Level .. 236
15.2.12 Model Interface for ASCII Files ... 237
15.2.13 Semi-Automated Model Interface at Shell Script Level... 238
15.3 Example Implementation for the Experiment Post-Processor User-Defined Operator matmul_[f | c] 239
15.3.1 Fortran Implementation... 239
15.3.2 C Implementation.. 242
15.4 Example for an Experiment Post-Processor Result Import Interface.. 245
15.5 Experiment Post-Processor Built-In Operators... 247
15.5.1 Experiment Post-Processor Built-In Operators (in Thematic Order) ... 247
15.5.2 Experiment Post-Processor Built-In Operators (in Alphabetic Order) ... 251
15.5.3 Character Arguments of Experiment Post-Processor Built-In Operators .. 255
15.5.4 Constant Arguments of Experiment Post-Processor Built-In Operators.. 257
15.5.5 Experiment Post-Processor Built-In Unit Invariant Operators ... 258
15.6 Additionally Used Symbols for the Model and Operator Interface .. 259
15.7 Glossary ... 261

3.1 (Ja 25, 2013) n -vii- Multi-Run Simulation Environment SimEnv User Guide for Version

Tables

Tab. 1.1 Document conventions... 5
Tab. 1.2 Main placeholders in this document ... 5
Tab. 3.1 SimEnv changes in Version 3.1.. 11
Tab. 3.2 User actions to upgrade to Version 3.1 .. 11
Tab. 3.3 SimEnv installations ... 11
Tab. 3.4 Limitations / problems and their workarounds in Version 3.1 ... 12
Tab. 3.5 Known bugs and their workarounds in Version 3.1 .. 13
Tab. 4.1 SimEnv experiment types... 17
Tab. 4.2 Experiment type characteristics.. 18
Tab. 4.3 Statistical measures for an UNC_MC experiment .. 28
Tab. 4.4 Probability density functions ... 29
Tab. 4.5 Local sensitivity, linearity, and symmetry measures... 30
Tab. 5.1 Generic SimEnv model interface functions... 38
Tab. 5.2 Language suffices and multi-dimensional array order models for SimEnv model interface functions 39
Tab. 5.3 Elements of a model output description file <model>.mdf .. 42
Tab. 5.4 SimEnv data types ... 43
Tab. 5.5 Model interface functions for Fortran and C/C++ models ... 45
Tab. 5.6 Model interface modules / methods / functions for Python, Java and Matlab models 48
Tab. 5.7 Elements of a GAMS description file <model>.gdf ... 54
Tab. 5.8 Model interface functions at shell script level ... 59
Tab. 5.9 Model interface functions at ASCII level ... 61
Tab. 5.10 Built-in variables by simenv_mod_auto_[f | c].inc... 65
Tab. 6.1 Elements of an experiment description file <model>.edf for all experiment types 69
Tab. 6.2 Factor adjustment types in experiment preparation.. 71
Tab. 6.3 Additional elements of <model>.edf for experiment types with probabilistic sampling 72
Tab. 6.4 Probability density functions and their parameters ... 74
Tab. 6.5 Experiment specific elements of an edf file for GSA_EE.. 76
Tab. 6.6 Experiment specific elements of an edf file for GSA_VB.. 78
Tab. 6.7 Experiment specific elements of an edf file for a DFD experiment ... 80
Tab. 6.8 Experiment specific elements of an edf file for UNC_MC... 84
Tab. 6.9 Experiment specific elements of an edf file for LSA ... 86
Tab. 6.10 Experiment specific elements of an edf file for BAY_BC .. 88
Tab. 6.11 Elements of a BAY_BC bdf file... 89
Tab. 6.12 Experiment specific elements of an edf file for OPT_SA .. 96
Tab. 7.1 Experiment related user shell scripts and files ... 108
Tab. 7.2 SimEnv files to store for later experiment post-processing... 110
Tab. 8.1 Classified argument restriction(s) / result description for post-processing operators................................ 118
Tab. 8.2 Built-in generic standard aggregation / moment operators... 119
Tab. 8.3 Built-in elemental operators.. 120
Tab. 8.4 Built-in basic and trigonometric operators .. 121
Tab. 8.5 Built-in standard aggregation / moment operators without suffix .. 123
Tab. 8.6 Built-in standard aggregation / moment operators with suffix _n .. 124
Tab. 8.7 Built-in standard aggregation / moment operators with suffix _l ... 124
Tab. 8.8 Built-in advanced operators.. 126
Tab. 8.9 Experiment specific operators for GSA_EE.. 138
Tab. 8.10 Experiment specific operators for GSA_VB.. 139
Tab. 8.11 Experiment specific operators for DFD... 142
Tab. 8.12 Syntax of the filter argument 1 for operator dfd .. 142
Tab. 8.13 Experiment specific operators for UNC_MC... 145
Tab. 8.14 Experiment specific operators for LSA ... 149
Tab. 8.15 Syntax of the filter argument 1 for LSA... 150
Tab. 8.16 Experiment specific operators for BAY_BC.. 152
Tab. 8.17 Experiment specific operators for OPT_SA.. 153
Tab. 8.18 Operator interface functions for the declarative and computational part .. 155
Tab. 8.19 Operator interface functions to get and put structural information .. 156
Tab. 8.20 Operator interface functions to get / check / put arguments and results... 159
Tab. 8.21 Elements of an operator description file <model>.odf .. 162
Tab. 8.22 Elements of a macro description file <model>.mac .. 164
Tab. 10.1 NetCDF data types... 170
Tab. 10.2 Global NetCDF attributes ... 170
Tab. 10.3 Variable NetCDF attributes .. 173
Tab. 10.4 Elements of a NetCDF attribute description file <model>.ndf ... 175
Tab. 10.5 Record structure of <model>.inf<simenv_res_char>.[ieee | ascii] for each result 179

-viii- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

Tab. 11.1 Elements of the file simenv_settings.txt ... 181
Tab. 11.2 Elements of a general model-related configuration file <model>.cfg .. 182
Tab. 11.3 Default values for the general configuration file.. 185
Tab. 11.4 SimEnv services... 186
Tab. 11.5 Shell scripts and dot scripts that can be used in <model>.[ini | run | end] .. 188
Tab. 11.6 SimEnv include files and link scripts... 189
Tab. 11.7 User files and shell scripts to perform any SimEnv service .. 190
Tab. 11.8 Files generated during performance of SimEnv services ... 191
Tab. 11.9 Built-in model output variables ... 195
Tab. 11.10 Built-in shell script variables in <model>.run .. 195
Tab. 11.11 Built-in coordinates for experiment post-processing... 196
Tab. 11.12 Case sensitivity of SimEnv entities... 197
Tab. 11.13 Data type related default nodata values ... 198
Tab. 11.14 Environment variables.. 200
Tab. 11.15 Programs to include in the environment variable PATH... 201
Tab. 12.1 User-defined files with general structure .. 204
Tab. 12.2 Constraints in user-defined files ... 204
Tab. 12.3 Reserved names and file names in user-defined files .. 204
Tab. 12.4 Elements of a coordinate transformation file .. 205
Tab. 12.5 Syntax rules for value lists.. 208
Tab. 15.1 SimEnv installation directory structure ... 217
Tab. 15.2 System requirements for running SimEnv .. 217
Tab. 15.3 Current SimEnv technical limitations .. 219
Tab. 15.4 Implemented example models for the current version.. 220
Tab. 15.5 Implemented model and operator related user files for the current version.. 221
Tab. 15.6 Available user-defined operators.. 222
Tab. 15.7 Factors of the generic model world .. 223
Tab. 15.8 Experiment post-processor built-in operators (in thematic order) ... 247
Tab. 15.9 Experiment post-processor built-in operators (in alphabetical order) ... 251
Tab. 15.10 Character arguments of experiment post-processor built-in operators... 255
Tab. 15.11 Constant arguments of experiment post-processor built-in operators .. 257
Tab. 15.12 Experiment post-processor unit invariant built-in operators.. 258
Tab. 15.13 Additionally used symbols for the model interface.. 259
Tab. 15.14 Additionally used symbols for the operator interface .. 259

Figures

Fig. 0.1 SimEnv system design …………………………………………………………………………………………….. 2
Fig. 4.1 Factor space... 16
Fig. 4.2 Result plot for GSA_EE.. 20
Fig. 4.3 Sample for GSA_EE... 21
Fig. 4.4 Sample for GSA_VB... 25
Fig. 4.5 Sample for DFD.. 25
Fig. 4.6 DFD examples for scanning multi-dimensional factor spaces .. 26
Fig. 4.7 Sample for UNC_MC.. 27
Fig. 4.8 Sample for LSA ... 30
Fig. 4.9 Trace plots of a MCMC chain for one factor ... 32
Fig. 4.10 Part of a sample for OPT_SA, generated during the experiment ... 35
Fig. 5.1 Conceptual scheme of the model interface for C/C++, Fortran, Python, Java and Matlab 40
Fig. 5.2 Grid types... 41
Fig. 5.3 Model output variable definition: Grid assignment.. 45
Fig. 6.1 Probabilistic sampling: Pseudo and quasi sampling... 74
Fig. 6.2 Probabilistic sampling: Latin hypercube sampling .. 75
Fig. 7.1 Flowcharts for performing simenv.run and simenv.rst .. 109
Fig. 11.1 SimEnv user shell scripts and files ... 194

3.1 (Ja 25, 2013) n -ix- Multi-Run Simulation Environment SimEnv User Guide for Version

Examples

Example 1.1 General example layout in the User Guide .. 7
Example 4.1 DFD examples for scanning multi-dimensional factor spaces.. 26
Example 5.1 Model output description file <model>.mdf .. 44
Example 5.2 GAMS description file <model>.gdf.. 56
Example 5.3 GAMS description file for coupled GAMS models.. 56
Example 5.4 Model output description file for a GAMS model .. 57
Example 5.5 Addressing factor names and values for the model interface at shell script level 60
Example 5.6 ASCII file structure for the ASCII model interface .. 62
Example 5.7 Shell script <model>.run for a parallel model... 66
Example 6.1 General layout of an experiment description file <model>.edf ... 71
Example 6.2 Include / exclude for probabilistic sampling in an experiment description file <model>.edf................ 75
Example 6.3 Experiment description file <model>.edf for GSA_EE.. 77
Example 6.4 Experiment description file <model>.edf for GSA_VB.. 79
Example 6.5 Experiment description files <model>.edf for DFD experiments .. 83
Example 6.6 Experiment description file <model>.edf for UNC_MC... 86
Example 6.7 Experiment description file <model>.edf for LSA ... 87
Example 6.8 Experiment description file <model>.edf for BAY_BC.. 93
Example 6.9 Bayesian calibration description file <model>.bdf .. 93
Example 6.10 <model>.run for BAY_BC .. 94
Example 6.11 Data files for the likelihood functions of a BAY_BC experiment... 95
Example 6.12 Experiment description file <model>.edf for OPT_SA.. 97
Example 7.1 Shell script <model>.run to wrap the user model ... 101
Example 7.2 Shell script <model>.ini for user-model specific experiment preparation ... 101
Example 7.3 Shell script <model>.end for user-model specific experiment wrap-up .. 101
Example 7.4 Shell script <model>.run with shell script simenv_kill_process .. 102
Example 7.5 Handling model input and output files in multi-run experiments... 105
Example 7.6 Shell script <model>.rst to prepare model performance during experiment restart.......................... 107
Example 8.1 Addressing results in experiment post-processing... 113
Example 8.2 Addressing model output variables in experiment post-processing ... 115
Example 8.3 Checking rules for coordinates .. 119
Example 8.4 Experiment post-processing operator get_data and coordinate transformation file 130
Example 8.5 Experiment post-processing operators {un}mask_file .. 132
Example 8.6 Operator move_avg ... 133
Example 8.7 Operator rank... 134
Example 8.8 Experiment post-processing with advanced operators... 136
Example 8.9 Multi and single run experiment post-processing operators... 137
Example 8.10 Experiment post-processing operators for GSA_EE.. 138
Example 8.11 Experiment post-processing operators for GSA_VB.. 140
Example 8.12 Experiment post-processing operator dfd for DFD... 145
Example 8.13 Experiment post-processing operators for UNC_MC... 149
Example 8.14 Experiment post-processing operators for LSA ... 151
Example 8.15 Experiment post-processing operators for BAY_BC .. 152
Example 8.16 Experiment post-processing operators for OPT_SA .. 153
Example 8.17 Composed operators ... 161
Example 8.18 Operator description file <model>.odf .. 163
Example 8.19 User-defined macro definition file <model>.mac.. 164
Example 8.20 Experiment post-processing with wildcard operands ... 165
Example 10.1 Additional coordinates in NetCDF model output .. 171
Example 10.2 Additional coordinates in NetCDF post-processor output .. 172
Example 10.3 Processing sequence of the NetCDF attribute definition file .. 176
Example 10.4 NetCDF attribute definition file world.ndf.. 177
Example 10.5 IEEE compliant model output data structure.. 178
Example 11.1 User-defined general configuration file <model>.cfg.. 186
Example 12.1 Structure of a user-defined file ... 205
Example 12.2 Coordinate transformations by a transformation file... 207
Example 12.3 Examples of value lists .. 209
Example 15.1 Model interface for Fortran models – model world_f.f .. 224
Example 15.2 Semi-automated model interface for Fortran models – model world_f_auto.f.................................. 225
Example 15.3 Model interface for C models – model world_c.c ... 227
Example 15.4 Model interface for C++ models – model world_cpp.cpp ... 229
Example 15.5 Model interface for Python models – model world_py.py... 230
Example 15.6 Model interface for Java models – model world_ja.java... 231
Example 15.7 Model interface for Matlab models – model world_m.m... 232

-x- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

Example 15.8 Model interface for Mathematica – model shell script <model>.run ... 233
Example 15.9 Model interface for GAMS models – model gams_model.gms .. 235
Example 15.10 Model interface at shell script level – model shell script world_sh.run ... 236
Example 15.11 Model interface for ASCII files – model shell script world_as.run... 237
Example 15.12 Semi-automated model interface at shell script level – model shell script world_sh_auto.run 238
Example 15.13 Experiment post-processor user-defined operator module – operator matmul_f 241
Example 15.14 Experiment post-processor user-defined operator module – operator matmul_c 244
Example 15.15 ASCII compliant experiment post-processor result import interface... 246

3.1 (Ja 25, 2013) n -xi- Multi-Run Simulation Environment SimEnv User Guide for Version

-xii- Multi-Run Simulation Environment SimEnv User Guide s for Ver ion 3.1 (Jan 25, 2013)

Executive Summary

SimEnv is a multi-run simulation environment that focuses on evaluation and usage of models with
large and multi-dimensional output mainly for quality assurance matters and scenario analyses using sam-
pling techniques.
Interfacing models to the simulation environment is supported for a number of model programming lan-
guages by minimal source code modifications and in general at the shell script level. Pre-defined experiment
types are the backbone of SimEnv, applying standardised numerical sampling schemes for model parame-
ters, initial values, or driving forces spaces. The resulting multi-run experiment can be performed sequen-
tially or in parallel. Interactive experiment post-processing makes use of built-in operators, optionally sup-
plemented by user-defined and composed operators. Operator chains are applied on experiment output and
reference data to navigate and post-process in the combined sample and experiment output space. Result-
ing post-processor output data can be evaluated within SimEnv by advanced visualization techniques.

Simulation is one of the cornerstones in scientific research. The aim of the SimEnv project is to develop a
toolbox oriented simulation environment that allows the modeller to handle model related quality assurance
matters (Saltelli et al., 2000 & 2004) and scenario analyses. Both research foci require complex simulation
experiments for model inspection, validation and control design without changing the model in general.

SimEnv (Flechsig et al., 2005) aims at model evaluation by performing simulation runs with a model in a co-
ordinated manner and running the model several times. Co-ordination is achieved by pre-defined experiment
types representing multi-run simulations.
According to the strategy of a selected experiment type for a set of so-called factors x which represent pa-
rameters, initial values or drivers of a model M a numerical sample is generated before simulation. This
sample corresponds to a multi-run experiment with the model. During the experiment for each single simula-
tion run the factors x are adjusted numerically according to the sample and the factors’ default (nominal)
values. Each experiment results in a sequence of model outputs for selected state variables z of the model
M in the space of all addressed factors {X}. Experiment output as the set of all model outputs can be proc-
essed and evaluated after simulation generally on the state space and experiment-type specifically on the
factor space.

The following experiment types form the base of the SimEnv multi-run facility:

 Global sensitivity analysis – elementary effect method
Qualitative ranking of a large number of factors x with respect to their sensitivity on model output at
random trajectories in the factor space {X}.
For determination of the most important factors.

 Global sensitivity analysis – variance based method
Identify contribution of each factor to the variance of the model output.
For determination of most important factors and those factors that can be fixed at any value over the
range of uncertainty without significantly modifying the output uncertainty.

 Deterministic factorial design
Inspection of the model’s behaviour in the factor space {X} by a discrete numerical sampling with a
flexible inspection strategy for sub-spaces.
For model verification, numerical validation, deterministic error analysis, deterministic control design,
scenario analysis and spatial patch model applications.

 Uncertainty analysis – Monte Carlo analysis
Factor space {X} sampling by perturbations according to probability density functions. Determination
of moments, confidence intervals and heuristic probability density functions for state variables in the
course of experiment post-processing.
For error analysis, uncertainty analysis, verification and validation of deterministic models.

 Local sensitivity analysis
Determination of model (state variable’s z) local sensitivity to factors x. Is performed by finite differ-
ence derivative approximations from M.
For numerical validation purposes, model analysis, sub-model sensitivity.

3.1 (Ja 25, 2013) n -1-Multi-Run Simulation Environment SimEnv User Guide for Version

 Bayesian technique – Bayesian calibration
Reduce uncertainty about factor values by deriving a representative sample from factor prior distri-
butions while having measurement values from the system available for model – measurement
comparison.
For uncertainty analysis and reduction with a Bayesian technique.

 Optimization – Simulated Annealing
Determination of optimal factor values by a simulated annealing method for a cost function derived
from z.
For model validation (system – model comparison), control design, decision making.

SimEnv makes use of modern IT concepts. Model preparation for interfacing it to SimEnv is based on mini-
mal source code manipulations by implementing interface function calls into Fortran, C/C++, Python, Java,
Matlab, Mathematica and GAMS model source code for the addressed factors and model output. Addition-
ally, interfaces are available at shell script level and for supporting ASCII files.

In experiment preparation an experiment type is selected and equipped numerically by sampling the factor
space. Experiment performance supports local, remote, and parallel / distributed hardware architectures to
distribute work load of the single runs of the experiment.

Experiment specific experiment output post-processing enables navigation in the complex factor – experi-
ment output space and interactive filtering of experiment output and reference data by application of operator
chains. SimEnv supplies built-in operators and enables specification of user-defined and composed opera-
tors.

Result evaluation is dominated by application of pre-formed visualization modules using the visualization
framework SimEnvVis of SimEnv.
SimEnv model output as well as experiment post-processing offer data interfaces for NetCDF, IEEE compli-
ant binary and ASCII format for a more detailed post-processing outside SimEnv.

Fig. 0.1 SimEnv system design

-2- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

SimEnv key features:

 Available for Unix and Linux platforms

 Support of key working techniques in experimenting with models:
SimEnv enables model evaluation, uncertainty and scenario analyses in a structured, methodologi-
cally sound and pre-formed manner applying sampling techniques.

 Run ensembles instead of single model runs:
Model evaluation by multi-run simulation experiments

 Availability of pre-defined multi-run simulation experiment types:
To perform an experiment only the factors (parameters, initial values, drivers, ...) to experiment with
and a strategy how to sample the factor space have to be specified.

 Simple model interface to the simulation environment:
Model interface functions allow mainly to adjust an experiment factor numerically and to output
model results for later experiment post-processing. Model interfacing and finally communication be-
tween the model and SimEnv can be done at the model language level by incorporating interface
function calls into model source code (C/C++, Fortran, Python, Java and Matlab: “include per ex-
periment factor and per model output variable one additional SimEnv function call into the source
code”) or can be done at the shell script level. Additionally, there are special interfaces for Mathe-
matica and GAMS models.

 Support of distributed models:
Independently on the kind distributed model components are interfaced to SimEnv and among each
other the total model can be run within SimEnv.

 Parallelization of the experiment:
This is a prerequisite for a lot of simulation tasks.

 Operator-based experiment post-processing:
Chains of built-in, user-defined and composed operators enable interactive experiment post-
processing based on experiment model output and reference data including general purpose and
experiment specific operators. There is a simple interface to write user-defined and to derive com-
posed operators.

 Visual experiment evaluation:
For post-processed experiment output

 Support of standard data formats:
Output from the model as well from the post-processor can be stored in NetCDF or IEEE compliant
binary format.

3.1 (Ja 25, 2013) n -3-Multi-Run Simulation Environment SimEnv User Guide for Version

-4- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

1 About this Document

In this chapter document conventions are explained. Within the whole document one generic refer-
ence example model is used to explain application of SimEnv. Examples are always located in grey boxes.

1.1 Document Conventions

Tab. 1.1 Document conventions

Character /
string

Meaning

< ... > angle brackets enclose a placeholder for a string

{ ... } braces enclose an optional element

[... | ... | ...] square brackets enclose a list of choices, separated by a vertical bar

italic a keyword or a sub-keyword in user-defined files

“ ... “ double quotation marks enclose a value string of a sub-keyword from user-defined files

<nil> stands for the empty string (nothing)

monospace indicates SimEnv example code

blue_underlined hyperlink in the document

Tab. 1.2 Main placeholders in this document

Placeholder Description

<attr_name> NetCDF attribute name

<co_name> coordinate name as defined in <model>.mdf or generated automatically
(see Tab. 11.11)

<directory> path to a directory

<factor_adj_val> resulting adjusted value of a factor by <factor_smp_val> and <factor_def_val>

<factor_def_val> default (nominal) value of a factor as defined in <model>.edf

<factor_name> name of a factor to experiment with as defined in <model>.edf

<factor_smp_val> sampled value of a factor from <model>.smp

<file_name> name of a ASCII data file

<model> model name to start a SimEnv service with

<simenv_res_char> 2-character experiment post-processor output file number 01, 02 ,..., 99

<simenv_res_int> integer post-processor output file number 1, 2 ,..., 99

<simenv_run_char> 6-character single run number 000000, 000001, ... of an experiment

<simenv_run_int> integer single run number 0, 1, ... of an experiment

<sep> sequence of white spaces as item separators in user-defined and related files

<string> any string

<val_byte> integer*1 / byte value (e.g., -123)

<val_short> integer*2 / short value (e.g., -12345)

3.1 (Ja 25, 2013) n -5-Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

Placeholder Description

<val_int> integer*4 / int value (e.g., -123456)

<val_float> real*4 / float value in integer*4 / int (e.g., -123456), fixed point (e.g., -123.456)
or floating point (scientific) (e.g., -1.23456e+2) notation

<val_double> real*8 / double value in integer*4 / int (e.g., -123456789), fixed point
(e.g., -123.456789) or floating point (scientific) (e.g., -1.23456789d+2) notation

<val_list> list of values in explicit or implicit notation according to Tab. 12.5

<var_name> variable name as defined in <model>.mdf or a built-in variable (see Tab. 11.9)

For post-processor operator descriptions only

arg general numerical argument (operand)

char_arg character argument (operand), enclosed in single quotation marks

int_arg integer constant argument (operand) ≥ 0

real_arg real (float) constant argument (operand)

dim dimensionality of a variable, operand or result

ext(i) (i=1,…,dim) extent of dimension i of a variable, operand or result

coord(i) (i=1,…,dim) coordinate of dimension i of a variable, operand or result

no._of_... number of …

-6- Multi-Run Simulation Environment SimEnv User Guide

1.2 Example Layout

All examples in this document but for GAMS refer to a hypothetical global atmosphere – bio-
sphere simulation model world. It describes dynamics of atmosphere and biosphere at the
global scale over 200 years. Global lateral (latitudinal and longitudinal) model resolution is 4°
x 4° between 178°W and 178°E and/or 88°N and 88°S (exceptions see below), temporal
resolution is at decadal time steps. Additionally, atmosphere is structured vertically into lev-
els. For more information on this generic model check Section 15.2.1.

The model world is assumed to map lateral and vertical (level) fluxes and demands that’s
why for computing state variables for all grid cells. However, in the model gridcell_f state
variables are calculated for each grid cell without consideration of lateral fluxes.

Model implementation in a programming language <lng> results in a model world_<lng>.

Model
state variable

Description Defined on Data
type

atmo aggregated atmospheric state lat x lon x level x time float
bios aggregated biospheric state at

land masses (defined between
84°N and 56°S latitude at land
masses, i. e., without Antarctic)

lat x lon x time float

atmo_g
(not for model gridcell_f)

aggregated global state
derived from atmo for level 1

time int

bios_g
(not for model gridcell_f)

aggregated global state
derived from bios

- int

Dynamics of all model variables depend on model parameters p1, p2, p3 and p4.

With this SimEnv release the following model implementations are distributed:

Resolution Model
“auto” in name

=
semi-automated
model interface

Model
interface

example for
language <lng>

lateral:
lat x lon

[deg x deg]

vertical:
number of

levels

temporal:
number of
time steps

world_f Fortran 4 x 4 4: 1, 7, 11, 16 20
world_c C 4 x 4 4: 1, 7, 11, 16 20
world_cpp C++ 4 x 4 4: 1, 7, 11, 16 20
world_py Python 4 x 4 4: 1, 7, 11, 16 20
world_ja Java 4 x 4 4: 1, 7, 11, 16 20
world_m Matlab 4 x 4 4: 1, 7, 11, 16 20
world_sh Shell script level 4 x 4 4: 1, 7, 11, 16 20
world_as ASCII 4 x 4 4: 1, 7, 11, 16 20
world_f_auto Fortran 4 x 4 4: 1, 7, 11, 16 20
world_sh_auto Shell script level 4 x 4 4: 1, 7, 11, 16 20
world_f_1x1 Fortran 1 x 1 16: 1 - 16 20
world_f_05x05 Fortran 0.5 x 0.5 16: 1 - 16 20
gridcell_f Fortran without, implicitly by

experiment as 4 x 4
 4: 1, 7, 11, 16 20

Examples in this document are generally placed in grey-shaded boxes. Examples that are
available from the example directory $SE_HOME/exa of SimEnv are marked as such in the
lower right corner of an example box. To copy files from this directory use the SimEnv ser-
vice simenv.cpy (cf. Tab. 11.4).

Example 1.1 General example layout in the User Guide
For Mathematica and GAMS models see Sections 5.6 and 5.7.

3.1 (Ja 25, 2013) n -7-Multi-Run Simulation Environment SimEnv User Guide for Version

-8- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

2 Getting Started

In this chapter a quick start tour is described. Without going into details the user can get an impres-
sion how to apply SimEnv and which files are essential to use the simulation environment.

 SimEnv is implemented under AIX-Unix at IBM’s RS6000 and compatibles and SUSE-Linux at Intel-
based platforms and compatibles. For detailed system requirements check Tab. 15.2 on page 217.

 Set the SimEnv home directory $SE_HOME and expand the PATH environment variable in the file
$HOME/.profile by $SE_HOME/bin

 export SE_HOME=<se_home_path>
 export PATH=$SE_HOME/bin:$PATH

<se_home_path> is the directory SimEnv is available from. For SE_HOME at PIK check Tab. 3.3 on
page 11, for the complete environment check Tab. 11.15 on page 201. Then apply the above setting by

 . $HOME/.profile

 Change to a directory with full access permissions. This is the SimEnv current workspace.

 Start

 simenv.hlp

to acquire basic information on how to use SimEnv.

 Select a model implementation language <lng> to check SimEnv with the model world_<lng> from
Example 1.1 on page 7:

<lng> = f for Fortran
c for C
cpp for C++
py for Python
ja for Java
m for Matlab
sh for shell script level
as for ASCII file

For Mathematica models check Section 5.6 on page 51, for a GAMS model example check Section 5.7
on page 52.

 Start

 simenv.cpy world_<lng>

to copy the model world_<lng> model and experiment related files to the current workspace.

 Copy the file world.edf_DFD_c to world_<lng>.edf

 Check for
 The SimEnv configuration file world_<lng>.cfg general SimEnv configurations
 The model output description file world_<lng>.mdf available model output variables
 The model world_<lng>.<lng> implementation of the model
 The model wrap shell script world_<lng>.run wrapping the model executable
 The experiment description file world_<lng>.edf experiment definition
 The post-processing input file world.post_DFD_c post-processor result sequence

Either
 Start

 simenv.cpl world_<lng> -1 world.post_DFD_c

to run a complete SimEnv session:
 Model and experiment related files will be checked
 The experiment will be prepared
 The experiment will be performed (select the login machine on request)

3.1 (Ja 25, 2013) n -9-Multi-Run Simulation Environment SimEnv User Guide for Version

 Experiment output post-processing will be started for this experiment
 With the post-processing input file world_post_DFD_c and following
 Interactively: Enter any result and finish post-processing by entering a single <return>

 Visualization of post-processed results will be started (*)
 Model or result output files will be dumped

or
 Start

 simenv.chk world_<lng>

to check model and experiment relate files.
 Start

 simenv.run world_<lng>

to prepare and perform a simulation experiment (select the login machine on request).
 Start

 simenv.res world_<lng> { new { <simenv_run_int> } }

to post-process the last simulation experiment for the whole run ensemble or for run number
<simenv_run_int> and to create a new result file world_<lng>.res<simenv_res_char>.[nc | ieee | as-
cii] with the highest two-digit number <simenv_res_char>. <simenv_res_char> can range from 01 to
99.

 Start (*)

 simenv.vis world_<lng> { [latest | <simenv_res_char>] }

to visualize output from the latest post-processing session world_<lng>.res<simenv_res_char>.nc or
that with number <simenv_res_char> with the highest two-digit number <simenv_res_char>.

 Start

 simenv.dmp world_<lng> mod | more
 simenv.dmp world_<lng> res | more

to dump a SimEnv model or post-processor output file.

 Check in the current workspace the
model interface log file world_<lng>.mlog
native model terminal output log file world_<lng>.nlog
experiment performance log file world_<lng>.elog.

 Start

 simenv.cln world_<lng>

to wrap up a simulation experiment.

 Get the usage of any SimEnv service by entering the service command without arguments.

 To run other simulation experiments and/or output in other data formats modify
 world_<lng>.cfg
 world_<lng>.edf
 world_<lng>.mdf
 world_<lng>.run and/or
 world_<lng>.<lng>

 To experiment with other models replace world_<lng> by <model> as a placeholder for the name of any
other model.

__
(*): The visualization framework SimEnvVis of SimEnv does not belong to the standard SimEnv distribution.

At PIK, for visualization set the DISPLAY environment variable accordingly. To get access permission to
the PIK visualization server check in Section 11.2 on page 186 the SimEnv service

 simenv.key <user_name>

-10- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3 Version 3.1

This chapter summarizes differences between the current and the previous SimEnv release, limita-
tions and bugs and their workarounds.

3.1 What is New?

Tab. 3.1 SimEnv changes in Version 3.1

Type Check / see
On

page
Description

update Section 5.4
Section 8.5.1

45
154

Link scripts for models and user-defined operators
$SE_HOME/lib/simenv_[mod | opr]_[f | c | cpp].lnk
renamed to
$SE_HOME/lib/link_simenv_[mod | opr]_[f | c | cpp].sh

 Bug fixes

Tab. 3.2 User actions to upgrade to Version 3.1

Upgrade type Upgrade action

mandatory Re-link interfaced models and user-defined operators

Tab. 3.3 SimEnv installations

Organization Machine Cluster
login node

SE_HOME=

Potsdam Institute for Climate
Impact Research (PIK)
www.pik-potsdam.de

cluster.pik-potsdam.de login01,
login02

/iplex/01/sys/applications/simenv

PIK
www.pik-potsdam.de

viss02.pik-potsdam.de -- /iplex/01/sys/applications/simenv

PIK
www.pik-potsdam.de

bs08.pik-potsdam.de -- /usr/local/simenv

TU Berlin
www.evur.tu-berlin.de

drawe.evur.tu-berlin.de drawe /opt/simenv

Global Climate Forum
www.globalclimateforum.org

-- /opt/simenv

3.1 (Ja 25, 2013) n -11-Multi-Run Simulation Environment SimEnv User Guide for Version

3.2 Limitations / Problems and Their Workarounds

Tab. 3.4 Limitations / problems and their workarounds in Version 3.1

Where
Limitation /

Problem
Workaround

Description

Where

Limitation

Workaround

Overall

Current SimEnv technical limitations as specified in Tab. 15.3 on page 219

None

Where

Limitation

Workaround

Overall but visual result evaluation with SimEnvVis

Without graphical user interface

None

Where

Problem

Workaround

Experiment performance: Experiment output to NetCDF

Check on undefined experiment output results in noticeably additional CPU-time consump-
tion.
Example: Per single run, a check of 8 Mill of real*8 values takes additionally 80 sec for
single nc file experiment output and additionally 200 sec for common nc file output.

Specify in <model>.cfg for the sub-keyword message_level the value = “error” (see also
Section 11.3)

Where

Limitation

Workaround

Experiment performance: Under Distributed Resource Manager DRM control
 in distributed sub-mode dis
 and on PIK machine bs08:

Model output is not checked on undefined values on machine bs08 in general and on the
Iplex compute cluster under load leveler control in in sub-mode dis, even when specified by
the sub-keyword message_level in <model>.cfg.

Perform experiment at login node or under load leveler DRM control in an other sub-mode

-12- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.3 Known Bugs and Their Workarounds

Tab. 3.5 Known bugs and their workarounds in Version 3.1

Where
Bug

Workaround

Description

Where

Bug

Workaround

Experiment performance: Experiment type UNC_MC with stopping rule
 under Distributed Resource Manager DRM control
 in distributed sub-mode dis
 or
 on the login machine
 distributed on a multicore processor machine
Experiment may not come to an end

Use an other experiment performance setting

Where

Bug

Workaround

Experiment performance: Distributed models (structure = “distributed” in <model>.cfg)
 Model output to NetCDF
May not store all model output

Specify IEEE model output in <model>.cfg

Where

Bug

Workaround

Experiment post-processing: Operators, clip, mask, mask_file, unmask_file

Do not work with the coordinate range c = <coordinate_value1> { : <coordinate_value2> }

Use index range i= <index_value1> { : <index_value2> } instead

3.1 (Ja 25, 2013) n -13- Multi-Run Simulation Environment SimEnv User Guide for Version

-14- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

4 Experiment Types

SimEnv supplies a set of pre-defined multi-run experiment types. Each experiment type addresses a
special experiment method for performing a simulation model several times in a co-ordinated manner. In this
chapter an overview on the available experiment types is given from the viewpoint of system’s theory.

4.1 General Approach

SimEnv supplies a set of pre-defined multi-run experiment types, where each type addresses a special multi-
run experiment method for performing a simulation model or any algorithm with an input – output transition
behaviour.
In the following, the general SimEnv approach will be described for time dynamic simulation models, be-
cause this class forms the majority of SimEnv applications. All information can be transformed easily to any
other algorithm.

Based on systems’ theory, each time dynamic model M can be formulated – without limitation of generality –
for the time dependent, time discrete, and state deterministic case as

 M: Z(t) = ST (Z(t-t) ,..., Z(t-m*t) , P , IX(t) , Z0)

with ST state transition description
 Z state variables’ vector
 P parameter vector
 IX input (driving forces) vector
 Z0 initial value vector
 t time
 t time increment
 m time delay

The output vector Y is a function of the state vector Z, parameters P, drivers IX, and initial values Z0:

 Y(t) = OU (Z(t) , P , IX(t) , Z0).

Model behaviour Z is determined for fixed k and t by state transition description ST, parameters P, driving
forces IX and initial values Z0. Manipulating and exploring model behaviour in any sense means changing
these four model components. While state transition description ST reflects mainly model structure and is
quite complex to change, each component of the driving forces vector IX normally is a time-dependent vec-
tor.

Introduction of additional technical parameters / triggers Ptech can reduce the complexity of handling a model
with respect to the five model components, described above: Changes in state transition description ST can
be pre-determined in the model by assigning values of a technical / trigger parameter ptech to apply for ex-
ample alternative model structures, sub-structures, processes formulations, resolutions, which are triggered
by these values.
Additionally, each component of the driving forces vector IX can be combined with technical parameters in
different ways:

 By selecting special driving forces dependent on the technical value

 By manipulating the driving forces with the parameter value
(e.g., as an additive or multiplicative increment)

 By parametrising the shape of a driving force

3.1 (Ja 25, 2013) n -15- Multi-Run Simulation Environment SimEnv User Guide for Version

When this has been done, the model behaviour finally depends only on the parameters P and the initial val-
ues Z0. From the methodical point of view there is no difference between parameters and initial values be-
cause all are considered as constant during one model run. That is why in SimEnv the three model compo-
nents parameters, drivers and initial values are lumped together and the term factor stands as a placeholder
for them. An often used synonym for “factor” is “input”. All factors form the factor space X:

 X = { P, IX , Z0 }
and
 Z = ST(X).

In the following,
 Xk = (x1 ,..., xk) k > 0

stands for a subset of the factor space X that spans up a k-dimensional sub-space of X by selected model
factors (x1 ,..., xk) from X and

 Xk,n = = (^X1 ,..., ^Xn)
T k > 0, n > 0

















nkn

k

xx

xx

...

......

...

1

111

stands for a numerical sample for Xk of size n and finally for k*n values representing in any sense the sample
space Xk.
In the set of all samples Xk,1 Xk,1 is the default (nominal) numerical factor constellation for the model M as
normally defined in the model source code.
If { } n denotes the dynamics of the model M over a sample of size n then it holds:

 { Z } n = { Z(^X1) ,..., Z(^Xn) } = { ST(^X1) ,..., ST(^Xn) }.

Factor space
X2 = (x1 , x2)

o = X2,1
 default (nominal)
 numerical
 factor constellation
 of model M

Fig. 4.1 Factor space

SimEnv supports different sampling strategies and the performance of multi-run experiments where k factors
are adjusted numerically for each of n single simulation runs according the generated sample and the default
(nominal) values of the factors. Central goal is to study the dependency of the model dynamics in the factor
space. For simulation purposes in SimEnv experimentation with the model M over Xk,n is based on the as-
sumption that dynamics of M for each representative from the sample is independent from all other repre-
sentatives, which is fulfilled in general. This results in the possibility to form a run ensemble for performing
the model M with n single model runs from the sample Xk,n.

-16- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

SimEnv experiment types differ in the way the sample space Xk is sampled to get Xk,n. There are determinis-
tic and probabilistic sampling strategies that offer a broad range of techniques for

 Experimentation with models

 Post-processing experiment output

 Interpreting results with respect to uncertainty and sensitivity matters of models.

The experiment types are described in detail in the following Sections. Tab. 4.1 provides an overview on the
experiment types. Is is ordered in a sequence which may for many cases is well suited for assessing any
model.

Tab. 4.1 SimEnv experiment types

Experiment
type

Description

GSA_EE:
Global sensitivity
analysis –
elementary
effects method

Qualitative ranking of a large number of factors with respect to their sensitivity on
model output derived from statistical measures of local elementary effects at ran-
domly selected trajectories in the factor space.

For determination of the most important factors.

GSA_VB:
Global sensitivity
analysis –
variance based

Identify contribution of each factor to the variance of the model output.

For determination of most important factors and those factors that can be fixed at
any value over the range of uncertainty without significantly modifying the output
uncertainty.

DFD:
Deterministic
factorial design

Inspection of the model’s behaviour in the factor space by a discrete numerical
sampling with a flexible inspection strategy for sub-spaces.

For model verification, numerical validation, deterministic error analysis, determi-
nistic control design, scenario analysis and spatial patch model applications.

UNC_MC:
Uncertainty
analysis –
Monte Carlo
method

Factor space sampling by perturbations according to probability density functions.
Determination of moments, confidence intervals and heuristic probability density
functions for state variables in the course of experiment post-processing.

For error analysis, uncertainty analysis, verification and validation of deterministic
models.

LSA:
Local sensitivity
analysis

Determination of model (state variable’s) local sensitivity to factors. Is performed
by finite difference derivative approximations from the model.

For numerical validation purposes, model analysis, sub-model sensitivity.

BAY_BC:
Bayesian
technique –
Bayesian
calibration

Reduce uncertainty about factor values by deriving a representative sample from
factor prior distributions while having measurement values from the system avail-
able for model – measurement comparison.

For uncertainty analysis and reduction with a Bayesian technique.

OPT_SA:
Optimization –
simulated an-
nealing

Determination of optimal factor values by a simulated annealing method for a cost
function derived from state variables.

For model validation (system – model comparison), control design, decision mak-
ing.

3.1 (Ja 25, 2013) n -17- Multi-Run Simulation Environment SimEnv User Guide for Version

The experiment types come with special properties.

 A model-free method is model independent. It can cope with non-linear, non-additive and non-
monotonic models. Each of these three properties holds for the relation between each factor xi (i=1
,.., k) and the state variable and/or output function under consideration.

 Some methods take the sample from pre-defined factor levels rather than from pre-defined factor
distributions. The former approach allows for performing an analysis without knowledge about factor
distributions and the accompanying distribution parameters.

 A method supports the factor range of each factor globally if the method takes into account the
whole range of the factor variation and for probabilistic methods (where samples are taken from dis-
tributions) the whole probability density function is explored.

 A method supports multi-factor variation if it investigates into all factors rather than focusing on for
instance turn on single factors. The latter approach disregards interaction effects between factors on
the model output and finally on the derived measures.

 Often, modelers and or analysts are confronted with correlated factors. Even if specification of an
experiment in SimEnv does not explicitly support correlated samples (for example, method
UNC_MC) it allows to import such samples.

 The computational costs of a an experiment type is the number of single model runs necessary to
perform the method. Computational costs may limit applicability of an individual experiment type if
the computational costs in terms of CPU or wall clock time consumption of a single simulation run
are high.

Tab. 4.2 Experiment type characteristics
NMc denotes the number of Monte Carlo runs

Experi-
ment type

Model
free?

Sample taken
from

Factor range +
multi-factor variation

Cope with
correlated
factors?

Computational
costs

(for k factors)

GSA_EE yes levels global +
multi-dimensional

no 10 * (k+1) + 1

GSA_VB yes distributions global +
multi-dimensional

no NMc * (k+2) + 1

DFD yes levels (global +
multi-dimensional)

yes design dependent

UNC_MC yes distributions global +
multi-dimensional

yes NMc+1

LSA yes levels local

no 2*k+1

BAY_BC yes distributions global +
multi-dimensional

yes NMc+1 (N >> 0)

OPT_SA yes distributions global +
multi-dimensional

(yes) unpredictable

-18- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

4.2 Global Sensitivity Analysis – Elementary Effects Method GSA_EE

The guiding philosophy of a GSA_EE experiment is to determine those factors that influence a model state z
the most and to distinguish them from factors that are negligible. Contrary to a local sensitivity analysis LSA
during this experiment type the entire space where the factors may vary is considered.
The GSA_EE experiment in SimEnv applies the method of Morris (1991) in its modifications by Campolongo
et al. (2005), Saltelli et al. (2008) and Sin & Gernaey (2009). Its main approach is to derive qualitative global
sensitivity measures for all factors by computing a statistics on a set of local sensitivity measures, the so-
called elementary effects. The result of this analysis is a ranking of the factors in terms of their importance
with respect to the model state z.

The modified Morris method is as follows (cf. also Fig. 4.3):

 Specify for each factor xi (i=1 ,…, k) a distribution with its distribution parameters.

 Span up in the factor space Xk a k-dimensional p-level grid by determining for each factor xi p equi-
distant quantiles q1 ,…, qp. These quantiles vary in [0,1] and the corresponding individual factor val-
ues in the factor space follow their own distributions. In the corresponding k-dimensional factor
quantile space QXk this results in a regular equidistant grid.

 Specify in the factor quantile space QXk a unique jump width Δ as a value from { 1/(p-1) , 2/(p-1) , …,
(p-2)/(p-1) }. The jump width specifies how far away in terms of equidistant quantiles another point is
selected from an existing grid point to compute an elementary effect as described below. In the fac-
tor space Xk the unique jump width Δ transforms for each factor xi to values Δim where m corre-
sponds to the value of xi of the existing grid point.

 Select at the p-level grid in the factor space randomly a starting grid point x0 = (x1 ,…, xk) and ran-
domly another grid point x1 = (x1 ,…, xi-1 , xi+Δim , xi+1 ,…, xk) that differs from x0 in exactly one factor
xi by Δim (i=1 ,…, k).

 Compute from these two grid points the elementary effect of the factor xi for the model state variable
z by

 di(x,z) = z(x1 ,…, xi-1 , xi+Δim , xi+1 ,…, xk) – z(x1 ,…, xk) / Δim

 Proceed by randomly selecting a new grid point x2 to the previous grid point x1 for another elemen-
tary effect dj(x,z) (i≠j) until k+1 points { x0 , x1 , …, xk } are sampled. Such a series of k+1 points is
called a trajectory. For one trajectory k elementary effects di(x,z) (i=1 ,…, k) (one for each factor) can
be determined by two consecutive points xi and xi+1 (i=0 ,…, k).

 Determine randomly r trajectories in this way finally resulting in r elementary effects di(x,z) for each
factor xi.

With

 σxi
2 = run ensemble variance of factor values xi (i=1 ,…, k)

and

 σz
2 = run ensemble variance of variable z

consider the distributions (i=1 ,…, k)

 Fi
abs = { |di(x,z)·σxi/σz| } and compute mean μi

abs =  |di(x,z)| / r

 Fi = { di(x,z)·σxi/σz } and compute variance σi
2 =  (di(x,z) – di(x,z) / r)2 / (r–1)

 Consider in the (μabs , σ) plane the points (μi
abs , σi), (i=1 ,…, k):

 a high value of μi
abs with respect to the other μj

abs
 indicates an important overall influence of the factor xi on the model state z

 a high value of σi with respect to the other σj
 indicates that the factor xi is involved in interactions with other factors or
 indicates that the effect of xi on the model state z is non-linear

(Saltelli et al., 2004). See also Fig. 4.2.

3.1 (Ja 25, 2013) n -19- Multi-Run Simulation Environment SimEnv User Guide for Version

Note the following remarks:

 According to Saltelli et al. (2004) and as a rule of thumb

 The number of levels p of the grid should by even and should be 4 or 6
 The optimal unique jump width Δ in the factor quantile space is (p/2)/(p-1)
 The number of trajectories r should range around 10

 According to Sin and Gernaey (2009)
 The sensitivity measures μi

abs and σi
2 are non-dimensional as they are scaled by σxi and σz.

This allows for applying the Morris method with factors that significantly differ in their value
ranges, i.e., for factors with large values together with factors with small values. Additionally,
the scaling allows for comparing the sensitivity measures between different state variables z
and/or output functions.

σ

Sensitivity w.r.t. model output 
μabs

Fig. 4.2 Result plot for GSA_EE
of 21 factors. Factors bounded by the dotted line were identified as sensitive,
factors bounded by the dashed line show interactions with other factors and/or
a nonlinear effect on model output.

-20- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

{x} = X2,12

 sample of size 12
 representing
 4 trajectories
 at a 6-level grid
 assuming a
 normal distribution for x1
 and a
 uniform distribution for x2

o = X2,1
 default (nominal)
 numerical
 factor constellation
 of model M

upper figure:
 sample for Δ = 1/5
 in the 2-dimensional
 factor space
 X2 = (x1 , x2)

middle figure:
 sample for Δ = 1/5
 in the factor quantile
 space
 QX2 = (q(x1) , q(x2))

lower figure:
 sample for optimal
 Δ = 3/5
 in the factor quantile
 space
 QX2 = (q(x1) , q(x2))
 (numbers indicate
 individual trajectories)

The arrows indicate the se-
quence how each trajectory
was generated from sampling
points.

Fig. 4.3 Sample for GSA_EE

3.1 (Ja 25, 2013) n -21- Multi-Run Simulation Environment SimEnv User Guide for Version

4.3 Global Sensitivity Analysis – Variance-Based Method GSA_VB

The guiding question of variance based methods for sensitivity analysis of model output is how the variance
of model output depends on the variability of the model factors and how the output variance can be appor-
tioned accordingly. With respect to this approach, variance based methods have a connection to analysis of
variance (ANOVA) studies and the design of experiments (DOE). For variance based methods it is assumed
that all what is known about the sensitivity of the model output to the factors – and consequently can be ex-
ploited – is captured by the variance of the model output.

For variance decomposition the method of Sobol’ (Sobol, 1993) and a cost-efficient implementation by Sal-
telli (Saltelli, 2002, Saltelli et al., 2008) have been implemented.

Related to the decomposition of the variance the overall goal is to decompose the variance V(z) on model
output z into a sum of 2k -1 terms

 V(z) = Vi + Vij + … + …Vm…s + … + V12…k (1 ≤ i < j < … < m … < s … ≤ k
 k = number of factors)
with
 Vi = fraction caused by factor xi
 Vij = fraction caused by interaction of factors xi and xj
 …
 Vm…s = fraction caused by interaction of factors xm ,…, xs
 …
 V12…k = fraction caused by interaction of all k factors

Theoretically, the (unconditional) variance V(Z) of Z can be reduced by fixing Xi to its real value xi*:

 V-Xi(Z|Xi=xi*) conditional residual variance of Z when fixing Xi to any xi*

where uppercase Xi and Z indicate random variables, lowercase xi and z values of a random variable and
the subscript -Xi stands for “all but Xi”

As the real value xi* of factor Xi is unknown consider instead the average residual variance:

 EXi(V-Xi(Z|Xi=xi*)) average residual variance of Z that can be obtained when fixing Xi

The smaller this value the more influential is factor Xi. It always holds:

 EXi(V-Xi(Z|Xi=xi*))  V(Z)

Taking into account the variance decomposition rule for conditional distributions:

 V(Z) = VXi(E-Xi(Z|Xi=xi*)) + EXi(V-Xi(Z|Xi=xi*))

 (abbr.)= V(E(Z|Xi)) + E(V(Z|Xi))

 = main effect of Xi on Z + residual

Dividing the above equation by V(Z) results in:

 Si = 1 - E(V(Z|Xi)) / V(Z) 1st order sensitivity index
 = V(E(Z|Xi)) / V(Z)
 є [0,1]

Si indicates by how much V(Z) would be reduced on average if factor Xi could be fixed. The larger Si the
more influential is factor Xi.

-22- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

In parallel, z(x1 ,…, xk) can be developed in a high dimensional model representation HDMR (Rabitz et al.,
1999) of 2k terms as

 z(x1 ,…, xk) = z0 + zi + zij + … + …zm…s + … + z12…k (1 ≤ i < j < … < m … < s … ≤ k)

with
 z0 = constant
 zi = zi(xi)
 zij = zij(xi,xj)
 …
 zm…s = zm…s(xm ,…, xs)
 …
 z1…k = z1…k(x1 ,…, xk)

This decomposition is unique provided that the factors x1 ,…, xk are orthogonal. A necessary condition for
orthogonality of the factors x1 ,…, xk is that they are uncorrelated. With this it holds the following ANOVA-
HDMR

 V(Z) = Vi + Vij + … + …Vm…s + … + V12…k

and it can be shown that

 Vi = V(E(Z|Xi))
 Vij = V(E(Z|XiXj) - (Vi + Vj)

…

Vm..s = V(E(Z|Xm…s) -  Vm…s of lower order
 …

 V1…k = V(E(Z|X1…k) -  V1…k of lower order

Dividing the ANOVA-HDMR by V(Z):

 1 = Si + Sij + … + …Sm…s + … + S12…k (*)

it holds

 Si = V(E(Z|Xi)) / V(Z) 1st order sensitivity index
 Sij = V(E(Z|XiXj) / V(Z) - (Si + Sj) 2nd order sensitivity index

…

Sm..s = V(E(Z|Xm…s) / V(Z) - Sm…s of lower order
 …

 S1…k = V(E(Z|X1…k) / V(Z) - S1…k of lower order

Sm…s indicates by how much V(Z) would be reduced on average if xm ,…, xs could be fixed.
The number of model evaluations (model runs) necessary to compute the complete set of sensitivity indices
is

 C = NMc*NMc*(2
k-1)

where NMc is the Monte Carlo sample size.

Saltelli defined another sensitivity index, the total sensitivity index as:

 STi = sum of all terms in (*) that include factor Xi total effect index

and showed that it can be computed by

 STi = 1 - V(E(Z|X-i)) / V(Z)

 = E(V(Z|X-i)) / V(Z)

STi is a measure for the total contribution to the output variation due to factor xi. The smaller STi (STi ≈ 0) the
more the factor xi can be fixed at any value over its range of uncertainty without significantly modifying the
output uncertainty expressed by V(Z).

3.1 (Ja 25, 2013) n -23- Multi-Run Simulation Environment SimEnv User Guide for Version

The following properties apply for 1st order sensitivity indices Si and total effect indices STi:

 0  Si  1 numerical irregularities may occur (orthogonality!)

 Si  1 ditto

 Si = 1 for additive models (without interaction effects) and
 orthogonal (uncorrelated) factors.

 STi ≥ 0 numerical irregularities may occur (orthogonality!)

 STi ≥ 1 ditto

 STi = 1 for additive models (without interaction effects) and
 orthogonal (uncorrelated) factors.
 STi ≥ Si

 STi = Si if xi is not involved in interactions with other factors

To determine the 1st order sensitivity indices Si and total effect indices STi Saltelli (Saltelli, 2002, Saltelli et al.,
2008) proposed the following cost efficient method:
For k factors x1 ,…, xk draw two samples of size n according to the marginal distributions of the factors: a
sample S and a resample R. Construct for each factor xi (i = 1 ,…, k) a resulting sample RSi by copying all
values from the resample R but for factor xi. For factor xi take the values from the sample S. In other words:
do not re-sample for RSi the factor xi that first order and/or total effect index is to be estimated.

for Ver ion 3.1 (Jan 25, 2013) s

















nkn

k

ss

ss







1

111





















nkniniinn

kiii

rrsrr

rrsrr







111

11111111

















)()(
1

)(
1

)(
11

i
nk

i
n

i
k

i

rsrs

rsrs























nkn

k

rr

rr







1

111

=

 Sample S Resample R Resulting sample RSi

Run model for the sample S, the re-sample R, and the k resulting samples RSi to get

 z(S) = (z1
(S) , …, zn

(S)) = (z(s11 ,…, s1k) ,…, z(sn1 ,…, z(snk))

 z(R) = (z1
(R) , …, zn

(R)) = (z(r11 ,…, r1k) ,…, z(rn1 ,…, z(rnk))

 z(SRi) = (z1
(SRi) , …, zn

(SRi)) = (z(sr11
(i) ,…, sr1k

(i)) ,…, z(srn1
(i) ,…, z(srnk

(i)))

)(/)()(

)(/)()(
2

2

SznSySy

SznRSzSz
S i

i 






To estimate Si: use model output from S and RSi

)(/)()(

)(/)()(
1

2

2

RznRzRz

RznRSzRz
S i

Ti 






To estimate STi: use model output from R and RSi

with ○ = scalar product













n

i

A
i

B
i

n

i

A
i

z
n

Az

zzBzAz

1

)(

)(

1

)(

1
)(

)()(

-24- Multi-Run Simulation Environment SimEnv User Guide

{x ,+} = X2,12

 (sub-)sample and
 (sub-)re-sample
 of size 12 each
 in the 2-dimensional
 factor space
 X2 = (x1 , x2)

o = X2,1
 default (nominal)
 numerical
 factor constellation
 of model M

Fig. 4.4 Sample for GSA_VB

4.4 Deterministic Factorial Design DFD

Deterministic Factorial Design DFD uses a deterministic strategy to sample Xk. It is the inspection of the
model in the factor space Xk where inspection points are set in a regular and well structured manner.

A DFD experiment can be interpreted and used in different ways:

 For scenario analysis:
to show how model behaviour changes with changes of factor values

 For numerical validation purposes:
to determine factor values in such a way that the output vector matches with measurement results of
the real system

 For deterministic error analysis:
to analyse how the model error is dependent on factor errors

 For a simulation-based control design:
to determine factor values in such a way that a goal function becomes an extreme

{x} = X2,12

 sample of size 12
 in the 2-dimensional
 factor space
 X2 = (x1 , x2)

o = X2,1
 default (nominal)
 numerical
 factor constellation
 of model M

Fig. 4.5 Sample for DFD

3.1 (Ja 25, 2013) n -25- Multi-Run Simulation Environment SimEnv User Guide for Version

SimEnv sampling strategy for DFD is a generalization of the one-dimensional case for X1, where the model
behaviour is scanned in dependence on deterministic sample of one factor x1. The general case for Xk de-
mands a strategy for scanning m-dimensional spaces in a flexible manner. Based on the predecessors of
SimEnv (Wenzel et al., 1990, Wenzel et al., 1995, Flechsig, 1998) subspaces of the m-dimensional factor
space can be scanned on the subspace diagonal (parallel in a one-dimensional hyperspace) or completely
for all dimensions (combinatorially on a grid) and both techniques can be combined. Besides this regular
scanning method an irregular technique is possible.

The resulting number of single simulation runs for the experiment depends on the number of factor samples
per dimension of the scanned factor space and from the selected scanning method. An experiment is de-
scribed by the names of the involved factors, their numerical sampling values and their combination (scan-
ning method). Experiment post-processing can resolve the scanning method again and output results as
projections on multi-dimensional factor subspaces.

Fig. 4.6 describes a Deterministic Factorial Design by an example.

In the left scheme (a) the two-dimensional factor space X2 = (p1 , p2) is scanned combinatorially,
resulting in 4*4 = 16 model runs.

The middle scheme (b) represents a parallel scanning of these two factors at the X2 diagonal,
resulting in 1+1+1+1 = 4 model runs.

The right scheme (c) shows a complex scanning strategy of the 3-dimensional factor space
X3 = (p1 , p2 , p3),
resulting in (1+1+1+1)*3 = 12 model runs.

Each filled cross x in Fig. 4.6 represents a sample point in the factor space and finally a single
model run of the experiment.

Example 4.1 DFD examples for scanning multi-dimensional factor spaces

 (a) (b) (c)

Fig. 4.6 DFD examples for scanning multi-dimensional factor spaces

-26- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

4.5 Uncertainty Analysis – Monte Carlo Method UNC_MC

Monte Carlo analysis UNC_MC uses a non-deterministic strategy to sample Xk,n. An UNC_MC experiment in
SimEnv is a perturbation analysis with pre-experiment factor perturbations.

{x} = X2,12

 (sub-)sample of size 12
 in the 2-dimensional
 factor space
 X2 = (x1 , x2)

o = X2,1
 default (nominal)
 numerical
 factor constellation
 of model M

Fig. 4.7 Sample for UNC_MC

Theoretically, with a Monte Carlo analysis moments of a state variable z can be computed as

 M(m){z} = ∫...∫ z(Xk)
m * pdf(Xk) dXk

 Xk

with z(Xk) state variable z as a function of Xk

 pdf(Xk) probability density function of Xk

 M(m){z} m-th moment of the state variable z with respect to the
 probability density function pdf

By interpreting the probability density function pdf(Xk) as the error distribution in the factor space Xk it is pos-
sible to study error propagation in the model. On the other hand Monte Carlo analysis can be interpreted as
a stochastic error analysis, if there are measurements of the real system for z.

For a numerical experiment in SimEnv it is assumed that the probability density function pdf(Xk) can be de-
composed into marginal (independent) probability density functions pdfi for all factors xi of Xk

 k

 pdf(Xk) =  pdfi(xi)
 i=1

and the k-dimensional integral is approximated by a sequence of N single simulation runs of the model
(“Monte Carlo runs”) where the numerical factor values all of k factors xij of xi (1 ≤ i ≤ k, 1 ≤ j ≤ N) are sam-
pled according to the marginal probability density function pdfi.
On the basis of these assumptions, the statistical measures in Tab. 4.3 can be computed during perform-
ance of a post-processing session from an UNC_MC experiment.

3.1 (Ja 25, 2013) n -27- Multi-Run Simulation Environment SimEnv User Guide for Version

Tab. 4.3 Statistical measures for an UNC_MC experiment
 N = number of Monte Carlo runs,
 z1 ,..., zN, z11 ,..., z1N, z21 ,..., z2N are realizations of state variables z, z1 and z2. resp.
 N N

 indices for sums , products  and extremes run from 1 to N:  ,  , min , max
 i=1 i=1 i=1,...,N i=1,...,N

Statistical measure

Definition (*)

minimum min(z) = min (zi)

maximum max(z) = max (zi)

sum sum(z) =  zi

arithmetic mean avg(z) =  zi / N

variance var(z) =  (zi – avg(z)) 2 / (N - 1)

skewness skw(z) =  (zi – avg(z)) 3 / (N * var(z) 3/2)

kurtosis krt(z) =  (zi – avg(z)) 4 / (N * var(z) 2) - 3

range rng(z) = max(z) – min(z)

geometric mean avgg(z) = ( zi)1/N

harmonic mean agvh(z) = N / (1 / zi)

weighted mean (w) avgw(z) =  zi * wi /  wi w : weight

correlation
cor(z1,z2) =  (z1i – avg(z1)) * (z2i – avg(z2)) /

   (z1i – avg(z1))2 *  (z2i – avg(z2))2

covariance cov(z1,z2) =  (z1i – avg(z1)) * (z2i – avg(z2)) / (N – 1)

linear regression coefficient
to forecast z2 from z1

reg(z1,z2) = ( (z1i – avg(z1)) * (z2i – avg(z2))) /

 ( (z1i – avg(z1))2)
It is: z2 = reg(z1,z2) * z1 + avg(z2) – reg(z1,z2) * avg(z1) + error

median
med(z) = middle value from increasingly ordered { zi } (N = odd)
 mean of the two middle values from { zi } (N = even)

quantile (p)
qnt(p)(z) = that value from increasingly ordered { zi }
 which corresponds to a cumulative frequency of N*p/100
 qnt(50)(z) = med(z)

confidence interval
boundaries ()

cnf()(z) = avg(z)  t,N-1
  var(z) / N

  : probability of error
 t,N : significance boundaries of Student distribution

heuristic probability density
function

hgr(class)(z) = number of zi with classmin  zi < classmax

 classmin, classmax : boundaries of equidistant classes

-28- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

Tab. 4.4 summarizes those probability density functions that are pre-defined in SimEnv for factors to be per-
turbed. Additionally, SimEnv offers to import random number samples in the course of experiment prepara-
tion.

Tab. 4.4 Probability density functions

Distribution

Short-
cut

Probability density function pdf

Distribution parameters

uniform

U(a,b)
pdf(x) =

ab

1


 if x  [a,b]

pdf(x) = 0 otherwise

a lower bound
b upper bound > a

it is: mean = (a+b) / 2
 standard deviation =
 ______________________ __________________ ____

  (b-a)2 / 12

normal N(,2)
pdf(x) =

 



















 2

2

2

x
exp

2

1

 mean
 standard deviation > 0

lognormal

L(,2)
pdf(x) =

 









 


2

2

2

ln(x)
exp

2x

1






 if x > 0

pdf(x) = 0 otherwise


 > 0

it is: ln(x) ~ N(,2)

exponential E()
pdf(x) = 













x
exp

1
 if x > 0

pdf(x) = 0 otherwise

 mean > 0

it is: standard deviation = 

The number of runs to be performed during an UNC_MC experiment has to be specified. An experiment is
described by the factors involved in the analysis, their distribution and the appropriate distribution parame-
ters.
Optionally, a stopping rule is helpful to limit the number of simulation runs in an experiment. In a stopping
rule statistical measures from model output z of all performed single runs are calculated during the experi-
ment after each single model run to decide whether to stop the whole experiment. SimEnv supplies a simple
rule-of-thumb stopping rule from Schuyler (1997), using the standard error of mean statistic

  var(z) / N with N = number of already performed single runs

and checks it against the mean avg(z).

3.1 (Ja 25, 2013) n -29- Multi-Run Simulation Environment SimEnv User Guide for Version

4.6 Local Sensitivity Analysis LSA

Local sensitivity analysis LSA uses a deterministic sampling strategy in ε-neighbourhoods of the numerical
default constellation Xk,1 of the model M. For each value xi from the default (nominal) factor constellation Xk,1
and each positive εj from the ε-neighbourhoods (ε1 ,…, εm) two members (x1 ,..., xi-1 , xi±εj , xi+1 ,..., xk) of the
resulting sample are generated. The sample size n is given by 2*m*k. Running the model for this sampling
set serves to determine sensitivity functions.

In classical systems’ theory, model sensitivity of a model state variable z with respect to a factor x is the
partial derivative of z after x: δz/δx. In the numerical simulation of complex systems a finite sensitivity func-
tion is preferred, because it can be obtained without model enlargements or re-formulations. It is a linear
approximations of the classical model sensitivity measure (Wierzbicki, 1984). Contrary to a global sensitivity
analysis a local one covers the model’s sensitivity in the neighbourhood of the default (nominal) factor con-
stellation.

Local sensitivity measures as well as measures which reflect model output linearity and/or symmetry nearby
Xk,1 can be used for localizing modification-relevant model parts as well as control-sensitive factors in control
problems. On the other hand, identification of robust parts of a model or even complete robust models
makes it possible to run a model under internal or external disturbances. Sensitivity analysis in SimEnv ex-
periment post-processing is based on finite sensitivity, linearity, and symmetry measures, which are defined
as in Tab. 4.5.

{x} = X2,12

 sample of size 12
 in the 2-dimensional
 factor space
 X2 = (x1 , x2)

o = X2,1
 default (nominal)
 numerical
 factor constellation
 of model M

Fig. 4.8 Sample for LSA

Tab. 4.5 Local sensitivity, linearity, and symmetry measures
 for a state variable z, a selected factor x from Xk,1 and a selected value ε from (ε1 ,…, εm)

 Definition

Local
measure

 Absolute measure Relative measure

sensitivity
measure

sens_abs(z,±ε) =
ε

ε


 z(x) -)z(x sens_rel(z,±ε) = sens_abs(z,±ε)

z(x)

x

linearity
measure

lin_abs(z,ε) =
ε

z(x))-ε)-(z(xz(x)) - ε)(z(x  lin_rel(z,ε) = lin_abs(z,ε)
z(x)

x

symmetry
measure

sym_abs(z,ε) =
ε

ε)-z(x - ε)z(x 
 sym_rel(z,ε) = sym_abs(z,ε)

z(x)

x

-30- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

Accordingly, local measures of the model with respect to a factor are always expressed as a measure of a
model’s state variable z, usually at a selected time step within a surrounding neighbourhood ε of a factor
value t. That is why the conclusions drawn from a LSA experiment are only valid locally at Xk,1 with respect
to the whole factor space Xk. Additionally, local measures only describe the influence of one factor xi from
the whole vector Xk on the model’s dynamics.

As stated above, the sensitivity measures reflect the classical sensitivity functions in a neighbourhood of Xk,1.
The larger the absolute value of the measure the higher is the influence of an incremental change of the
factor x on the model output z. The linearity measures map the linear behaviour of z nearby Xk,1. If the linear
measure is zero z shows a linear behaviour with respect to x. The symmetry measures map the symmetric
behaviour of the z nearby Xk,1. If the symmetry measure is zero z shows a symmetric behaviour with respect
to x. The larger the absolute values of the latter two measures the higher is the nonlinear / non-symmetric
behaviour of z with respect to x.

The absolute measures are best suited to compare the influence of different factors {x} on the same state
variable z while due to their normalization factor the relative measures enable comparison of the influence of
one factor x on different state variables {z}.

From the local measures of table Tab. 4.5 additional measures can be derived on demand, e.g.,
abs(sym_abs(z, ε)).

A LSA experiment is described by the names of the factors x to be involved and the increments ε. The num-
ber of runs for the experiment results from the number of factors and increments: two runs per factor for
each increment plus one run with the default (nominal) values of the factors. Local sensitivity functions are
calculated during experiment post-processing.

4.7 Bayesian Technique – Bayesian Calibration BAY_BC

Bayesian calibration is a method to reduce uncertainty about model factors using Bayesian techniques. The
basic approach is to qualify given marginal prior probability density function pdf(Xk) of the factors Xk by deriv-
ing a representative sample. This is achieved by taking into account a vector of individual measurement
values represented by their averages avgd and their accompanied measurement errors expressed as vari-
ances vard. They are measured from the real system that correspond to individual elements of state vari-
ables / model output z(Xk) / results from the model. For the meaning of pdf, Xk and z check Section 4.5.

Bayes’ theorem

 pdfpo (prior | avgd , vard) = pdfpr (prior) * L (avgd , vard | prior) / pdfc (avgd , vard)

is applied, with

 pdfpo (prior | avgd , vard) posterior distribution given data (avgd , vard)

 pdfpr (prior) prior distribution

 L (avgd , vard | prior) likelihood function of the data (avgd , vard)
 given model output z(Xk)

 pdfc (avgd , vard) normalization constant.

If the data avgd have a low measurement error vard then the posterior distribution is expected to represent
less uncertainty than the prior distribution. Since Bayes’ theorem in general can not be solved analytically for
a simulation model a representative sample for the posterior distribution is generated by a Markov chain
Monte Carlo method MCMC. In SimEnv the Metropolis-Hastings algorithm is used for MCMC and the argu-
mentation and implementation in van Oijen (2008) is followed. The Metropolis-Hastings algorithm itself per-
forms a random walk through the factor space. A chain of visited points is generated where a candidate for
the posterior distribution / for the chain is generated randomly and is accepted or rejected dependent on the
Metropolis ratio. The candidate point in the factor space is found by a multivariate normal jump from the pre-
viously accepted point in the chain.

The individual probability density function used for the likelihood function is determined by the distribution of
the measurement errors. Here the common assumptions are made that the measurement errors are nor-

3.1 (Ja 25, 2013) n -31- Multi-Run Simulation Environment SimEnv User Guide for Version

mally distributed, uncorrelated and additive. Consequently, the likelihood function follows a normal distribu-
tion L ~ N(avgd , vard).

The Metropolis ratio

 MR = post_prob (candidate point) / post_prob (prev. accepted point)

with the posterior probability

 post_prob (•) = pdfpr (•) * L (avgd , vard | •)

is used to decide whether a proposed candidate point in the factor space is accepted or not:

 MR > 1 if and only if the candidate point has a higher posterior probability than
 the previously accepted point:
 candidate point is accepted

 MR ≤ 1 else:
 candidate point is accepted with probability MR

The multivariate normal jump can result in a candidate point that is located outside the domain of definition
of the prior distribution pdfpr(Xk) and consequently has a prior probability of zero. This may be the case for
distributions with hard coded lower and/or upper bounds, e.g., the uniform distribution. While for an out-
ranged candidate point a single simulation run will not be performed such a candidate does not contribute to
the inspection of the factor space for a given chain length but reduces the efficiency of the algorithm in terms
of the ratio between outranged candidates and the chain length. That’s why, SimEnv offers beside the stan-
dard Metropolis-Hastings algorithm a modified version. The so-called Metropolis-with-Reflection algorithm
(van Oijen, 2008) can reduce drastically the number of outranged candidates that are not subject to the Me-
tropolis ratio MR. The algorithm tries to “reflect back” a jump outside the definition domain again within the
distribution bounds.

The chain can be stopped when it has “converged”, i.e., it has explored the parameter space adequately.
Visual analysis of convergence can be assisted by trace plots where the value of a sampled factor is plotted
versus the run number (see Fig. 4.9). Nevertheless, in SimEnv the chain length has to be specified as a
fixed value before the experiment and is not subject to any stopping criterion. For more information on
MCMC trace plots check for example SAS (2012).

for Ver ion 3.1 (Jan 25, 2013) s

Fig. 4.9 Trace plots of a MCMC chain for one factor
 Chain length: 100000 runs; left: chain does not converge, right: chain converges

run number

run number

-32- Multi-Run Simulation Environment SimEnv User Guide

As for the experiment type UNC_MC the prior distribution is assumed to be decomposed into marginal distri-
butions pdfpr(Xk) for k all individual factors

 k

 pdfpr(Xk) =  pdfi(xi)
 i=1

Covariances between the individual factors can be specified to determine the direction of the multivariate
normal jump. The Metropolis-with-Reflection algorithm does not allow for inter-factor nonzero covariances as
normally they contradict the requirement in the Metropolis-Hastings algorithm that a jump in the factor space
from a point p1 to a point p2 has the same probability as from p2 to p1.

Furthermore, SimEnv enables to compute the likelihood function and finally the posterior probability for dif-
ferent levels of complexity from data files dfi composed from a number of data points avgd and vard that cor-
respond to individual elements of model state variables / output variables / results yi:

Compose the posterior probability with a likelihood function

 for the single likelihood function case
from one data file and its corresponding result: df1 with y1

 for the multiple likelihood function case
from l > 1 data files each corresponding to its result: df1 with y1 ,…, dfl with yl

 (sequence of single likelihood functions)

 for the multiple setting likelihood function case
from performing each single run for m > 1 settings and
for each setting from l ≥ 1 setting-specific data files
each corresponding to its setting-independent result: df1

s1 with y1 ,…, dfl
s1 with yl

 …
 df1

sm with y1 ,…, dfl
sm with yl

 (sequence of multiple likelihood functions)

Example:

Single likelihood function case: a forest growth model is applied for one patch and
 one likelihood function for the tree diameter is used

Multiple likelihood function case: a forest growth model is applied for one patch and
 likelihood functions for tree diameter and tree height are
 used

Multiple setting likelihood function case: a forest growth model is applied for several patches and
 one or several likelihood functions are used

The resulting likelihood function is always the product of the individual likelihood functions. The measure-
ment error expressed as the variance determines the influence of the individual likelihood functions: The
smaller the measurement error the more influential the individual likelihood function and finally the individual
posterior probability.
Settings for the multiple setting likelihood function case may differ e.g. in model calibrations or site condi-
tions. Such an experiment design is useful for identifying an overall posterior sample rather than individual
setting-related samples.

3.1 (Ja 25, 2013) n -33- Multi-Run Simulation Environment SimEnv User Guide for Version

4.8 Optimization – Simulated Annealing OPT_SA

The optimization experiment OPT_SA in SimEnv uses a stochastic strategy to sample Xk. It is an experiment
type where the sample is generated during experiment performance and not at experiment preparation. The
general approach of any single-objective optimization method is to find the global minimum of a cost function
(synonym: objective function)

 F(Z) = F(ST(Xk))

that depends on model’s state variables Z and consequently on the experiment factors Xk = (x1 ,..., xk):

 minimize F(Z(x1 ,..., xk))

 subject to xi min ≤ xi ≤ xi max for i = 1 ,..., k

Often, F represents a distance measure in a specific metric between selected model state variables and
reference data (measurement values of the real system or simulation results from an other model). Conse-
quently, optimization can be used for model validation and control design to find optimal values of model
factors in such a way that model state variables are close to reference data. In SimEnv the cost function is
specified in experiment preparation as a single run result formed from model output (and reference data)
where an operator chain is applied on (cf. Section 6.7 and Chapter 8). The value of the cost function is cal-
culated directly after the current single run has been performed.

SimEnv uses a gradient free optimization approach that is called “Simulated Annealing” and is a generali-
zation of a Markov Chain Monte Carlo MCMC method (check also Section 4.7) for examining the state equa-
tions of n-body systems. The concept is based on the manner in which metals recrystalise in the process of
annealing. In an annealing process a melt, initially at high temperature Temp and disordered, is slowly
cooled so that the system at any time is approximately in thermodynamic equilibrium. As cooling proceeds,
the system becomes more ordered and approaches a "frozen" ground state at Temp = 0. Hence the process
can be thought of as an adiabatic approach to the lowest energy state E. If the initial temperature of the sys-
tem is too low or cooling is done insufficiently slowly the system may become quenched forming defects or
freezing out in metastable states (i.e. trapped in a local minimum energy state).

The annealing scheme is that an initial state of a thermodynamic system is chosen at energy E and tempera-
ture Temp, holding Temp constant the initial configuration is perturbed and the change in energy dE is com-
puted. If the change in energy is negative or zero the new configuration is accepted. If the change in energy
is positive it is accepted with a probability given by

 p = exp(-dE/(kB*Temp))

where kB denotes the Boltzmann constant. This process is then repeated sufficient times to give good sam-
pling statistics for the current temperature, and then the temperature is decremented and the entire process
repeated until a frozen state is achieved at Temp = 0. The feature of accepting by a certain probability a
state with a higher energy than the previous state allows for "climbing" out from local sub-optimal energy
states during simulated annealing.

By analogy the generalization of this Monte Carlo approach to optimization problems is straight forward:

 The current state of the thermodynamic system is analogous to the current solution to the optimiza-
tion problem

 The energy equation for the thermodynamic system is analogous to the objective function F, and

 The ground state at Temp = 0 is analogous to the global minimum of F.

The major difficulty in implementation of a simulated annealing algorithm is that there is no obvious analogy
for the temperature Temp with respect to a free parameter in the optimization problem. Furthermore, avoid-
ance of entrainment in local minima (quenching) is dependent on the "annealing schedule", that is, the
choice of initial temperature, how many iterations are performed at each temperature, and how much the
temperature is decremented at each step as cooling proceeds (after Gray et al., 1997). Ideally, when local
optimization methods are trapped in a poor local minimum, simulated annealing should "climb" out.

-34- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

The algorithm applied in SimEnv is a very fast simulated re-annealing method, named Adaptive Simulated
Annealing ASA (Ingber 2004, Ingber 1989 and Ingber 1996). For the above stated probability p the term
kB * Temp is chosen as

 kB * Temp = Temp0 * exp(-c*ta

1/m)

where ta is the annealing time.

The ASA schedule is much faster than Boltzmann annealing, where kB * Temp = Temp0 / ln(ta) and faster
than fast Cauchy annealing, where kB * Temp = Temp0 / ta. For the ASA method the cost function F over the
bounded factor space Xk has to be non-convex.

{x} = X2,12
 sub-sample of size 31
 from a sample
 in the 2-dimensional
 factor space
 X2 = (x1 , x2)

o = X2,1
 default (nominal)
 numerical
 factor constellation
 of model M

Fig. 4.10 Part of a sample for OPT_SA, generated during the experiment

3.1 (Ja 25, 2013) n -35- Multi-Run Simulation Environment SimEnv User Guide for Version

-36- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

5 Model Interface

To use any model within SimEnv it has to be interfaced to the simulation environment. SimEnv offers easy
coupling techniques at programming language and shell script level. While at language level SimEnv func-
tion calls have to be implemented into model source code to address and modify numerically experiment
factors, i. e. model parameters, initial values or drivers of the current single run out of the run ensemble and
to output simulation results, at the shell script level communication between the simulation environment and
the model can be based on operating system information exchange methods. To plug the model into the
simulation environment the variables of the model to be output during experiment performance and to be
potentially processed during experiment post-processing have to be declared in the model output description
file <model>.mdf. Additionally, the model itself has to be wrapped into a shell script <model>.run.
Model interfacing is related to the transfer of sampled numerical values of model factors under investigation
from the simulation environment to the model and to the transfer of model output variables under investiga-
tion from the model to the simulation environment for later experiment post-processing. Interfacing is sup-
ported at the programming language level for C/C++, Fortran, Python, Java, Matlab, Mathematica and
GAMS programming languages, the model is implemented in and at shell script level.

5.1 General Approach

The SimEnv model interface has to supply a link between the simulation environment and the model and has
to address two aspects:
For each single run from the run ensemble

 all experiment factors as defined in the experiment description file <model>.edf (cf. Section 6.1)
have to be associated to the corresponding model source code entities (parameters, initial values,
drivers). When performing the model these entities are modified numerically by the sampled values
and the default (nominal) values of the factors according to the specified factor adjustment types.
The process of such a modification is called an adjustment. The factor adjustment type specifies
how to interfere the current sampled value with the default (nominal) value of the entity (cf. Section
6.1).

 all model output variables as defined in the model output description file <model>.mdf (cf. Section
5.3) have to be associated to the corresponding model entities (in general, model state variables)
and these entities have to be output to SimEnv data structures during the performance of the model.

Implementation of this general approach is based on minimal source code manipulation of the model.
SimEnv supplies a library with a set of simple functions to interface the model to the simulation environment.
Generally speaking,

 each experiment factor and

 each model output variable

demand one additional SimEnv function call in the model source code. According to Tab. 5.1 model interface
functions are generic.

3.1 (Ja 25, 2013) n -37- Multi-Run Simulation Environment SimEnv User Guide for Version

Tab. 5.1 Generic SimEnv model interface functions
 (for language <lng> cf. Tab. 5.2)

Function name

Description

simenv_ini_<lng> open model coupling interface

simenv_get_<lng> associate a model source code entity (parameter / initial value
/ driver) with an experiment factor from <model>.edf and as-
sign the adjusted factor value to the entity.

simenv_get_run_<lng> get the current single run number of the run ensemble

simenv_put_<lng> associate an entity (in general, an array / a state variable) of
the model with a model output variable from <model>.mdf and
output the entity to SimEnv data structures

simenv_slice_<lng> enable slicing, i.e., a repetitively partial output of a model out-
put entity.

simenv_end_<lng> close model coupling interface

With the function simenv_slice_<lng> a slice / portion an output entity / array / variable can be ouput to
SimEnv data structures by a subsequent function call of simenv_put_<lng>. In particular, such slicing can be
applied formodels with multi-dimensional output variables where at least one dimension is omitted in the
state variable declaration in the model the source code because the dynamics for this dimension is calcu-
lated in place. The simenv_slice_<lng>-function ensures that model output over the omitted source code
dimension can be handled in experiment post-processing in common.

Example:

A typical example is a model to study the temporal dynamics of a process
on a latitude-longitude grid by analyzing after the experiment a variable
out_var(lat,lon,time).

If in the model source code the corresponding array mod_var(lat,lon) only depends
on lat and lon since the temporal dynamics is modeled in place then this mismatch
is handled by the SimEnv interface slice function.

Fig. 5.1 shows the conceptual scheme for the SimEnv interface for a Fortran model.

The alignment of the contents of the SimEnv model output and experiment description file and the used
SimEnv model interface functions in the model source code is dominated by the description files: These files
determine the experiment and the model source code is expected to be well adapted. Nevertheless, this
paradigm is implemented in a flexible manner:

 Entry in SimEnv description file missed and
corresponding function call in model source code available:
A function call in the source code where an experiment factor from <model>.edf and/or a model out-
put variable from <model>.mdf is not associated with is handled during the model performance in
such a way that the factor is unadjusted and/or the model output variable is not output. In particular,
the value of a factor remains the value it had in the model source code before calling the
simenv_get_* function call.
The factor and/or model output variable is not stored in SimEnv experiment output data structures
and can not be addressed in SimEnv experiment post-processing.
This approach enables adaption of the model source code for a number of potential experiment fac-
tors and model outputs where only a subset of these factors is under consideration in a special ex-
periment and/or requested for model output.

-38- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

 Entry in SimEnv description file available and
corresponding function call in model source code missed and/or unperformed:
A model entity that is defined in the corresponding experiment description file <model>.edf as a fac-
tor and/or in the model output description file <model>.mdf as an output variable and where the cor-
responding SimEnv functions in the model source code are missing can be addressed during ex-
periment post-processing. They are completely undefined.
For IEEE SimEnv model output such a factor and/or model output variable is set to its corresponding
nodata value. For NetCDF output the factor and/or model output variable is not available from / un-
defined in the NetCDF file(s).

A regular matching between the entity in a model output description file and the used SimEnv interface func-
tion in the model source code as well as the above exceptions are reported to the interface log file
<model>.mlog (cf. Tab. 11.8).

Native model output does not influence performance of the model in SimEnv and there is no necessity to
disable this output when the model is interfaced to SimEnv. The user only has to ensure that for an experi-
ment control by the Distributed Resource Manager DRM the outputs of different single runs do not conflict
with each other. Normally, this can be ensured by performing each single run in a special run-related sub-
directory (cf. Example 15.10). user model native output to the terminal is redirected during the experiment to
the SimEnv experiment log file <model>.nlog.

For running an interfaced model outside SimEnv it comes with a dummy library to link / run the model with.
Its corresponding interface functions ensure the same model dynamics as before interfacing the model to
SimEnv (cf. Section 5.12).

Currently, there are SimEnv interfaces for Fortran, C/C++, Python, Java, Matlab, Mathematica and GAMS
models. Additionally, there is an interface implementation at shell script level and for ASCII files. Mixed lan-
guage models as well as distributed models (cf. Section 5.11) can be interfaced to SimEnv.

For multi-dimensional model output the simenv_put_<lng> function expects the output stored in a model
source code array (the “entity” as described in Tab. 5.1 above) according to the order model that is used by
the corresponding language <lng>. The sequence of the dimensions of the source code array is determined
by the sequence of the coordinates for the associated variable in the file <model>.mdf (check Section 5.2).

Tab. 5.2 Language suffices and multi-dimensional array order models for SimEnv model interface
functions
(for the Mathematica and GAMS interface check Section 5.6 and 5.7, resp.)

Model
source code

<lng>

Check
Section

Order model
for simenv_put_<lng>

(cf. Section 15.7 – Glossary)

ASCII file as 5.9 column-major

C/C++ c 5.4 row-major

Fortran f 5.4 column-major

Java ja 5.5 row-major

Matlab m 5.5 column-major

Python py 5.5 row-major

Shell script sh 5.8 simenv_put_sh not available –
check Section 5.8

3.1 (Ja 25, 2013) n -39- Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

Description Files

Experiment description file <model>.edf Model output description file <model>.mdf

 factor edf_factor type ... variable mdf_var type ...
 factor edf_factor default ... { variable mdf_var coords ...
{ factor edf_factor specific info } variable mdf_var index_extents ... }

Model

Model wrapper shell script <model>.run

 : . $SE_HOME/simenv_ini_sh
associate ...
description file entity # perform model with model source code from below:
with model
source code entity ...

. $SE_HOME/simenv_end_sh For transparency reasons:
 Description entity name
 should be the same as
 source code entity name
 (unlike this example)
Fortran model source code (*)

program model
...
integer*4 simenv_ini_f, simenv_get_f, simenv_put_f, simenv_end_f, simenv_sts
real*4 model_factor ! source code entity

Fig. 5.1 Conceptual scheme of the model interface for C/C++, Fortran, Python, Java and Matlab

dimension model_var (...) ! source code entity
...
simenv_sts = simenv_ini_f ()
...
model_factor = ...
simenv_sts = simenv_get_f (‘edf_factor‘ , model_factor , model_factor)
...
model_var(...) = ...
simenv_sts = simenv_put_f (‘mdf_var‘ , model_var)
...
simenv_sts = simenv_end_f ()
...
end

model factor is the default factor value
as specified in the previous statement
to be used as the adjusted value if
‘edf_factor’ is undefined in <model>.edf

model_factor is
the adjusted
factor value field model_var is

output as mdf_var

(*): for C/C++/Python in a likewise manner

-40- Multi-Run Simulation Environment SimEnv User Guide

5.2 Coordinate and Grid Assignments to Variables

To each model output variable that is to be stored during the perfomance of a SimEnv experiment to SimEnv
output data structures

 A dimensionality dim > 0

 Extents ext(i) > 1 with i=1 ,..., dim

 Coordinates coord(i) with i=1 ,..., dim

are assigned to.

The dimensionality is the number of dimensions the model output variable has. A dimensionality of 0 corr-
sponds to a single scalar, dimensionality of 1 (2) corresponds to to one (two) dimension(s) and the values of
the variable are represented by a vector (a matrix). In general, a dimensionality of n corresponds to an n-
dimensional array.

The extent relates to each dimension of a model output variable and represents the number of elements in
that dimension. Extents are always greater than 1. A 4x5 matrix (matij) i=1,…,4 j=1,…,5 has an extent of 4 for the
first dimension and of 5 for the second one.

To each dimension a coordinate is assigned to. Coordinates have a name and a well defined number of
coordinate values. A subset (or even the whole set) of values of a coordinate is assigned to the dimension of
that variable. Consequently, the number of coordinate values is the extent of this dimension. A single model
output variable must not have identical coordinate names but can have identical coordinate values.

Finally, coordinate axes are defined. A coordinate axis is a strictly monotonic ordered sequence of coordi-
nate values and has a description and a unit. A complete coordinate axis or a part of a coordinate axis is
assigned to each dimension of a model output variable. Consequently, each variable is defined on a coordi-
nate system formed from the assigned coordinates.

For reasons of simplification in result evaluation with visualization techniques coordinate systems are as-
sumed as rectilinear and block-structured. Rectlinear refers to an orthogonal / Cartesian coordinate system
and block-structured to variable distances between adjacent coordinate values. A model output variable
values then exist on the rectilinear grid, spanned up from the coordinate values of the coordinate axes. The
left side of Fig. 5.2 shows a model output variable of dimensionality 2. The first dimension has an extent of 5
and is associated with coordinate axis coord1.
Variables of dimensionality 0 do not have extents and coordinate / coordinate axes / coordinate system as-
signments.

Since coordinate axes can be assigned to model output variable dimensions in a flexible manner, model
output variables can exist on the same coordinate system or completely or partially disjoint coordinate sys-
tems.

Rectilinear grid: supported by SimEnv

Curvilinear grid: not supported by SimEnv

Fig. 5.2 Grid types

3.1 (Ja 25, 2013) n -41- Multi-Run Simulation Environment SimEnv User Guide for Version

-42- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

5.3 Model Output Description File <model>.mdf

In the model output description file <model>.mdf the model output variables are declared that are to be out-
put by a SimEnv model coupling interface function in the model (code) and are to be post-processed after

im exibly assigned to model output
le is always defined on a coordinate

exper ent performance. Additionally, coordinate axes are defined and fl
variab s. Consequently, a model output variable with a dimensionality > 0
system, formed from the assigned coordinates to the variable.

Tab. 5.3 Elements of a model output description file <model>.mdf
 (line type: m = mandatory, o= optional)

Keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

general <nil> descr o <string> model output description any

descr o 1 <strin coordina tion g> te axis descrip

unit o 1 <string> coordinate axis unit

coordinate <co_name>

values e of

m 1 <val_list> strictly monotonic sequenc
coordinate values <co_vals>
(for syntax see Tab. 12.5)

descr o 1 <string> variable description

unit o 1 <string> variable unit

type m 1 see Tab. 5.4 variable type in the simulation
model

coords e
-

e1> s by
ch dimension of

 implicitly the dimen-

se
be
low

1 <co_nam
,...,
<co_namen>

assigns a coo
its name to ea

rdinate axi

the variable. Determines in
this way
sionality n of the variable.

coord_extents see

low

1 <co_val >:

,...,
<co_valn1>: ate

be-
11

<co_val12>

<co_valn2>

assigns start and end coordi-
nate real values from each
coordinate axis to the vari-
able. If missing, all coordin
values will be used from all
assigned coordinates.

variable <var_name>

index_extents see
be-
low

1 <in_val >:

<in_valn1>: ad-
-

11

<in_val12>
,...,

<in_valn2>

assigns integer value start
and end indices for each
dimension to the variable.
Indices can be used to
dress the variable during ex
periment post-processing.

It is always a good idea that the model output variable na nd to e
simulation model code. Association between the two names is achieved by th nc-
on simenv_put_* (see below).

me correspo the name of the variable in th
e SimEnv model interface fu

ti

<model>.mdf is an ASCII file that holds this information. It follows the coding rules in Section 12.1 on page
203 with the keywords, names, sub-keywords, and values as in Tab. 5.3.

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -43-

To Tab. 5.3 the following additional rules and explanations apply:

 Coordinate names <co_name> and variable names <var_name> must differ from factor names <fac-
tor_name> in experiment description (cf. Section 6.1

) and from built-in and user-defined operator
names for experiment post-processing (cf. Section 8.5.4).

 Assignment of coordinate axes to variable dimensions and consequently of a grid to a variable is

ond to the grid structure in the model out-

 to be ordered in a strictly monotonic sequence. They may be non-


f a variable. This portion is addressed by its begin and end value

ensionality 0.

 e addressable during SimEnv
bles are equipped with indices

riment post-processing. It is advisable, that these two descriptions coincide. The

h

 al> and index values <in_val> are assigned in a one-to-one manner.

 s that do not exist on an assigned grid completely or partially, simply

 e model output variable in <model>.mdf.

tCDF

only used in experiment post-processing. Normally, the simulation model itself will also exploit the
same grid structure. Nevertheless, the grid structures of the model are defined autonomously in the
model in an explicit or implicit manner and do only corresp
put description file symbolically.
Model output variables with dimensionality 0 are not assigned to a coordinate axis. Consequently,
the sub-keyword coords is mandatory for variables with dimensionality > 0 and undefined for vari-
ables with dimensionality 0.

 The values of a coordinate have
equidistant and may be ordered in a decreasing sequence.

With the sub-keyword coord_extents only a portion of coordinate values of a coordinate axis can be
assigned to a dimension o
<co_vali1> and/or <co_vali2>. The number of coordinates values of the portion has to be greater than
1.

<co_vali1> > <co_vali2> for strictly increasing values of coordinates
<co_vali1> < <co_vali2> for strictly decreasing values of coordinates

This sub-keyword is optional for variables with dimensionality > 0 and undefined for variables with
dim

With the sub-keyword index_extents portions of variables are mad
experiment post-processing. In the same way multi-dimensional varia
in the simulation model they also have an index description in the model output description file for
purposes of expe
index range is described by a start and an end integer value index <in_vali1> and/or <in_val_exti2>.
The index set is a strictly increasing, equidistant set of integer values with an index increment of 1,

<in_vali1> < <in_vali2> ,
<in_vali1> ≤ 0 is possible.

This sub-keyword is mandatory for variables with dimensionality > 0 and undefined for variables wit
dimensionality 0.

Coordinate values <co_v

For multi-dimensional variable
assign formal coordinate axes to.

Specify at least on

 The model output description as specified by “general descr <string>” is used for Ne
model and/or post-processor output files (check Section 10.1.1).

Tab. 5.4 SimEnv data types

SimEnv data type
(synonyms)

Description Restriction

byte int*1 1 byte integer not for Python and Java models

short 2 bytes integer not for Python and Java models int*2

int int*4 4 bytes integer

float real*4 4 bytes real

double real*8 8 bytes real not for Python and Java models

-44- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

For the following Example 5.1 of a model output description file and the assigned grids for model output vari-
ables check Example 1.1 on page 7:

general de World with a resolution of scr
general descr 4° lat x 4° lon x
general descr 4 levels x 20 time steps
general descr Data centred per lat-lon cell
general descr This file is valid for all models
general descr world_[f | c | cpp | py | ja |
 m | sh | as]

coordinat la descr geographic latitude e t
coordinat la unit deg e t
coordinat la values equidist_end 88(-4)-88 e t

coordinat lo descr geographic longitude e n
coordinat lo unit deg e n
co at lo va equidist_end -178(4)17ordin e n lues 8

coordinate level descr atmospheric vertical level
coordinate level unit level no
coordinate level values list 1,7,11,16

coordinate time descr time in decades
coordinate time unit 10 years
coordinate time values equidist_nmb 1(1)20

variable atmo descr aggregated atmospheric state
variable atmo unit atmo_unit
variable atmo type float
variable atmo coords lat , lon , level , time
variable atmo index_e 1:45 , 1:90 , 1:4xtents , 1:20

variable bios descr aggregated biospheric state
variable bios unit bios_unit
variable bios type float
variable bios coords lat , lon , time
variable bios coord_exte 84.:-56. , nts 8.:178. , 1:20 -17
variable bios index_ex 1:36 , 1:90 , 1:20tents

variable atmo_ type int g
variable atmo_g coords time
variable atmo_g index_extents 1:20

variable bios_g type int

 Example files: world_[f | c | cpp | py | ja | m | sh | as].mdf

Example l>.m

 5.1 Model output description file <mod df e

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -45-

lon [deg]

lat [deg]

time [10 years]

-178

178

20

88
1

-56

84
(36,1,1)

(1,90,1)

(1,1,1)

(36,1,20)

(36,90,1)

(36 ,90,20)

(1,90 ,20)

(1,1 ,20)

-2

0

model variable
bios(lat,lon,time)

-88

2

Definition of model output variable bios refers to
Example 5.1 above.
The triples at the edges of the grid are
the indices of model output variable
bios(lat,lon,time) for the appropriate grid cells.

Fig. 5.3 Model output variable definition: Grid

5.4 Model Interface for Fortran and C/C++ Models

 assignment

Tab. 5.5 describes th ser models written in Fortran or C/C++
for Fortra

 to get sampled values of the experiment factors and to adjust them numerically by the factor default

e model interface functions that can be used in u
(postfix f n, c for C/C++)

(nominal) value for the current single run of the run ensemble and

 to output model results from the current single run.

In this table the input and output data types are documented for functions used in Fortran. For C/C++ the
orresponding data types are valid. c

All functions have a 4-byte integer function value (integer*4 and/or int). Implementation of the functions for
C/C++ is based on a call by reference for the function arguments.

Tab. 5.5 Model interface functions for Fortran and C/C++ models

Function name

Function
description

Arguments /
function value

Argument / function value
description

simenv_ initialize model

Perform al

 the model.
heck the semi-
utomated model
terface for al-

integer*4

(function value)

return code

ion multiple called:
 only the first call is executed.
= 2 I/O er
= 3 error mem
= 4 I/O error for simenv_edf_ n.tmp

structured representation of
del>.edf

n of

p

ini_[f | c]
(

coupling interface

simenv_ini_
[f | c]

= 0 ok
= 1 warning: funct

)

ways
as the first
SimEnv function
in
C
a
in
ternatives

ror for experiment output file
ory allocation

bi
 as the
 <mo
= 5 I/O error for simenv_mdf_bin.tmp
 as the structured representatio
 <model>.mdf
= 6 I/O error for <model>.sm
= 7 wrong single run number

-46- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

Function name

Function
description

Arguments /
function value

Argument / function value
description

character*(*)
factor_name
(input)

odel>.edf name of the factor in <m

real*4
factor_def_val
(input)

specified in
d

<model>.edf
def_val

default (nominal) factor value as
<mo el>.edf.
If factor_name is not defined in
then factor_adj_val is set to factor_

real*4
factor_adj_val

)

adjusted factor value

(output

simenv_
get_[f | c]
(
factor_name,
factor_def_val,
factor_adj_val

or

get_
[f | c]

n value) factor_def_val

)

get the resulting
adjusted value f
the factor to be
experimented with
in the current
single run

integer*4
simenv_

(functio

return code
= 0 ok
= 1 factor_name undefined:
 factor_adj_val :=

integer*4
simenv_run_int

current run number

(output)

character*6
simenv_
run_char
(output)

current run number with leading zeros

simenv_
get_run_[f | c]
(
simenv_run_int,
simenv_
run_char

get run number of
the current run as
an integer value
and a character
string

run

alue)

return code
= 0 ok

)

integer*4
simenv_get_
_[f | c]
(function v

character*(*)
e

name of the variable in <model>.mdf to be output
var_nam
(input)

dimension
field(...),
type according
to <model>.m
(input)

df

 riable var_name to be stored as simula-
tion results
data of va

si
pu

menv_
t_[f | c]

(
var_name,
field
)

output model re-
sults to native
SimEnv output
file(s)

4
_

return code

me undefined
= 2 I/O error for experiment output file

integer*
simenv_put
[f | c]
(function value)

= 0 ok
= 1 var_na

character*(*)
var_name
(input)

name of the variable in <model>.mdf to be sliced

integer*4
idim
(input)

dimension to be sliced

integer*4
ifrom
(input)

slice to start at position ifrom.
ifrom corresponds to an index from index_extents
in <model>.mdf

integer*4
ito
(input)

slice to end at position ito.
ito corresponds to an index from index_extents in
<model>.mdf

simenv_
slice_[f | c]
(
var_name,
idim,
ifrom,

announce to out-
put at the next
corresponding
simenv_put_[f | c]
call only a slice of
variable var_name.

r-

slice
ndefined

ito
)

This announce-
ment becomes
inactive after pe
formance of the
corresponding
simenv_put_[f | c]

integer*4
simenv
[f | c]

return code
= 0 ok
= 1 var_name u

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -47-

Function name

Function
description

Arguments /
function value

Argument / function value
description

(function value) n variable and

age exceeded
: slice overwritten or

presents the total dimension

= 3 inconsistency betwee
 idim, ifrom, ito
= 4 slice stor
= 5 warning

 re slice

simenv_
end_[f | c]
(
)

close model
coupling interface

Perform always
the last
SimEnv function

4

[f | c]
(function value)

 2 nt output file

in the model

integer*
simenv_end_

return code
= 0 ok
= I/O error for experime

To Tab. 5.5 the following remarks app

 Make sure ncy of type and dimension declarations between the model output variables in
model sou orresponding variable declarations in the model output description file
<model>.m

simenv_put_f function expects the output stored in the For-
 “field” as described in Tab. 5.5

ly:

 consiste
rce code and the c
df.

 For multi-dimensional model output the
tran model source code array (the) according to the column-major or-
der model (cf. Section 15.7 – Glossary) that is used by Fortran by default. For C/C++ and
simenv_put_c the row-major order model (cf. Section 15.7 – Glossary) used by C/C++ by default is
expected. The sequence of the dimensions of the source code array is determined by the sequence
of the coordinates for the associated variable in the file <model>.mdf (check Section 5.2).

 Model output variables that are not output completely or only partially within the user model are han-
dled in experiment post-processing as their corresponding nodata-values (cf. Section 11.8).

 Application of simenv_slice_[f | c] demands a corresponding slice entry in the configuration file
<model>.cfg. For more information check Section 11.1.

 Application of simenv_slice_[f | c] for NetCDF model output may result in a higher consumption of
computing time for each single run of the experiment compared with NetCDF model output without
simenv_slice_*. For this case, keep in mind the trade-off between the demand for computing time
and the demand for main memory.

 The include file simenv_mod_[f | c].inc from the sub-directory inc of the SimEnv home directory can
be used in a model to declare the SimEnv model interface functions as integer*4 / int for Fortran

E_HOME/lib to compile and link an interfaced Fortran / C / C++

 simulation environment



and/or C/C++.

 Apply the shell script
link_simenv_mod_[f | c | cpp].sh <model_name>
from the SimEnv library directory $S
model

 User models implemented in C/C++ or Fortran have to be linked with the following libraries to inter-
face them to the

 $SE_HOME/lib/libsimenv.a
 libnetcdf.a from /usr/local/lib or /usr/lib

Tab. 15.13 lists the additionally used symbols when interfacing a Fortran or C/C++ model to SimEnv.

 In

 Example 15.1 on page 224 the model world_f.f
 Example 15.3 on page 227 the model world_c.c
 Example 15.4 on page 229 the model world_cpp.cpp

are explained.

-48- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

5.5 Matlab Models

Due to terface components for simenv_get und
from that for Fortran and C/C++ in Section 5.4

Model Interface for Python, Java and

 the special features of Python, Java and Matlab, the model in
simenv_get_run differs . Additionally, the model interface for

 not support all data types (cf. Tab. 5.4Python and Java does). Tab. 5.6 summarizes the model interface
modules for a Python and Java models.

ns”)

Tab. 5.6 Model interface modules / methods / functions for Python, Java and Matlab models
 (addressed as “functio

Function name

Function
description

Arguments /
function value

Argument / function value
description

simenv_ initialize model string (py) / return code
ini_[py | ja | coupling interface int (ja / m]

)

Perf
as
Sim

m)
simenv_ini_*
(

= 0 ok
(

orm always
the first
Env function

in the model.
Check the semi-
utomated model a

interface for al-
ternatives

function value)

string
factor_name
(input)

name of the factor in <model>.edf

float
factor_def_val
(input)

default (nominal) factor value as specified in
<model>.edf.
If factor_name is not defined in <model>.edf

ef_val then factor_adj_val is set to factor_d

simenv_
get_[py | ja | m]
(
factor_name,
factor_def_val)
)

for

get_*
ion value)

adjusted factor value factor_adj_val
If an error occurred then function value =-999.99

get the resulting
adjusted value
the factor to be
experimented with
in the current
single run

float
simenv_
(funct

sim
ge

env_
t_run_

[py | ja | m]
(
)

r
nt run

as a string
get_run

_*
ion value)

----“

get the run numbe
of the curre

string
simenv_

(funct

current run number as string of the length 6 with
leading zeros.
If an error occurred then function value = “--

string
var_name

name of the variable in <model>.mdf to be output

(input)

declaration of
field(...)
according to

l>.mdf

-
tion results

<mode
(input)

data of variable var_name to be stored as simula

simenv_
 | m]

ld

output model

y) /

e)

return code

r occurred

put_[py ja
(
var_name,
fie
)

results to native
SimEnv output
file(s)

string (p
int (ja / m)
simenv_put_*
(function valu

= 0 ok
≠ 0 an erro

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -49-

Function name

Function
description

Arguments /
function value

Argument / function value
description

string
var_name
(input)

name of the variable in <model>.mdf to be sliced

int
idim
(input)

dimension to be sliced

int
ifrom

)

slice to start at position ifrom.
 index from index_extents

in <model>.mdf (input
ifrom corresponds to an

int
ito
(input)

slice to end at position ito.
m index_extents in ito corresponds to an index fro

<model>.mdf

simenv_
slice_
[py | ja | m]
(

,

announce to out-
put at the next
corresponding
simenv_put_*

e.

nv_slice_*
ction value)

var_name
idim,
ifrom,

 ito
)

call only a slice of
variable var_nam
This announce-
ment becomes
inactive after per-
formance of the
corresponding
simenv_put_*

int
sime
(fun

return code
= 0 ok
≠ 0 an error occurred

simenv_
end_
[py | ja | m]
(

close model
coupling interface

Perform always

y) /
a / m)

) as the last
SimEnv function

 the model in

string (p
int (j
simenv_end_*
(function value)

return code
= 0 ok

To Tab. 5.6 the fo ly:

 Make sure consistency of type and dimension declarations between the model output variables in
model source code and the corresponding variable declarations in the model output description file

 For multi-dimensional model output the simenv_put_m function expects the output stored in a model

llowing remarks app

<model>.mdf.

source code array (the “field” as described in Tab. 5.6) according to the column-major order model
(cf. Section 15.7 – Glossary) that is used by Fortran by default. For Python / Java and
simenv_put_py / simenv_put_ja the row-major order model (cf. Section 15.7 – Glossary) used by Py-
thon / Java by default is expected. The sequence of the dimensions of the source code array is de-
termined by the sequence of the coordinates for the associated variable in the file <model>.mdf
(check Section 5.2).

 Model output variables that are not output completely or only partially within the user model are han-
dled in experiment post-processing as their corresponding nodata-values (cf. Section 11.8).

 Application of simenv_slice_[py | ja | m] demands a corresponding slice entry in the configuration
file <model>.cfg. For more information check Section 11.1.

e trade-

 file simenv.py in the sub-directory bin of

 Application of simenv_slice_[py | ja | m] results in a higher consumption of computing time for each
single run of the experiment compared without simenv_slice_*. For this case, keep in mind th
off between the demand for computing time and the demand for main memory.

 SimEnv Python model interface modules are declared in the
the SimEnv home directory. To use these modules in a Python model import it by

 from simenv import *

and refer to them for example by

 simenv_get_py

-50- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

 red in the file Simenv.java in the sub-directory bin of
e SimEnv home directory. The corresponding class file Simenv.class is also located there. Specify

ja

 in of the SimEnv home directory.

b model.

e

le and factor names as the first argument in simenv_get_m,
imenv_slice_m and are transformed to lower cases in the

SimEnv Java model interface methods are decla
th
in <model>.run or in the .profile file the CLASSPATH by

 export CLASSPATH=./:$SE_HOME/bin:$CLASSPATH

before calling java to run the model.

To use an interface method in a Java model refer it for example by

 Simenv.simenv_get_

SimEnv Matlab model interface functions are in the sub-directory b
Insert into the file $HOME/matlab/startup.m

 addpath ([getenv('SE_HOME') '/bin']);

before performing an experiment with a Matla

Start a Matlab model in <model>.run by

 matlab –nojvm –nosplash < model_nam

Contrary to general Matlab syntax variab
s and simenv_put_m are not case sensitive
appropriate Matlab interface function. See also Section 11.7.

Errors that occur during performance of one of the above Python, Java or Matlab interface modules /
methods are directly reported to the log file <model>.nlog.



NPATH environment variable

Set in $HOME/.profile the Python, Java and/or Matlab environment: include the path to python, Java and/or

atlab in the PATH environment variable and specify for Python the PYTHOM
accordingly to the need of the Python model. For more information check Section 11.9.

In Example 15.5 on page 230 the Python model world_py.py is described in detail, in Example 15.6 on page

312 the Java model world_ja.java and in Example 15.7 on page 232 the Matlab model world_m.m.

5.5.1 Standard Dot Scripts for Python, Java and Matlab Models

<model>.ini
<model>.ini (cf. Section 7.1 on page 99) is for Python, Java and Matlab models a mandatory shell script and

e contents for all Python, Java and/or Matlab models: has to have the sam

. $SE_HOME/bin/simenv_ini_[py | ja | m]
return code from simenv_ini_[py | ja | m] is rc_simenv_ini_[py | ja | m] (=0: ok, =1: error)

additional user-model specific commands can be implemented up from here
if test $rc_simenv_ini_[py | ja | m] = 0
then
 ...
fi

return always with the return code rc_simenv_ini_[py | ja | m]
exit $rc_simenv_ini_[py | ja | m]

For an ava or Matlab model (cf. Section 7.4experiment restart with a Python, J on page 106) <model>.ini has

 be p rformed again. To force this specify in <model>.cfg (cf. Section 11.1to e on page 181) for the sub-
keyword restart_ini the value “yes”.

5.6 Model Interface for Mathematica Models

For Mathematica models a simple interface to SimEnv is implemented. It is based on

 generating automatically per single run a temporary Mathematica model by prefixing the original
model with a piece of Mathematica model code that is generated automatically by SimEnv.

 performing this temporary model

 transferring the model output from external files to SimEnv model output structures.

Set in the file $HOME/.profile the Mathematica environment: include the path to MathKernel in the PATH
environment variable. For more information check Section 11.9.

simenv_get function

The generic simenv_get function for a Mathematica model and running the model is performed by the
SimEnv dot script

. $SE_HOME/bin/simenv_run_mathematica

This dot script has to be called in <model>.run. It expects that the Mathematica model has the name
<model>.m where <model> is the model name the service is started with.

To enable the adjustment of a factor <factor_name> in the model during the performance of any single run it
is necessary to modify the model source code with respect to the initial settings of the factors. Let depend
the assignment of the default (nominal) value <factor_def_val> to the factor variable <factor_name> in the
model source code whether this variable was already set to its adjusted value by:

 if [ValueQ[<factor_name>] == False ,
 <factor_name> = <factor_def_val> ,
 <factor_name> = <factor_name>];

For an experiment with k factors the temporary Mathematica model for single run number <simenv_run_int>
has the following structure:

<factor_name1> = <factor_value1<simenv_run_int>> ;
…
<factor_namek> = <factor_valuek<simenv_run_int>> ;
<model>

This file is generated in a temporary sub-directory run<simenv_run_char> of the current workspace. The
sub-directory itself is created automatically when performing the single run <simenv_run_int>.

Store the Mathematica model in the current workspace the SimEnv simulation service simenv.[run | rst] is
started from.

Since the original model is prefixed by the above piece of code that defines the adjustments of the factors,
all statements (e.g., “clearall”) that clear the model variables have to be deleted from the original model
source code.

simenv_put function

For the Mathematica model interface a dedicated simenv_put function does not exist. SimEnv expects the
Mathematica model to write model output to external files. These files can be transferred into SimEnv model
output by writing a specific simenv_put_sh executable (cf. Section 5.8) or for ASCII model output files by
applying simenv_put_as[_simple] (cf. Section 5.9). Both interfaces have to be incorporated into <model>.run.

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -51-

<model>.edf
While normally for the model interface the names of corresponding factors in the model description file
<model>.edf and the model source code can differ and are associated by the first argument of the interface
function simenv_put_* (cf. Fig. 5.1) the names have to coincide for the Mathematica model interface. Since
in Mathematica variables are case sensitive they have to be declared in the experiment description file
<model>.edf also in a case sensitive manner.

An example for <model>.run can be found in Example 15.8.

5.7 Model Interface for GAMS Models

SimEnv allows to interface GAMS models to the experiment shell. A GAMS (main) model interfaced to
SimEnv can call GAMS sub-models. SimEnv expects that the GAMS main model

 is located in the file <model>.gms where <model> is the model name a SimEnv service is started
with.

 and all optional GAMS sub-models are stored in the current workspace the SimEnv services
simenv.[chk | run | rst] are started from.

Therefore, two additional include-statements have to be inserted into those GAMS model source code files
where experiment factors are to be adjusted or model variables are to be output to SimEnv. GAMS model
source code files to be interfaced to SimEnv are one GAMS main model and optionally a number of GAMS
sub-models that are called directly from the GAMS main model. Additional GAMS sub-programs (included
files) are not affected by SimEnv, but one should keep in mind that the GAMS code within SimEnv will be
executed in a sub-directory of the current workspace (see below) and so the include statements have to be
changed, if the files are addressed in a relative manner (see below).

 The include files are

<model>_simenv_get.inc
<model>_simenv_put.inc

 During experiment preparation the file <model>_simenv_put.inc and during experiment performance
files <model>_simenv_get.inc are generated automatically to forward GAMS model output to
SimEnv data structures and to adjust investigated experiment factors, respectively.

These include files correspond to the simenv_put and simenv_get model interface functions at the
language level (cf. Sections 5.4 and 5.5).

 The GAMS include statement $include <model>_simenv_get.inc has to be placed in the GAMS
model source code at such a position where all the GAMS variables are declared. Directly before the
include statement the factor default (nominal) values have to be assigned to factor variables, that are
introduced additionally in the model. Directly after the include statement the factor variables with the
adjusted factor values have to be assigned to the model variables.

 The GAMS include statement $include <model>_simenv_put.inc has to be placed in the GAMS
model source code at such a position where all the variables from the model output description file
can be output by GAMS put-statements.

 In the course of experiment preparation the GAMS model and all sub-models that are specified in
<model>.gdf (see below) are transformed automatically. Each GAMS model single run from the run
ensemble is performed in a separate sub-directory run<simenv_run_char> of the current workspace.
The sub-directories are created automatically. Transformed GAMS models and sub-models are cop-
ied to this sub-directory and are performed from there. Keep this in mind when specifying in any
GAMS model include statements with relative or absolute paths.

In Example 15.9 on page 235 the model gams_model.gms is described in detail.

-52- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

Note the following information:

 To output the GAMS model status to SimEnv a
 PARAMETER modstat

has to be declared and the statement
 modstat = <model_name>.modelstat

has to be incorporated in the GAMS model source code above the $include
<model>_simenv_put.inc line. The variable modstat has to be stated in the model output description
file <model>.mdf and the GAMS description file <model>.gdf.

Set in the file $HOME/.profile the GAMS environment: include the path to gams in the PATH environment
variable. For more information check Section 11.9.

5.7.1 Standard Dot Scripts for GAMS Models

<model>.ini
<model>.ini (cf. Section 7.1 on page 99) is for GAMS models a mandatory shell script and has to have the
contents for all GAMS models:

. $SE_HOME/bin/simenv_ini_gams
return code from simenv_ini_gams is rc_simenv_ini_gams (=0: ok, =1: error)

additional user-model specific commands can be implemented up from here
if test $rc_simenv_ini_gams = 0
then
 ...
fi

return always with the return code rc_simenv_ini_gams
exit $rc_simenv_ini_gams

For an experiment restart with a GAMS model (cf. Section 7.4 on page 106) <model>.ini has to be per-
formed again. To force this, specify in <model>.cfg (cf. Section 11.1 on page 181) for the sub-keyword re-
start_ini the value “yes”.

<model>.run
<model>.run (cf. Section 7.1 on page 99) has for each GAMS model the same contents:

#! /bin/sh
. $SE_HOME/bin/simenv_ini_sh
. $SE_HOME/bin/simenv_run_gams
. $SE_HOME/bin/simenv_end_sh

<model>.end
<model>.end (cf. Section 7.1 on page 99) is for GAMS models a mandatory shell script and has to have the
contents for all GAMS models:

. $SE_HOME/bin/simenv_end_gams

additional user-model specific commands can follow

Python programming language is used to prepare, run and to end an experiment with a GAMS model.

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -53-

5.7.2 GAMS Description File <model>.gdf, <model>.edf, <model>.mdf

For each GAMS model an ASCII GAMS description file <model>.gdf has to be supplied It is intended to
specify the GAMS sub-models and assigned factors and model output variables in detail. Derived from this
information a block of lines for each GAMS sub-model with a simenv_get.inc file and/or a simenv_put.inc file
is created. The file <model>.gdf holds the specific characteristics of GAMS model input and output needed
by SimEnv to generate GAMS put-statements. All model output variables from the model output description
file and all factors from the factor description file have to be used in this file again.

<model>.gdf is an ASCII file that follows the coding rules in Section 12.1 on page 203 with the keywords,
names, sub-keywords, and values as in Tab. 5.3.

Tab. 5.7 Elements of a GAMS description file <model>.gdf
 (line type: m = mandatory, o = optional)

Keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

descr o any <string> GAMS coupling description

keep_runs o 1 <val_list> value list of run numbers
where single GAMS model
runs are to be stored by keep-
ing their corresponding sub-
directories
(for syntax see Tab. 12.5)

time_limit o 1 <val_int> wall clock time limit in
seconds for each GAMS
model single run

options o 1 <string> string of options, GAMS main
model is started with from
command line

general <nil>

script o 1 {<directory>/}
<file_name>

shell script to be performed
before each single GAMS
model run

descr o 1 <string> (sub-)model output descrip-
tion

type m 1 [main | sub] identifies GAMS main or sub-
model

get m exactly
number
of
factors

<factor_name> get resulting adjustment for
<factor_name> to this model

model <model_
name>

(without
extension
.gms)

put m exactly
number
of
model
output
vari-
ables

(<var_name>
{.<suffix_set>}
{(<index_set>)})
{<format>}

put values of SimEnv model
output variable <var_name>
from this model to SimEnv
output.
GAMS variable <var_name>
has the specified suffix and
index sets and is interfaced
from GAMS to SimEnv ac-
cording to <format>

-54- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

To Tab. 5.7 the following additional rules and explanations apply:

 The sub-keyword time_limit enables limitation of each GAMS model single run in the run ensemble
to a maximum wall clock time consumption. If this threshold is reached the single run is aborted and
the following single run started. In general, SimEnv nodata values will be assigned to the results of
the aborted single runs. The sub-keyword time_limit can be necessary since each GAMS model sin-
gle run itself is an optimization procedure which could result in an unfeasible wall clock time con-
sumption. If the sub-keyword is not used in the gdf file wall clock time consumption per single run is
unlimited.

 If the sub-keyword options is not specified the GAMS main model is started with the default options
 ll=0 lo=2 dp=0

complemented by
 lf=main_model<simenv_run_char>.nlog Optdir=../

Check also Section 5.7.3.

 By the sub-keyword script a shell script can be specified that will be performed before each single
GAMS model run. By default, the shell script is expected to be located in the current workspace. The
shell script is performed from the sub-directory run<simenv_run_char> of the current workspace (cf.
Section 5.7.3). The shell script has one argument, the current run number <simenv_run_char>
formed from six characters. For example, the script can be used to copy some files into the sub-
directory run<simenv_run_char> where the GAMS model is called from. Make sure by the Unix /
Linux command chmod u+x {<directory>/}<file_name> that the shell script has execute permission.

 There has to be exactly one main GAMS model, identified by the sub-keyword type value “main”. All
other models have to be of sub-keyword type value “sub”.

 To each GAMS model <model_name> an arbitrary number of factors and model output variables
can be assigned to by the corresponding sub-keyword get and/or put.

 To each sub-model (type = “sub”) at least one get or one put sub-keyword must be assigned
to. The main model (type = “main”) can be configured without any sub-keyword get and put.
This is useful when the main model simply calls sub-models.

 Each factor and each model output variable as declared in <model>.edf and <model>.mdf re-
spectively has to be used in the value-field of <model>.gdf exactly one time.

 Each model <model_name> in <model>.gdf with at least one sub-keyword get has to have an
$include <model_name>_simenv_get.inc statement in the corresponding GAMS model file
<model_name>.gms

 Each model <model_name> in <model>.gdf with at least one sub-keyword put has to have an
$include <model_name>_simenv_put.inc statement in the corresponding GAMS model file
<model_name>.gms

 The value-field for the sub-keyword put is adapted to GAMS syntax to output GAMS model
output variables. Afterwards this output is used to generate the appropriate SimEnv output.

<index_set> is mandatory for variables with a dimensionality > 0. Otherwise, specification of
<index_set> is forbidden. Indices as used in the GAMS model are separated from each other
by comma.

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -55-

With respect to Example 15.9 the GAMS description file could look like

general descr GAMS model output description
general descr for the examples in the SimEnv
general descr User Guide
general keep_runs list 0,1

model gams_model descr this is the only GAMS model to use
model gams_model type main
model gams_model get dem_ny
model gams_model get dem_ch
model gams_model put x.l(i,j):10:5
model gams_model put a(i):10:5
model gams_model put z.l
model gams_model put modstat

Example file: gams_model.gdf

Example 5.2 GAMS description file <model>.gdf

If the model gams_model from the above Example 5.2 would be coupled with two additional
GAMS sub-models sub_m1 and sub_m2 where both sub-models interact with SimEnv
the GAMS description file could look like
(without taking into consideration plausibility with respect to model contents)

model gams_model type main
model gams_model put modstat

model sub_m1 type sub
model sub_m1 get dem_ny
model sub_m1 put x.l(i,j):10:5
model sub_m1 put a(i):10:5

model sub_m2 type sub
model sub_m2 get dem_ch
model sub_m2 put z.l

or

model gams_model type main

model sub_m1 type sub
model sub_m1 get dem_ny
model sub_m1 put x.l(i,j):10:5
model sub_m1 put a(i):10:5

model sub_m2 type sub
model sub_m2 get dem_ch
model sub_m2 put z.l
model sub_m2 put modstat

Example 5.3 GAMS description file for coupled GAMS models

-56- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

<model>.edf
While for the C/C++/Fortran/Python/Java/Matlab model interface the names of corresponding factors in the
model description file <model>.edf and the model source code can differ and are associated by the first ar-
gument of the interface function simenv_put_* (cf. Fig. 5.1) the names have to coincide for the GAMS model
interface.
In the GAMS model code the factors specified in the experiment description file have to be of type
PARAMETER and have be defined before the include statement $include <model>_simenv_get.inc.

<model>.mdf
Corresponding variables in the model output description file and in the GAMS model source code must have
same names. Variables have to be always of type float in the model output description file. In GAMS model
code the model output variables declared in the model output description file can be of the numeric types
VARIABLES or PARAMETER. The maximum dimensionality of a SimEnv model output variable used in a
GAMS model is restricted to 4. Additionally, each model output variable must not exceed a size of 64 MByte.

With respect to Example 15.9 the model output description file could look like

coordinate plant descr canning plants
coordinate plant unit plant number
coordinate plant values equidist_end 1(1)2

coordinate market descr canning markets
coordinate market unit market number
coordinate market values equidist_end 1(1)3

variable a descr plant capacity
variable a unit cases
variable a type float
variable a coords plant
variable a index_extents 1:2

variable x descr shipment quantities
variable x unit cases
variable x type float
variable x coords plant , market
variable x index_extents 1:2 , 1:3

variable z descr total transportation costs
variable z unit 10^3 US$
variable z type float

variable modstat descr model status
variable modstat type float

Example file: gams_model.mdf

Example 5.4 Model output description file for a GAMS model

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -57-

5.7.3 Files Created during GAMS Model Performance

Additionally to the files listed in Tab. 11.8, during the performance of a GAMS model the files
<gams_model>_[pre | main | post].inc are created temporarily in the current workspace by <model>.ini and
are deleted after the whole experiment where <gams_model> is a placeholder for the model of type main
and all models of type sub in the gdf file.

During experiment performance of a GAMS model each single run <simenv_run_int> from the experiment is
performed individually in a sub-directory run<simenv_run_char> of the current workspace. Each directory is
generated automatically before performing the corresponding single run and removed after performance of
this single run. With the sub-keyword keep_runs the user can force to keep sub-directories for later check of
the transformed model code and its performance.

GAMS main model terminal output is redirected to the log file main_model<simenv_run_char>.nlog in the
corresponding sub-directory run<simenv_run_char>. For re-direction of the terminal output from sub-models
and from solvers the modeler is responsible for. It is recommended to call all GAMS sub-models with the
GAMS command line option string
 ll=0 lo=2 lf=<any_name>.nlog dp=0 Optdir=../

that re-directs GAMS submodel and solver terminal output to the file <any_name>.nlog in the sub-directory
run<simenv_run_char> of the current workspace (cf. Example 15.9).

The main model is called with the options
 <values_from_sub_keyword_options>
 lf=main_model<simenv_run_char>.nlog Optdir=../

In case the sub-keyword options is not specified the main model is called with
 ll=0 lo=2
 lf=main_model<simenv_run_char>.nlog Optdir=../

All files with the extension nlog in the sub-directory run<simenv_run_char> are copied to the SimEnv log file
<model>.nlog.
For both main model and sub-models Optdir=../ implies that all GAMS solver option files have to be located
in the current working directory.

5.8 Model Interface at Shell Script Level

For models that do not allow to implement the model coupling interface at programming language level (e.g.,
because source code is not available) SimEnv supplies a coupling interface at shell script level by a set of
dot scripts: The shell script <model>.run (cf. Section 7.1 on page 99) is used to wrap the model and option-
ally to have at disposal corresponding functionality of the SimEnv model interface functions of Tab. 5.5. For
additional interfaces at the shell script level using ASCII files see Section 5.9.

-58- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

Tab. 5.8 Model interface functions at shell script level

Dot script name

Command
description

Inputs /
outputs

Input / output
description

$SE_HOME/bin/
simenv_
ini_sh

initialize current
single run

Perform always
and as the first
SimEnv dot script
in <model>.run
and <model>.rst.
Check the semi-
automated model
interface for alter-
natives for
<model>.run

SE_RUN
(output)

operating system environment variable SE_RUN is
set to the current run number of the simulation
experiment

script variable
factor_name
(input)

name of the factor in <model>.edf

script variable
factor_def_val
(input)

default (nominal) factor value.
If factor_name is not defined in <model>.edf
then factor_adj_val is set to <factor_def_val>

factor_name=
‘<factor_name>’

factor_def_val=
<factor_def_val>

$SE_HOME/bin/
simenv_
get_sh

get the resulting
adjusted value for
the factor to be
experimented with
in the current sin-
gle run

script variable
factor_name
(output)

shell script variable with the same name as the
value of factor_name. Script variable value is the
adjusted factor value <factor_adj_val>.

simenv_
run_char
(output)

shell script variable with the current run number
with leading zeros

$SE_HOME/bin/
simenv_
get_run_sh

get the run number
of the current run
as an integer and
a character script
variable

simenv_run_int
(output)

shell script variable (type integer) with the current
run number

$SE_HOME/bin/
simenv_
put_sh

Not available at
shell script level

 Write a your own model related simenv_put_sh
at the language level using the SimEnv model
interface functions

$SE_HOME/bin/
simenv_
slice_sh

Not available at
shell script level

$SE_HOME/bin/
simenv_
end_sh

wrap up current
single run

Perform always
and as the last
SimEnv dot script
in <model>.run
and <model>.rst

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -59-

To the Tab. 5.8 following remarks apply:

 For the model interface at the shell script level, i.e., within the shell script <model>.run the adjusted
experiment factors for the current single run from the whole run ensemble can be made available to
forward them to the model under investigation by any means the modeller is responsible for.
One common way to forward experiment factors to the model is to place current numerical factor
values as arguments to the model executable at the model command line in Unix or Linux. Another
way could be to read the factors from a special file in a special file format.

 While for the C/C++/Fortran/Python/Java/Matlab model interface the names of corresponding factors
in the model description file <model>.edf and the model source code can differ and are associated
by the first argument of the interface function simenv_put_* (cf. Fig. 5.1) the names have to coincide
for the model interface at the shell script level.

 Directly before performing the dot script $SE_HOME/bin/simenv_get_sh make sure that the shell
script variables factor_name and factor_def_val have been specified. At the end of the dot script
simenv_get_sh the values of these variables are set again to empty strings.

 After running the dot script $SE_HOME/bin/simenv_get_sh the name of an experiment factor <fac-
tor_name> from the experiment description file <model>.edf is available in <model>.run as a shell
script variable <factor_name> and the resulting adjusted value of the factor is available as $<fac-
tor_name>.

 After running the model model output has to be identified and potentially transformed within
<model>.run for SimEnv output. To do this simply write a model related simenv_put_sh as a trans-
formation program that reads in all the native model output and outputs it to SimEnv by applying the
model interface functions simenv_*_* from the SimEnv model interfaces at language level.

 Tab. 11.10 lists the built-in (pre-defined) shell script variables that are defined and/or used by the dot
scripts $SE_HOME/bin/simenv_*_sh and are directly available in <model>.run.

 Notice:
To perform a dot script (cf. Section 15.7 – Glossary) it has to be preceded by a dot and a space.

In Example 15.10 on page 236 the model shell script world_sh.run is described in detail.

. $SE_HOME/bin/simenv_ini_sh

get adjusted value for the a factor p_def, defined in the edf file
factor_name=‘p_def’
factor_def_val=2.
. $SE_HOME/bin/simenv_get_sh
now shell script variable p_def is available
value of shell script variable p_def is according to edf file

get adjusted value for a factor p_undef, not defined in edf file
factor_name=‘p_undef’
factor_def_val=-999.
. $SE_HOME/bin/simenv_get_sh
now shell script variable p_undef is available
value of shell script variable p_undef is -999.

...

. $SE_HOME/bin/simenv_end_sh

Example file: world_sh.run

Example 5.5 Addressing factor names and values for the model interface at shell script level

-60- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

5.9 Model Interface for ASCII Files

The SimEnv ASCII interface addresses constellations where

 a model expects factor names and their adjusted values in an ASCII file

 model output is stored to ASCII files.

Tab. 5.9 lists those SimEnv dot scripts and shell scripts that represent the ASCII interface. They have to be
applied in the model wrap shell script <model>.run. They can be used together with the interface at the shell
script level (cf. Section 5.8).

Tab. 5.9 Model interface functions at ASCII level

Dot /shell
script name

Command
description

Inputs /
outputs

Input / output
description

$SE_HOME/bin/
simenv_
get_as

get the names and
the resulting ad-
justed values of all
factors to be ex-
perimented with in
the current single
run

ASCII file
<model>.as
<simenv_run_
char>
(output)

After performing simenv_get_as the ASCII file
<model>.as<simenv_run_char> contains all factor
names and resulting adjusted values in the form
 <factor_name> <factor_adj_val>
Sequence of the factor lines in the file corresponds
to the sequence of the factors in the experiment
description file <model>.edf

<file_name>
(input)

Name of an ASCII file that is transferred to SimEnv
model output according to model output variable
coordinate <coord>

$SE_HOME/bin/
simenv_
put_as
<file_name>
{ <coord> }

transfer ASCII file
to SimEnv model
output
in safe mode

simenv_put_as is
a normal shell
script and NOT a
dot script

<coord>
(input)

Name of a model output variable coordinate.
Lines in <file_name> correspond to coordinate
values. If <coord> is not specified <file_name> has
to be a one-record file.

<file_name>
(input)

Name of an ASCII file that is transferred to SimEnv
model output according to model output variable
coordinate <coord>

$SE_HOME/bin/
simenv_
put_as_simple
<file_name>
{ <coord> }

transfer ASCII file
to SimEnv model
output
in simple mode

simenv_put_as_
simple is a
normal shell
script and NOT a
dot script

<coord>
(input)

Name of a model output variable coordinate.
Lines in <file_name> correspond to coordinate
values. If <coord> is not specified <file_name> has
to be a one-record file.

After performing the dot script simenv_get_as an ASCII file <model>.as<simenv_run_char> holds lines with
a factor name and its resulting adjusted value per line. Each factor name is separated from its resulting ad-
justed value by at least one character space.

simenv_put_as and simenv_put_as_simple can be used to transfer ASCII model output to SimEnv model
output data structures. These are the only SimEnv scripts that can be used in <model>.run that are shell
scripts and not dot scripts. Both they have two arguments. The first argument specifies the ASCII file name
that is to be transferred. The second argument is the name of a coordinate as specified in <model>.mdf.

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -61-

Having a model output variable definition as in Example 5.1 on page 44.

$SE_HOME/bin/simenv_put_as atmo_g.ascii time
Since atmo_g is the only variable with time as the first coordinate the file atmo_g.ascii can only
hold this variable. The 1st record of the file with data corresponds with time = 1, the 20th record
with data with time = 20. There is only one column.

$SE_HOME/bin/simenv_put_as bios.ascii lat
Assuming that variable atmo is not defined.
Since bios is the only variable with lat as the first coordinate the file bios.ascii can only hold this
variable. The 1st record of the file with data corresponds with lat = 84, the 36th record with data
with lat = -56. There are 90*20 = 1800 columns. The file has to hold bios(lat,lon,time) in the
following structure, shown are the indices of bios:

 column #/ line # 1 2 … 90 91 … 90*20
 1 (84,-178,1) (84,-174,1) … (84,178,1) (84,-178,2) … (84,178,20)
 … … … … … … … …
 36 (-56,-178,1) (-56,-174,1) … (-56,178,1) (-56,-178,2) … (-56,178,20)

$SE_HOME/bin/simenv_put_as_simple atmo_bios.ascii lat
atmo and bios are the variable with lat as the first coordinate. According to the sequence in
world_as.mdf the file atmo_bios.ascii has to hold in its first columns the variable atmo, followed by
the variable bios. Since bios is defined for the coordinate lat only on the subrange 2 – 37 of the
complete range 1 – 45 for atmo values with numerical nodata-placeholder <nodata> (e.g., 0.0)
have to be set for all values of bios in file records 1 and 38 to 45. The first record of the file
corresponds for atmo with lat = 88, for bios <nodata> has to be assigned.. The 45th record
corresponds for atmo with lat = -88, for bios <nodata> has to be assigned. There are 90*4*20 +
90*20 = 9000 columns, that’s why simenv_put_as_simple is used instead of simenv_put_as.
The file has to hold atmo(lat,lon,level,time) and bios(lat,lon,time) in the following structure, shown
are the indices:

 atmo bios
 column #/ line # 1 … 90*4*20 90*4*20+1 … 9000
 1 (88,-178,1,1) … (88,178,16,20) <nodata> … <nodata>
 2 (84,-178,1,1) … (84,178,16,20) (84,-178,1) … (84,178,20)
 … … … … … … …
 37 (-56,-178,1,1) … (-56,178,16,20) (-56,-178,1) … (-56,178,20)
 38 (-60,-178,1,1) … (-60,178,16,20) <nodata> … <nodata>
 … … … … … … …
 45 (-88,-178,1,1) … (-88,178,16,20) <nodata> … <nodata>

$SE_HOME/bin/simenv_put_as bios_g.ascii
Since there is no second argument to simenv_put_as all variables without coordinate assignment
(zero-dimensional variables) are output. This is only bios_g. The file has to have only one record
with data and it must hold one data value.

The example model world_as.f writes the model output files atmo_bios.ascii, atmo_g.ascii and
bios_g.ascii in the structures as explained above.

Example 5.6 ASCII file structure for the ASCII model interface

-62- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

Both shell scripts transfer the ASCII file data to SimEnv model output file as follows:

 A SimEnv model output variable is defined on a rectilinear grid that is composed from coordinates
(cf. Section 5.2). By specifying a coordinate name as the second argument all these model variable
values are expected in the ASCII file that have this coordinate as their first coordinate (cf. Section
5.3).

 The lines in the ASCII file correspond to the coordinate axis values in that sequence as defined in
<model>.mdf.

 The columns in the ASCII file correspond to the variables with the first coordinate as specified in the
second argument in that sequence of the variables as defined in <model>.mdf. A multi-dimensional
variable occupies a block of contiguous columns. The sequence of all columns of all lines of this
variable is according to the column-major order model (cf. Section 15.7 – Glossary).

 Variables with the same first coordinate but with different coordinate extents (variable sub-keyword
coord_extents in <model>.mdf) have to be harmonised line by line: The set of all lines is the union of
all defined coordinate axis values from all variables. To ensure synchronisation across columns,
variable values for undefined coordinate values of a variable have to be output to the file as any
real*4 / float nodata placeholder <nodata>.

 The values of the ASCII file are interpreted as of type real*4 / float. They are transferred to SimEnv
model output according to their defined data type. If a real*4 / float value is outside the definition
range of the data type it is set to the SimEnv nodata element of this data type (cf. Section 11.8).

 If no coordinate is defined as the second argument the values of all zero-dimensional variables are
expected to be in the ASCII file. Consequently, the file can have only one record with data values.

 The shell scripts simenv_put_as and simenv_put_as_simple differ in how to read each line of the
ASCII file. simenv_put_as handles the file as an ASCII data file, defined in Section 12.3 with the ex-
ception that data files are not limited to 1000 characters. Consequently, a file can have comment
and blank lines when transferring by simenv_get_as to SimEnv. Additionally, the number of columns
per line is checked and missing columns are added as nodata values. In contrast,
simenv_put_as_simple just applies a simple Fortran read statement per expected line without any
checking routines. Due to its extensive interpretation efforts simenv_put_as is rather slow. As a rule
of thumb simenv_put_as_simple should be used for file with more than 2000 columns where one
can trust in the file structure.

An example can be found in Section 15.2.12.

5.10 Semi-Automated Model Interface

Source code manipulations of a model for interfacing it to SimEnv can be classified into four parts:

 Initialization: apply simenv_ini_* and simenv_get_run_*

 Factor adjustments: apply simenv_get_*

 Model output: apply simenv_slice_* and simenv_put_*

 End: apply simenv_end_*

Often, “Initialization” and “Factor adjustments” can be lumped together in a source code sequence where the
factor adjustment part has to be updated when new factors are defined in an experiment description file and
have to be mapped to model internal factors the first time. Contrarily, “Model output” and “End” are often
distributed in the model source code but do not change so often.

Recognising this situation SimEnv offers beside the standard hand-coded model interface a semi-automated
model interface: “Initialization” and “Factor adjustments” are generated automatically during experiment
preparation as sequences of source code based on the current experiment description file (and conse-
quently the current experiment factors) for the Fortran, C/C++, Python, shell script and ASCII file model inter-
face. For GAMS and Mathematica SimEnv offers such a simple model interface that a semi-automated inter-
face is needless. For Java and Matlab there is no semi-automated SimEnv model interface as these two
languages do not support include files.

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -63-

These source code sequences can be used

 for Fortran/C/C++/Python model source codes
as include files in the model source code and/or

 for the model interface at the shell script level and ASCII level
as a dot script in <model>.run

to interface the model and consequently to run the experiment with an up-to-date part for initialization and
factor adjustment.

For

 Fortran/C/C++ models:
The model has to be compiled and linked anew with a new include file. This is supported by SimEnv
in the course of experiment preparation.

 Python models and the model interface at shell script level and ASCII level:
The include file and/or dot script can be used directly.

Generating source code sequences for the semi-automated model interface is invoked by the sub-keyword
auto_interface of the keyword model in the model configuration file <model>.cfg (cf. Section 11.1).

The Fortan/C/C++/Python model interfaces offer to use different names of corresponding factors in the
model description file <model>.edf and in the model source code that are associated by the first argument of
the interface function simenv_put_* (cf. Fig. 5.1). When using the semi-automated model interface the
SimEnv factor names and the corresponding source code variable names have to coincide.

Automatically generated source code sequences are stored in files <model>_[f | c | sh | as].inc and
<model>_py.py in the current workspace $SE_WS. Note the file name exception for Python.

When using k factors x1 ,…, xk in the experiment description file <model>.edf the source code sequences
have the following contents:

 for Fortran:
file <model>_f.inc

 simenv_sts = simenv_ini_f ()
 simenv_sts = simenv_get_run_f (simenv_run_int , simenv_run_char)
 simenv_sts = simenv_get_f (‘x1’ , 0. , x1)
 …
 simenv_sts = simenv_get_f (‘xk’ , 0. , xk)

 for C/C++:
file <model>_c.inc

 simenv_sts = simenv_ini_c ()
 simenv_sts = simenv_get_run_c (&simenv_run_int , simenv_run_char)
 simenv_sts = simenv_get_c (“x1” , &simenv_zero , &x1)
 …
 simenv_sts = simenv_get_c (“xk” , &simenv_zero , &xk)

 for Python:
file <model>_py.py

 from simenv import *
 simenv_ini_py ()
 simenv_run_int = int (simenv_get_run_py ())
 x1 = float (simenv_get_py (‘x1’ , 0.))
 …
 xk = float (simenv_get_py (‘xk’ , 0.))

-64- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

 for the model interface at shell script level:
file <model>_sh.inc

 . $SE_HOME/bin/simenv_ini_sh
 . $SE_HOME/bin/simenv_get_run_sh
 factor_name='x1'
 factor_def_val=0.
 . $SE_HOME/bin/simenv_get_sh
 …
 factor_name='xk'
 factor_def_val=0.
 . $SE_HOME/bin/simenv_get_sh

 for the model interface at ASCII level:
file <model>_as.inc

 . $SE_HOME/bin/simenv_ini_sh
 . $SE_HOME/bin/simenv_get_run_sh
 . $SE_HOME/bin/simenv_get_as

The sequence of factors in the code sequences corresponds to the sequence of factors in the experiment
description file <model>.edf.

For the Fortran/C/C++ model interface

 a model script script <model>.lnk can be declared in the current workspace to link the model anew
using the generated code sequences in the course of experiment preparation (only for service
simenv.run, not for service simenv.rst). Normally, this shell script will call the link scripts for inter-
faced models in $SE_HOME/lib.

 the variables simenv_sts, simenv_run_int, simenv_run_char, and simenv_zero are defined in the
model source code include file simenv_mod_auto_[f | c].inc (cf. Tab. 5.10). Additionally, the func-
tions simenv_[ini | get | get_run | put | slice | end]_[f | c] are declared by simenv_ mod_auto_[f | c
].inc as integer*4 / int functions.

Tab. 5.10 Built-in variables by simenv_mod_auto_[f | c].inc
(without declaration of interface functions)

Variable

Data type Used for

simenv_sts integer*4 / int SimEnv interface function value

simenv_run_int integer*4 /int single run number

simenv_run_char character*6 / char[6] 6 digit single run number string

simenv_zero real*4 / float auxiliary variable, set to 0.

The source code sequences are included in the model source code

 for Fortran by include ‘<model>_f.inc’

 for C/C++ by #include “<model>_c.inc”

 for Python by from <model>_py import *

 for the model interface at shell script level by . $SE_WS/<model>_sh.inc

 for the model interface at ASCII level by . $SE_WS/<model>_as.inc

Examples can be found in Example 15.2 and Example 15.12.

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -65-

5.11 Supported Model Structures

SimEnv supports performance of lumped, distributed and parallel models. Information about model structure
is specified in the model configuration file <model>.cfg (cf. Section 11.1) by the sub-keyword structure.
Lumped (standard) models are normally represented by one stand-alone executable. A distributed model in
SimEnv consists from a web of stand-alone sub-models, i.e., the model dynamics are computed by perform-
ing a set of stand-alone sub-models that normally interact with each other and exchange information. For a
parallel model each single run of an experiment needs a set of assign processors.

Lumped (standard) models use in the common sense SimEnv model interface functionality.

For distributed models each of the sub-models can use SimEnv model interface functionality, i.e.,
simenv_get_*, simenv_get_run_*, simenv_put_*, or simenv_slice_*. In each sub-model with SimEnv model
interface functionality simenv_ini_* and simenv_end_* calls have to be incorporated in. Sub-models can be
implemented in different programming languages. Additionally, the corresponding SimEnv model interface
functionality at shell script level (simenv_*_sh dot scripts) can be applied. As usual, the overall model is
wrapped into a shell script <model>.run (cf. Chapter 7).
The model output description file <model>.mdf collects all the model output variables from all sub-models
and the experiment description file <model>.edf collects all the factors from all sub-models.
Announce a distributed model to the simulation environment if

 More than one sub-model uses SimEnv model interface functionality by the simenv_*_*-functions

and

 Sub-models get factor data from and put model output data to SimEnv data files in parallel. A dis-
tributed model where the sub-models are performed sequentially one by one in a cascade-like man-
ner can run in standard mode.

SimEnv interfaced sub-models of a distributed model can reside on different machines. The only prerequisite
is that the current workspace and the model output directory can be mapped to each of these machines.

To perform a parallel model within SimEnv simply use the same approach for wrapping a model by the shell
script file <model>.run as for standard and distributed models. Instead performing the model within
<model>.run submit it there to the Distributed Resource Manager DRM by using the llsubmit (for LoadL) or
qsub (for PBS / Torque) command. Start an experiment from a login node of the compute cluster and run the
experiment at the login node in foreground. SimEnv submits from the login machine all single runs to The
DRM and directly finishes afterwards. DRM then takes responsibility for performing the single model runs.
For the parallel modus the temporary SimEnv files simenv_*.tmp are not deleted at experiment end, i.e. after
all single model runs are submitted. These files can be removed manually after finishing the last single run.
Check the DRM services for the end of the last parallel single model run.
To support bookkeeping of SimEnv applications on PIK’s compute cluster under LoadL control insert into the
job control file to submit a single model run (file my_parallel_model.jcf in the example below) the line

 # @ comment = SimEnv Application

To perform a parallel model in SimEnv the corresponding shell script <model>.run
(cf. Section 7.1 for more information) could have the following contents:

#! /bin/sh
. $SE_HOME/bin/simenv_ini_sh

run a single run of the model under DRM LoadL control:
llsubmit my_parallel_model.jcf
or run a single run of the model under PBS/Torque control:
qsub my_parallel_model.pbs

. $SE_HOME/bin/simenv_end_sh

Example 5.7 Shell script <model>.run for a parallel model

-66- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

Set the model sub-keyword structure also to “parallel” if the model is to be started in the background (e.g., by
my_model &) within <model>.run.

5.12 Using Interfaced Models outside SimEnv

To run a model interfaced to SimEnv outside the simulation environment in its native mode as before code
adaptation the following simple changes have to be applied to the model:

 For Fortran and C/C++ models:
Link the model with the object library
 $SE_HOME/lib/libsimenvdummy.a
instead of
 $SE_HOME/lib/libsimenv.a.
For this library
 SimEnv model interface function values (return codes) are 0
 simenv_get_* forwards factor_def_val to factor_adj_val
 simenv_get_run_* returns integer run number 0 and character run string “ “
 (six spaces).

 For Python models:
Replace in the model source code
 from simenv import *
by
 from simenvdummy import *
For these modules
 simenv_get_py forwards factor_def_val to factor_adj_val
 simenv_get_run_py returns run 000000.
 all other SimEnv model interface function values (return codes) are 0

 For Java models:
Replace in the model source code
 the class Simenv
by
 the class Simenvdummy
From this class
 simenv_get_py forwards factor_def_val to factor_adj_val
 simenv_get_run_py returns run 000000.
 all other SimEnv model interface function values (return codes) are 0

 For Matlab models:
Replace in the model source code
 the Matlab function names simenv_[ini | get_run | get | slice | put | end]_m
by
 simenvdummy_[ini | get_run | get | slice | put | end]_m
From these functions
 simenvdummy_get_py forwards factor_def_val to factor_adj_val
 simenvdummy_get_run_py returns run 000000.
 all other SimEnv model interface function values (return codes) are 0

 For Mathematica models:
No changes required

 For GAMS models:
Handle in the model source code the include statements
 $include <model>_simenv_get.inc
 $include <model>_simenv_put.inc

as a comment.

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -67-

-68- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

6 Experiment Preparation

Experiment preparation is the first step in experiment performance of a model interfaced to the envi-
ronment. In an experiment description file <model>.edf all information to the selected experiment type and its
numerical equipment is gathered in a structured way.

6.1 General Approach – Experiment Description File <model>.edf

Pre-formed experiment types are the backbone of the SimEnv approach how to use models. They represent
in a generic way experiment tasks that have to be equipped with structural in formation from the model and
numerical information (cf. Chapter 4). An equipped experiment type is represented by an experiment de-
scription file <model>.edf.

<model>.edf is an ASCII file that follows the coding rules in Section 12.1 on page 203 with the keywords,
names, sub-keywords, and value as in Tab. 6.1.

Tab. 6.1 Elements of an experiment description file <model>.edf for all experiment types
 (line type: m = mandatory, o = optional)

Keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

descr o any <string> experiment description general <nil>

type m 1 [GSA_EE |
DFD | LSA |
UNC_MC |
OPT_SA]

experiment type

descr o 1 <string> factor description

unit o 1 <string> factor unit

type m 1 see Tab. 6.2 factor adjustment type:
specifies how to adjust the
sampled values by the factor
default (nominal) value in
simenv_get_* to get the re-
sulting adjusted factor value

default m 1 <val_float> factor default (nominal) value
<factor_def_val>

factor <factor_
name>

sample see
be-
low

1 <experiment
specific>

specifies how to sample the
factor to get sampled values
<factor_smp_val>

specific <nil> <experiment
specific>

m <ex-
peri-
ment
spe-
cific>

<experiment
specific>

experiment specific informa-
tion

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -69-

To Tab. 6.1 the following additional rules and explanations apply:

 A factor name is the symbolic parameter / driver / initial value name, corresponding to factors of the
investigated model. Correspondence is achieved by applying the SimEnv model interface function
simenv_get_* in the model.

 Factor names must differ from model output variables and coordinate names in the model output de-
scription file (cf. Section 5.1) and from built-in and user-defined operator names for experiment post-
processing (cf. Section 8.5.4).

 To derive the adjusted value of a factor its default (nominal) value as specified in <model>.edf
and not its default (nominal) value as specified in the model code is used in the model inter-
face function simenv_get_*.

 The file <model>.smp always contains the sampled values according to the experiment and
factor specific sampling scheme as defined by the sub-keyword sample without applying the
adjustment.

 Consequently, in general the factor values in <model>.smp differ from the factor values as
stored in the SimEnv experiment output. In particular, this is the case for

 factor adjustment type = add and <factor_def_val> ≠ 0.
 factor adjustment type = multiply and <factor_def_val> ≠ 1.
 factor adjustment type = relative and any <factor_def_val>

 For the factor adjustment types “multiply” and ”relative” a default (nominal) value <val_float> = 0. is
forbidden.

 All experiment specific information is explained in the appropriate Sections.

 Specify at least one experiment factor.

 The sub-keyword sample is conditional for experiment type DFD, undefined for experiment type
LSA and mandatory for all other experiment types.

 When preparing an experiment an experiment input file <model>.smp is generated with the sampled
values <factor_smp_val> according to the information in the sub-keyword sample. These values are
applied within the interface function simenv_get_* to the default (nominal) values of the factors ac-
cording to the specified factor adjustment type (cf. Tab. 6.2 below) before finally influencing the dy-
namics of the model.

The sequence of elements (columns) of each record of <model>.smp corresponds to the sequence
of factors in the factor name space (cf. Section 12.1 on page 203), the sequence of records corre-
sponds to the sequence of single model runs of the experiment.

 For each experiment a single model run with run number 0 (<simenv_run_int> = 0 and
<simenv_run_char> = ‘000000’) is generated automatically as the default (nominal) run of the model
without any factor adjustments. This run does not have an assigned record in <model>.smp.

 The experiment description as specified by “general descr <string>” is used for NetCDF model
and/or post-processor output files (check Section 10.1.1).

-70- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

Tab. 6.2 Factor adjustment types in experiment preparation

Factor
adjustment type

Meaning

 To derive the final adjusted factor value <factor_adj_val> to use in the model
 from the sampled value <factor_smp_val> (from <model>.smp) and
 the factor default (nominal) value <factor_def_val> (as defined in <model>.edf)
 within the SimEnv model interface function simenv_get_*
 the sampled value is …

set
… set to the adjusted factor value:
<factor_adj_val> = <factor_smp_val>

add
… added to the factor default value:
<factor_adj_val> = <factor_smp_val> + <factor_def_val>

multiply
… multiplied by the factor default value:
<factor_adj_val> = <factor_smp_val> * <factor_def_val>

relative
… increased by 1 and afterwards multiplied by the factor default value:
<factor_adj_val> = (1. + <factor_smp_val>) * <factor_def_val>

 general descr Experiment description file

general descr examples
general type <experiment type>

factor p1 descr parameter p1
factor p1 unit p1_unit
factor p1 type set
factor p1 default 1.
factor p1 sample <experiment type specific>

factor p2 type set
factor p2 default 2.
factor p2 sample <experiment type specific>

specific <experiment type specific>

Example 6.1 General layout of an experiment description file <model>.edf

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -71-

6.1.1 Elements of <model>.edf for Experiment Types with Probabilistic Sampling

For experiments with probabilistic sampling (GSA_EE, GSA_VB, UNC_MC and BAY_BC, but not OPT_SA)
the additional sub-keywords are available as defined in Tab. 6.3.

Tab. 6.3 Additional elements of <model>.edf for experiment types with probabilistic sampling
 (line type: m = mandatory, o = optional)

Keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

sample m 1 [distr
<distribution> |
file {<directory>/}
<file_name>]

distr: distribution and distribu-
tion parameters to derive
a sample of values
<factor_smp_val>

file: file name to import an
external sample of val-
ues <factor_smp_val>

sample_
method

see
be-
low

1 [pseudo |
stratified |
quasi]

random sampling method
(only for “distr <distribution>”)

sample_
include

o 1 <real_val11>:
<real_val12>
{ , … ,
<real_valn1>:
<real_valn2> }

lower bounds <real_vali1> and
upper bounds <real_vali2> of
intervals to include for sam-
pling according to distribution
<distribution>.
<real_vali1> < <real_vali2>

factor <factor_
name>

sample_
exclude

o 1 <real_val11>:
<real_val12>
{ , … ,
<real_valm1>:
<real_valm2> }

lower bounds <real_vali1> and
upper bounds <real_vali2> of
intervals to exclude from sam-
pling according to distribution
<distribution>.
<real_vali1> < <real_vali2>

specific <nil> seed o 1 [random | fixed] method how to initialize the
random number generator

Be careful when specifying for an experiment with probabilistic sampling a factor adjustment type (cf. Tab.
6.2) that differs from “set”. Values are sampled according to the specified distribution and its declared distri-
bution parameters and/or are used from the input files. Nevertheless, each value of the sample is modified
according to the factor adjustment type in simenv_get_*. So, for the factor adjustment type “add” normally
the mean value of the sample will be shifted by the specified factor default (nominal) value <factor_def_val>.
For the factor adjustment types “multiply” and “relative” the specified distribution will be adulterated normally
by the factor default (nominal) value <factor_def_val>.

To Tab. 6.3 the following additional rules and explanations apply:

 Sub-keyword sample:

 distr <distribution>:
For implicitly specified distributions according to Tab. 6.4 sample values <factor_smp_val> are
generated from the distribution with the assigned distribution parameters.
For <distribution> = <distr_shortcut> (<distr_param_1> { , <distr_param_2> }) check Tab.
6.4.

 file {<directory>/}<file_name>:
For explicitly specified samples by an ASCII file {<directory>/}<file_name> the sample values
of any distribution are taken directly from this file. Each record of the ASCII file can hold only

-72- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

one sample value with an exception for experiment type GSA_VB. For GSA_VB two values
are expected: the first for the sample and second for the re-sample. For the other syntax rules
for ASCII data files check Section 12.3. Sample size has to be identical to <val_int> from the
sub-keyword runs. Explicitly specified samples can not be applied for experiment types
GSA_EE and BAY_BC.

 Sub-keyword sample_method:
The sub-keyword is mandatory for all experiment types with random sampling and for sample = “distr
…”. For sample = “file …” the sub-key-word is undefined. A sample method can not be specified for
experiment types GSA_EE and BAY_BC.
The sub-keyword sample_method allows to select the random sampling method to be applied indi-
vidually for each factor. For ”pseudo” random numbers a deterministic algorithm is used that ap-
proximates the properties of the given factor’s distribution by a sequence of generated numbers. The
sequence depends on an initial values that is controlled by the sub-keyword seed. For ”stratified”
random sampling the Latin Hypercube approach (e.g., McKay et al., 1979, Iman & Helton,1998,
Helton & Davis, 2000) is used. The sampling range of the factor as determined by its distribution is
divided into <val_int> (from the sub-keyword runs) intervals of equal probability according to the
given distribution. From each interval exactly one sampling point is drawn. The sampling point within
each interval is drawn with a pseudo random number approach. The ”quasi” random sampling is
based on the usage of pre-defined Sobol’ sequences (Sobol’, 1967 & 1976) for the interval <0,1>.
Sobol’ quasi random sampling is also known as LPτ sampling. In general, quasi random sampling
results in a low-discrepancy sequence which show a regular distribution pattern in the factor space
and hence qualifies it for numerical integration. For quasi random sampling the first values of the se-
quence are skipped: 1500 values for a fixed seed, for a random seed the number of values is ran-
domly selected within the interval <1000,2000>. Check also the Figures below.
Pseudo and stratified random sampling at first generate a factor sample uniformly or stratified uni-
formly distributed on <0,1>. For quasi random sampling a Sobol’ sequence is taken. Afterwards,
these values xi<0,1> are transformed to the target distribution as specified by <distribution>. The defi-
nition domain of the distribution according to sample_include and sample_exclude sub-keywords is
taken into account and random numbers of the target distribution are identified as the quantiles of
xi<0,1>.

 Sub-keywords sample_include and sample_exclude:
With the sub-keywords sample_include and sample_exclude intervals to sample from can be speci-
fied explicitly when the distribution is defined by “sample distr <distribution>”. A typical example for
application of these two sub-keywords is to exclude values from the distribution tails. If include or
exclude intervals are not specified the corresponding overall defaults from the distribution are ap-
plied. Use +inf to declare a positive infinite interval bound and -inf for a negative infinite interval
bound. The result from the overlay of all include and exclude intervals with the definition domain of
the distribution for probabilities > 0 can be several non-connected intervals to sample from. Sam-
ple_include and sample_exclude can not be used for distributions imported from files.
Keep in mind that the generated sample of factor values normally does no longer follow the statisti-
cal properties of the specified distribution when applying sample_include and/or sample_exclude. In
particular, moments will differ from those as determined by the distribution and its parameters.

 Sub-keyword seed:
This sub-keyword controls the seed of the used random number generator for implicitly specified dis-
tributions (“distr <distribution>”). A random seed will result in different generated samples for repeti-
tive performance of the same experiment while with a fixed seed the generated samples will be iden-
tical also across different machines (without taking into account numerical inconsistencies, e.g.,
rounding errors). If the sub-keyword is not stated initial seed is set to random.

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -73-

Tab. 6.4 Probability density functions and their parameters

Distribution
function

distr_
shortcut

distr_param_1 distr_param_2 Restriction

uniform U lower bound upper bound lower bound <
upper bound

normal N mean value variance variance > 0

lognormal L mean value of a
normally distributed
factor

variance of a nor-
mally distributed
factor

variance > 0

exponential E mean value --- mean value > 0

For more information on the distribution functions see Section 4.5 and Tab. 4.4.

Fig. 6.1 Probabilistic sampling: Pseudo and quasi sampling
left: pseudo sampling (sample size N=10000)
mid: quasi sampling (N=10000),
right: quasi sampling (N=1000).
Factors on abscissa and ordinate ~ U(0,1).
(From http://en.wikipedia.org, GNU Free Publication License)

-74- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

Sample size
N = 12 single simulation runs.

Factor x1 is normally distributed
Factor x2 is uniformly distributed.

Fig. 6.2 Probabilistic sampling: Latin hypercube sampling

only sampling relevant sub-keywords (without sample_method) are shown:

factor p1 descr sample without restrictions in
 (-inf,+inf)
factor p1 sample distr N(0,0.04)

factor p2 descr as p1 but sample only within the
 3-sigma range
factor p2 sample distr N(0,0.04)
factor p2 sample_exclude -inf:-0.6 , 0.6:+inf

factor p3 descr equivalent to p2
factor p3 sample distr N(0,0.04)
factor p3 sample_include -0.6:0.6

factor p4 descr as p2 but exclude additionally (.10,.15)
factor p4 sample distr N(0,0.04)
factor p4 sample_exclude -inf:-0.6 , 0.6:+inf,.10:.15

factor p5 descr equivalent to p4
factor p5 sample distr N(0,0.04)
factor p5 sample_include -0.6:0.6
factor p5 sample_exclude .10:.15

factor p6 descr sample from (.5,+inf)
factor p6 sample distr L(0,0.04)
factor p6 sample_exclude xxx:.5 xxx = any value ≤ 0.

Example 6.2 Include / exclude for probabilistic sampling in an experiment description file <model>.edf

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -75-

6.2 Global Sensitivity Analysis – Elementary Effects Method GSA_EE

The experiment specific information for experiment description files in Tab. 6.1 on page 69 is defined for
GSA_EE experiments as follows:

Tab. 6.5 Experiment specific elements of an edf file for GSA_EE
 (line type: m = mandatory, o = optional)

Keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

sample m 1 distr
<distribution>

distribution and distribution
parameters to grid the factor
for equidistant quantiles

sample_
include

o 1 <real_val11>:
<real_val12>
{ , … ,
<real_valn1>:
<real_valn2> }

lower bounds <real_vali1> and
upper bounds <real_vali2> of
intervals to include for sam-
pling according to distribution
<distribution>.
<real_vali1> < <real_vali2>

factor <factor_
name>

sample_
exclude

o 1 <real_val11>:
<real_val12>
{ , … ,
<real_valm1>:
<real_valm2> }

lower bounds <real_vali1> and
upper bounds <real_vali2> of
intervals to exclude from sam-
pling according to distribution
<distribution>.
<real_vali1> < <real_vali2>

levels m 1 <val_int> number of levels to span up a
p-level grid in the factor cube
that is composed from equi-
distant quantiles for each
factor.
p ≥ 4, even

trajectories m 1 <val_int> number of trajectories r to
position randomly at the p-
level grid
r ≥ 5

specific <nil>

seed o 1 [random | fixed] method how to initialize the
random number generator

To Tab. 6.5 the following additional rules and explanations apply:

 The jump width Δ in the corresponding quantile space is optimally selected as Δ = (p/2)/(p-1)
(check Section 4.2)

 For a grid with p levels the i-th level (i=1 ,…, p) corresponds to the (1+2*(i-1)) / (2*p)-quantile.
Consequently, level 1 is the 1/(2*p)-quantile and level p is the 1-1/(2*p)-quantile.
For p=4 the quantiles are 1/8 , 3/8 , 5/8 , 7/8.
For p=6 the quantiles are 1/12 , 3/12 , 5/12 , 7/12 , 9/12 , 11/12.
Keep in mind that distribution tails are cut by this approach. In particular, for a factor with a uniform
distribution U (lower bound , upper bound) the two bounds will not be used as factor values for the
resulting grid in the factor space.

-76- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

 To ensure that trajectories do not have to share grid points the ratio between the number of available
grid points pk in a k-dimensional p-level factor cube and the r*(k+1) points of r trajectories has to be
greater or equal than 3: pk / r*(k+1) ≥ 3

 For all the other sub-keywords check Section 6.1.1 on page 72.

6.2.1 Special Features in GSA_EE, Run Sequence

To ensure that the r trajectories optimally scan the gridded factor space the following approach is used for
generating them:

 The first trajectory is selected randomly.

 Assuming to have already determined rdet trajectories.
Then generate randomly 10+5*(r-rdet+1) potential trajectories and select from them as the trajectory
rdet+1 that one which has to the existing rdet trajectories the maximum distance in the quantile space.

The sequence of the single simulation runs in the experiment is determined in the following manner:

loop over trajectories
 loop over successive sampling points of the trajectory
 trajectory point
 endloop
endloop

6.2.2 Example

 general descr Experiment description for the examples
general descr in the SimEnv User Guide
general type GSA_EE

factor p1 descr latitudinal phase shift
factor p1 unit pi/12.
factor p1 type set
factor p1 default 1.
factor p1 sample distr U(-12,12) use factor values -9, -3, 3, 9

factor p2 type set
factor p2 default 2.
factor p2 sample distr U(1,10) use factor values 2.25, 4.75, 7.25,
 8.75
factor p3 type set
factor p3 default 3.
factor p3 sample distr U(-12,12)

factor p4 type set
factor p4 default 4.
factor p4 sample distr U(1,10)

specific levels 4 use quantiles .125, .375, .625, .875
specific trajectories 10

Example file: world.edf_GSA_EE

Example 6.3 Experiment description file <model>.edf for GSA_EE

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -77-

6.3 Global Sensitivity Analysis – Variance-Based Method GSA_VB

The experiment specific information for experiment description files in Tab. 6.1 on page 69 is defined for
GSA_VB experiments as follows:

Tab. 6.6 Experiment specific elements of an edf file for GSA_VB

Keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

sample m 1 [distr
<distribution> |
file {<directory>/}
<file_name>]

distr: distribution and distribu-
tion parameters to derive
a sample of values
<factor_smp_val>

file: file name to import an
external sample of val-
ues <factor_smp_val>

sample_
method

see
ex-
plan.

1 [pseudo | quasi |
stratified]

sampling strategy
(only for
sample “distr <distribution>”)

sample_
include

o 1 <real_val11>:
<real_val12>
{ , … ,
<real_valn1>:
<real_valn2> }

lower bounds <real_vali1> and
upper bounds <real_vali2> of
intervals to include for sam-
pling according to distribution
<distribution>.
<real_vali1> < <real_vali2>

factor <factor_
name>

sample_
exclude

o 1 <real_val11>:
<real_val12>
{ , … ,
<real_valm1>:
<real_valm2> }

lower bounds <real_vali1> and
upper bounds <real_vali2> of
intervals to exclude from sam-
pling according to distribution
<distribution>.
<real_vali1> < <real_vali2>

seed o 1 [random | fixed] method how to initialize the
random number generator

specific <nil>

runs m 1 <val_int> number of runs per factor

To Tab. 6.7 the following additional rules and explanations apply:

 For the sub-keyword sample and reading the sample and the sub-sample from a file (sample file …)
each record of the ASCII file must hold exactly two sample values where the first value is for the
sample and second for the re-sample. For the other syntax rules for ASCII data files check Section
12.3.

 For the sub-keyword run:
The number of resulting runs for experiment type GSA_VB is <val_int> * (k+2) where k is the num-
ber of factors to be investigated.

 For all the other sub-keywords check Section 6.1.1 on page 72.

-78- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

6.3.1 Run Sequence

The sequence of the single simulation runs in the experiment is determined in the following manner:

loop over the number of runs per factor as specified by the sub-keyword runs in <model>.edf.
 sample point from S
 re-sample point from R
 loop over resulting sample RSi for factor i (i=1 ,…, k)
 resulting sample point from RSi
 endloop
endloop

For S, R, and RSi check Section 4.3.

6.3.2 Example

 general descr Experiment description for the examples

general descr in the SimEnv User Guide
general type GSA_VB

factor p1 type set
factor p1 default 1.
factor p1 sample_method pseudo
factor p1 sample distr U(-12,12)

factor p2 type set
factor p2 default 2.
factor p2 sample_method stratified
factor p2 sample distr N(2,0.4)
factor p2 sample_include 0:+inf

factor p3 type set
factor p3 default 3.
factor p3 sample_method pseudo
factor p3 sample distr U(-12,12)

factor p4 type set
factor p4 default 4.
factor p4 sample_method stratified
factor p4 sample distr N(4,0.4)
factor p4 sample_include 0:+inf

specific runs 250 in total 250*(4+2)+1 runs

Example file: world.edf_GSA_VB

Example 6.4 Experiment description file <model>.edf for GSA_VB

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -79-

6.4 Deterministic Factorial Design DFD

The experiment specific information for experiment description files in Tab. 6.1 on page 69 is defined for a
DFD experiment as follows:

Tab. 6.7 Experiment specific elements of an edf file for a DFD experiment
 (line type: m = mandatory)

Keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

factor <factor_
name>

sample see
be-
low

1 <val_list> value list of factor samples
<factor_smp_val>
(for syntax see Tab. 12.5)

specific <nil> comb m ≥ 1 [default |
<combination> |
file {<directory>/}
<file_name>
{ [strict |
nonstrict] }]

information how to scan the
spanned factor space

To Tab. 6.7 the following additional rules and explanations apply:

 Sub-keyword sample is either mandatory for all factors or undefined for all factors.

 For sub-keyword comb the following rule holds:

 value = [default | <combination>] for used sub-keyword sample
 value = [file {<directory>/}<file_name>] for unused sub-keyword sample

 Values of a value list have to be unique for used sub-keyword sample and each factor
Assigned values from file {<directory>/}<file_name> can be multiple defined for each factor.

The sequence of the single runs is determined by the sub-keyword comb.

6.4.1 Formalisation of the Inspection Strategy, Run Sequence

The experiment type DFD allows for a flexible deterministic inspection strategy of the factor space in com-
bined sub-spaces:

 The combination <combination> defines the way in which the space spanned by the experiment
factors will be inspected by SimEnv. This is done by concatenating all stated experiment factors by
operators „*“ and „,“.

 The operator „*“ combines sampled values of different factors and so their resulting adjusted
values combinatorially (“the Cartesian product of the sampled values of all factors”).

Example: compare with the experiment description file DFD_a in Example 6.5

 The operator „,“ combines sampled values of different factors and so their resulting adjusted
values in parallel (“on the diagonal in the space spanned up from all factors”).
For the operator „,“ the factors must have the same number of sampled values.

Example: compare with the experiment description file DFD_b in Example 6.5

-80- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

 The operators „,“ and „*“ can be multiple used in <combination>. The operator „,“ has a higher
priority than the operator „*“. Parentheses are not allowed:

Example: compare with the experiment description file DFD_c in Example 6.5

x1 * x2 , x3 * x4 always combines factors x2 and x3 in parallel and this combinatorially
with factors x1 and x4.

A parallel combination of x1 * x2 with x3 * x4 by (x1 * x2) , (x3 * x4) is not possible.

 In <combination> each factor has to be used exactly once.

 By the default combination default all experiment factors are combined combinatorially in the se-
quence of their declaration in the experiment description file.

Example:
comb default of the experiment description file DFD_a from Example 6.5
is equivalent to comb p1 * p2

 Specification of file in the comb is only allowed if sub-keywords sample were not specified for all fac-
tors in the edf file.

 All factors are assumed to be combined in parallel.

 The sampled values are read from the sample data file {<directory>/}<file_name>.

 Each record of the sampled values data file represents one simulation run. The sequence of
the sample (sequence of columns) in each record corresponds to the sequence of the factors
in the factor name space (cf. Section 12.1 on page 203).

 Consequently, the file has to have per record as much values as factors defined in
<model>.edf. All the other syntax rules for ASCII data files from Section 12.3 hold.

 When specifying {<directory>/}<file_name> strict or {<directory>/}<file_name> identical
sample values for a factor are not allowed to enable after the experiment SimEnv post-
processing with the experiment-specific multi-run operator dfd.

 When specifying {<directory>/}<file_name> nonstrict identical sample values for a factor
are allowed. Experiment-specific multi-run operator dfd can not be applied in post-processing.
Use UNC_MC operator ens instead.

 During experiment post-processing restricted capabilities for the operator dfd apply for this
experiment layout.

 Example: compare with the experiment description file DFD_d from Example 6.5
 Combination is implicitly as comb p1 , p2.
 Experiment description files DFD_b and DFD_d in Example 6.5
 describe the same experiment

 To continue a combination <combination> at a following comb-line end the current comb-line by one
of the operators “*” or “,”.

 An explicit stated combination <combination> is normalized before running the experiment in the fol-
lowing sense:

 Segments of <combination> that are separated by the operator „*“ can be re-arranged in an
arbitrary order.

Example: p2 * p1 is equivalent to p1 * p2

 Factors that are scanned in parallel can be re-arranged in an arbitrary order.

Example: p4 , p3 * p2 , p1 is equivalent to p3 * p4 * p2 , p1

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -81-

 <combination> is rearranged in a way that factors are used in the sequence they are declared
in the experiment description file.

Example:

If four factors are declared in the sequence p1 , p2 , p3 , p4
then the explicitly stated <combination> p4 , p2 * p3 , p1
is normalized to p1 , p3 * p2 , p4.

 Normalisation does not influence the layout of the experiment.

The sequence of the single simulation runs in the experiment is determined in the following manner:

 For comb file {<directory>/}<file_name> :
The sequence corresponds to the sequence of the sampled factor values in the file <file_name>.

 For comb <combination>
with the normalized <combination> = <x1> * <x2> * … * <xn> and
<xi> = { xi1 , xi2 ,…, xii* } := { xij }j=1,…,i* for i = 1 ,…, n
loop over all factor sample values { xnj }j=1,…,n* for <xn>

 …
 loop over all factor sample values { x2j }j=1,…,2* for <x2>
 loop over all factor sample values { x1j }j=1,…,1* for <x1>
 endloop
 endloop
 …

endloop

 For comb default :
Is put down to comb <combination> (see above)

6.4.2 Example

Experiment description file DFD_a represents an experiment description according to Fig. 4.6 (a)
on page 26, DFD_b and DFD_d according to Fig. 4.6 (b) and DFD_c according to Fig. 4.6 (c).

 Results in adjusted
 factor values …

world.edf_DFD_a:

 general descr Experiment description for the examples
general descr in the SimEnv User Guide (Fig. 4.6 (a))
general type DFD

factor p1 descr latitudinal phase shift
factor p1 unit pi/12.
factor p1 type add
factor p1 default 1.
factor p1 sample list 1, 3, 7, 8 ... 2, 4, 8, 9 for p1

factor p2 type multiply
factor p2 default 2.
factor p2 sample list 1, 2, 3, 4 ... 2, 4, 6, 8 for p2

specific comb default

-82- Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013)

3.1 (Ja 25, 2013) n -83-

world.edf_DFD_b:

 general descr Fig. 4.6 (b)
general type DFD

factor p1 type multiply
factor p1 default 1.
factor p1 sample list 1, 3, 7, 8 ... 1, 3, 7, 8 for p1

factor p2 type multiply
factor p2 default 2.
factor p2 sample equidist_end 1(0.5)2.5 ... 2, 3, 4, 5 for p2

specific comb p1,p2

world.edf_DFD_c:

 general descr Fig. 4.6 (c)
general type DFD

factor p1 type set
factor p1 default 1.
factor p1 sample list 1, 3, 7, 8 ... 1, 3, 7, 8 for p1

factor p2 type set
factor p2 default 2.
factor p2 sample equidist_end 1(1)4 ... 1, 2, 3, 4 for p2

factor p3 type multiply
factor p3 default 3.
factor p3 sample list 2.0, 2.8, 3.3 ... 6.0, 8.4, 9.9 for p3

specific comb p1,p2*p3

world.edf_DFD_d:

 general descr Fig. 4.6 (b)
general type DFD file world.dat_DFD_d:

factor p1 type multiply 1 0
factor p1 default 1. 3 1

factor p2 type add 7 2
factor p2 default 2. 8 3

specific comb file world.dat_DFD_d strict ... (1,2), (3,3), (7,4),
 (8,5) for (p1,p2)

Example files: world.edf_DFD_[a | b | c | d]

Example 6.5 Experiment description files <model>.edf for DFD experiments

Multi-Run Simulation Environment SimEnv User Guide for Version

6.5 Uncertainty Analysis – Monte Carlo Method UNC_MC

The experiment specific information for experiment description files in Tab. 6.1 on page 69 is defined for an
UNC_MC experiment as describes in Tab. 6.8.

Tab. 6.8 Experiment specific elements of an edf file for UNC_MC
 (line type: m = mandatory, o = optional)

keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

sample m 1 [distr
<distribution> |
file {<directory>/}
<file_name>]

distr: distribution and distribu-
tion parameters to derive
a sample of values
<factor_smp_val>

file: file name to import an
external sample of val-
ues <factor_smp_val>

sample_
method

see
ex-
plan.

1 [pseudo | quasi |
stratified]

sampling strategy
(only for
sample “distr <distribution>”)

sample_
include

o 1 <real_val11>:
<real_val12>
{ , … ,
<real_valn1>:
<real_valn2> }

lower bounds <real_vali1> and
upper bounds <real_vali2> of
intervals to include for sam-
pling according to distribution
<distribution>.
<real_vali1> < <real_vali2>

factor <factor_
name>

sample_
exclude

o 1 <real_val11>:
<real_val12>
{ , … ,
<real_valm1>:
<real_valm2> }

lower bounds <real_vali1> and
upper bounds <real_vali2> of
intervals to exclude from sam-
pling according to distribution
<distribution>.
<real_vali1> < <real_vali2>

seed o 1 [random | fixed] method how to initialize the
random number generator

runs m 1 <val_int> number of runs to be per-
formed for the experiment

specific <nil>

function o ≥ 0 <result> stopping function to use by
the stopping rule for the ex-
periment.
A 0-dimensional result formed
according to the rules of the
SimEnv post-processor. Do
not apply multi-run operators.
Result definition can be ar-
ranged at a series of function
lines in analogy to the rules
for result expressions (cf.
Section 8.1.1).

-84- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

To Tab. 6.8 the following additional rules and explanations apply:

 Sub-keyword runs:
Specify here the number of runs to be performed.

 For all the other sub-keywords check Section 6.1.1 on page 72.

6.5.1 Stopping Rule

Optionally, SimEnv enables definition of a stopping rule that can be helpful to limit the number of simulation
runs in an experiment. In a stopping rule statistical measures from all already performed single model runs of
the run ensemble are calculated after each single run to decide whether to stop the whole experiment. Sta-
tistical measures are computed from a 0-dimensional result res(z) (the stopping function) formed according
to the rules of the SimEnv post-processor. The stopping function is used as an indicator to stop the experi-
ment.

In SimEnv the point of change for the variance of the stopping function res(z) over the already performed
single runs is determined after each single run using the Pettitt test (Pettitt, 1979). If a point of change in the
sequence of the single runs over the already performed run ensemble is detected, it is assumed that the
variance of the stopping function does not change anymore significantly after the point of change. The first
half of the simulation runs of the experiment is performed without applying the test in order to generate a
stabilized stopping function sample res(z).

The whole experiment is stopped if

 the level of significance of the Pettitt test is below 0.05 for the already performed run ensemble and

 there were at least <val_int>/5 single runs after that single run that represents the point of change.
<val_int> is the number of declared runs in <model>.edf (see above). This condition is introduced to
avoid to run into a local point of change.

UNC_MC experiments with a stopping function cannot be restarted. Partial experiment performance is not
supported. Consequently, in the configuration file <model>.cfg sub-keywords begin_run / end_run / in-
clude_runs / exclude_runs are not allowed for an experiment with a stopping function. The stopping condi-
tion is reported to the experiment log file <model>.elog.

6.5.2 Example

 general descr Experiment description for the examples
general descr in the SimEnv User Guide
general type UNC_MC

factor p1 descr latitudinal phase shift
factor p1 unit pi/12.
factor p1 type add
factor p1 default 1.
factor p1 sample_method stratified
factor p1 sample distr U(-6,6) p1 is sampled from a uniform distribution
 between -6 and 6. In simenv_get_*
 each value is increased by 1.
factor p2 type multiply
factor p2 default 2.
factor p2 sample_method pseudo
factor p2 sample distr N(2,.04) p1 is sampled from a normal distribution
 with mean = 1. and variance = 0.4.
 In simenv_get_* each sampled value is
 multiplied by 2.
factor p2 sample_include 1.6:2.4 sample only within the 2σ interval

3.1 (Ja 25, 2013) n -85- Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

factor p3 type set
factor p3 default 3.
factor p3 sample file world.dat_UNC_MC sample for p3 is read from file
 world.dat_UNC_MC
specific runs 250
specific function avg(atmo_g) apply avg(atmo_g) as stopping function

Example file: world.edf_UNC_MC

Example 6.6 Experiment description file <model>.edf for UNC_MC

6.6 Local Sensitivity Analysis LSA

The experiment specific information for experiment description files in Tab. 6.1 on page 69 is defined for a
LSA experiment as follows:

Tab. 6.9 Experiment specific elements of an edf file for LSA
 (line type: m = mandatory)

Keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

factor <factor_
name>

sample 0 sub-keyword is forbidden
for this experiment type

specific <nil> incrs m 1 <val_list> increments that form a sample
of factor values
<factor_smp_val>.
Resulting <factor_smp_val>
from <val_list> have to be
positive and ordered in a
strictly monotonic increasing
manner.
(for syntax see Tab. 12.5)

To Tab. 6.9 the following additional rules and explanations apply:

 For a LSA experiment only the factor adjustment types “add” and “relative” are allowed.

 Values from the value list must be positive and unique.

-86- Multi-Run Simulation Environment SimEnv User Guide

6.6.1 Sensitivity Functions, Run Sequence

Example:

The absolute sensitivity function (cf Tab. 4.5 on page 30) is as follows:

for adjustment type Add

 sens_abs(<factor_def_val>,±<factor_smp_val>) =
 z(<factor_def_val> ± <factor_smp_val>) – z(<factor_def_val>)
 ± <factor_smp_val>

for adjustment type Relative

 sens_abs(<factor_def_val>,±<factor_smp_val>) =
 z(<factor_def_val> * (1± <factor_smp_val>) – z(<factor_def_val>)
 ± <factor_def_val> * <factor_smp_val>

The sequence of the single simulation runs in the experiment is determined in the following manner:

loop over increment sequence
 loop over experiment factors
 sample point
 endloop
endloop
loop over negative increment sequence
 loop over experiment factors
 sample point
 endloop
endloop

6.6.2 Example

 general descr Experiment description for the examples
general descr in the SimEnv User Guide
general type LSA

factor p1 descr latitudinal phase shift
factor p1 unit pi/12.
factor p1 type add
factor p1 default 1.

factor p2 type relative
factor p2 default 2.

factor p3 type relative
factor p3 default 3.

specific incrs list 0.001,0.01,0.05,0.1

Example file: world.edf_LSA

Example 6.7 Experiment description file <model>.edf for LSA

3.1 (Ja 25, 2013) n -87- Multi-Run Simulation Environment SimEnv User Guide for Version

6.7 Bayesian Technique – Bayesian Calibration BAY_BC

Due to the sequential construction of the MCMC chain during the experiment a BAY_BC experiment can not
be performed in parallel and can not be restarted.

Tab. 6.10 Experiment specific elements of an edf file for BAY_BC
 (line type: m = mandatory, o = optional)

Keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

sample m 1 distr
<distribution>

prior distribution to generate a
representative sample of val-
ues <factor_smp_val> given
the information defined in
<model>.bdf

sample_
include

o 1 <real_val11>:
<real_val12>
{ , … ,
<real_valn1>:
<real_valn2> }

lower bounds <real_vali1> and
upper bounds <real_vali2> of
intervals to include for sam-
pling according to distribution
<distribution>.
<real_vali1> < <real_vali2>

factor <factor_
name>

sample_
exclude

o 1 <real_val11>:
<real_val12>
{ , … ,
<real_valm1>:
<real_valm2> }

lower bounds <real_vali1> and
upper bounds <real_vali2> of
intervals to exclude from sam-
pling according to distribution
<distribution>.
<real_vali1> < <real_vali2>

seed o 1 [random | fixed] method how to initialize the
random number generator

specific <nil>

runs m 1 <val_int> chain length
number of runs to be per-
formed for the experiment will
be smaller

To Tab. 6.10 the following additional rules and explanations apply:

 Sub-keyword sample:
Each factor in a BAY_BC experiment comes with its own (marginal) prior distribution which will be
qualified in the course of experiment by generating a representative sample by taking into account
measurement values and measurement errors from the real system.

 Sub-keyword runs:
Specify here the length of the chain of visited points in the factor space. The number of single simu-
lation runs performed during the experiment is smaller than this length since simulation runs are not
performed for candidate points that are outside the definition range of any individual factor according
to its prior distribution and optional sample_include / sample_exclude intervals.

 Sub-keyword type (Section 6.1.1 on page 72):
For BAY_BC only the factor adjustment type value “set” is allowed.

 For all the other sub-keywords check Section 6.1.1 on page 72.

-88- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

6.7.1 Bayesian Calibration Description File <model>.bdf

Bayesian calibration is the only experiment type that comes with a mandatory SimEnv file which supple-
ments the experiment definition file <model>.edf. This supplementary file is the Bayesian calibration descrip-
tion file <model>.bdf where the applied MCMC method, the covariance matrix for the normal multivariate
jump and the likelihood function(s) are defined.

Tab. 6.11 Elements of a BAY_BC bdf file
 (line type: m = mandatory, o = optional)

Keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

descr o any <string> overall likelihood descriptions

method

m 1 [metropolis_
 standard |
metropolis_
 reflected]

Markov chain Monte Carlo
MCMC method to use

cov_matrix o 1 file {<directory>/}
<file_name>]

lower triangular matrix (includ-
ing diagonal) of factor covari-
ances

jump_length o 1 <val_float> modifier for the length of the
multivariate normal jump
<val_float> > 0.

general <nil>

settings m 1 <val_int> number of settings for a multi-
ple setting BAY_BC experi-
ment
<val_int> ≥ 1

descr o 1 <string> likelihood descriptions

model_output m ≥1 <result> likelihood function model out-
put part
A result of any dimensionality
formed according to the rules
of the SimEnv post-processor.
Result definition can be ar-
ranged at a series of function
lines in analogy to the rules
for result expressions (cf.
Section 8.1.1).

likelihood <symbolic_
likelihood_
name>

data m 1 file {<directory>/}
<file_name>]

likelihood function data part
The name of an ASCII file that
holds the measurement val-
ues (averages) and the corre-
sponding errors (variances)

To Tab. 6.11 the following additional rules and explanations apply:

 Sub-keyword method:
The method metropolis_standard corresponds to the regular Metropolis-Hastings algorithm while for
metropolis_reflected the so-called Metropolis-with-Reflection algorithm (check Section 4.7) is used.
The latter method demands per factor only one resulting interval that is the intersection from the
definition domain of the distribution and sample_include / sample_exclude intervals specified in
<model>.edf.

3.1 (Ja 25, 2013) n -89- Multi-Run Simulation Environment SimEnv User Guide for Version

 Sub-keyword cov_matrix:
Specify here the name of a file that holds the covariance matrix of all factors. The covariance matrix
is used for the normal multivariate jump from an accepted point in the factor space to a candidate
point. Only the lower triangular matrix including the diagonal with the factor variances has to be pro-
vided. Sequence of rows and columns of the matrix is determined by the sequence of factors in
<model>.edf: Line number i (i=1,…,k for k factors) of the file has to have i values, where value no. j
(j=1,…,i-1) is the covariance between factor i and factor j and the i-th value is the variance of factor i.
For reflected Metropolis MCMC covariances have to be zero.
In case the sub-keyword is not used factor covariances are set to zero and factor variances are de-
rived from the corresponding distributions as defined by the sub-keyword sample in <model>.edf.
sample_include / sample_exclude intervals as potentially also specified in <model>.edf are not taken
into account for deriving the variances.
For the file syntax check Section 12.3 on page 208.

 Sub-keyword jump_length:
From the last accepted point of the chain of visited points a new candidate point is constructed by a
multivariate normal jump. The length of the jump can be modified by the specified multiplier value
while the direction of the jump will not be changed. There are two major reasons for changing the
jump length:

(1) jump_length < 1: to reduce the number of candidates that are located outside the definition
range of any individual factor and

(2) jump_length > 1: to speed up the convergence of the experiment, i.e., explore the factor space
adequately
In case the jump_length is not specified a default value 1. is assumed, resulting in no modifi-
cation of the jump length.

 Sub-keyword settings:
SimEnv allows for composing the likelihood function from performing a single model run for a num-
ber of different model settings where all settings consistently follow the single or multiple likelihood
function case. This approach is called the multiple setting likelihood function case (check Section
4.7). Model settings in such a case may differ in model calibration or site conditions. While the result
part of the likelihood function(s) is/are unique for all settings the data part(s) differ(s) among the set-
tings. Settings always count from 1. Please check Section 6.7.2 below for more information how to
set up such an experiment.

 Sub-keywords model_output and data:
For the Metropolis-Hastings algorithm applied in a BAY_BC experiment the posterior probability is
the product of the prior probability and the likelihood function. The latter follows a normal distribution
where the mean is the average measurement value and the variance is derived form the measure-
ment error (check Section 4.7). The sub-keyword data supplies the data part of the likelihood func-
tion. Specify here the name of a file where the measurement data averages and variances are de-
fined. With the sub-keyword model_output the model output part of the likelihood function is sup-
plied. A model output variables and/or result of any dimensionality has to be specified here. Both
parts are combined during performance of the experiment to compute successively an individual
likelihood from a data pair with average and variance of the table and its corresponding element
from the model output part. Correspondence is achieved by a sequential approach: The i-th individ-
ual likelihood is computed from the i-th data pair (the i-th record) and the i-th element of the result.
Determination of the i-th element of multidimensional results follows the column-major order model
(see Glossary in Section 15.7). Individual likelihoods are multiplied afterwards to form the final likeli-
hood function and consequently the posterior probability as described in Section 4.7. The number of
average-variance data pairs and the number of values of the result (= product of the extents) must
be identical. For the structure of the data file check below.
Besides this single likelihood function case (check Section 4.7) the user can specify in <model>.bdf
for the multiple likelihood function case several likelihood functions with different <likelihood_name>.
Generally, the likelihood functions differ in their data and result parts from each other and each like-
lihood function follows the rules for the single likelihood function case. Again, the single case likeli-
hoods are multiplied to determine the multiple case likelihood.

-90- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

The file for the data part of the likelihood function has to follow the syntax rules of ASCII data files in Section
12.3. Per data record one data pair has to be specified: The first value is the average of the measurement
value and the second value is the assigned variance.
As the number of average-variance data pairs in the table and the number of values of the result must be
identical nodata pairs have to be specified in the table for result elements where no data values are associ-
ated with. Use the float/real*4 nodata value as specified in <model>.cfg or the corresponding default nodata
value (see Section 11.8). For data that are scarcely scattered compared to the number of result elements the
shortcut

 <val_int>*nodata

with <val_int> ≥ 1 can be used instead of specifying <val_int> succeeding nodata pairs

3.4E+38 3.4E+38
 …
3.4E+38 3.4E+38

where 3.4E+38 is the default float/real*4 nodata value representation. If an other nodata value for float/real*4
is specified in <model>.cfg use that instead.

Keep in mind that the prior distribution is only determined by the marginal factor distributions as defined in
<model>.edf. If for a factor sample_include or sample_exclude intervals are defined that alter the definition
domain of the probability they are used to check whether a candidate point is outranged. In contrast, the
prior distribution of the factor is not changed by defining such intervals for a factor distribution.

6.7.2 Multiple Setting Likelihood Function Case

The general idea behind this case is to derive the posterior distribution as a representative sample by taking
into account several settings of a unique model rather than run the model only for a single setting. The latter
is the standard case of SimEnv in terms of the model calls per SimEnv single run: for each single SimEnv
run the model is performed once only. In contrast, for the multiple setting case each single SimEnv run is a
series of the model runs of the individual settings. Model settings may differ in their calibration e.g., for site
conditions if a model is considered to run at a local / regional scale. While the result part of the likelihood
function(s) is/are unique for all settings the data part(s) differ(s) among the settings. In other words, setting-
related likelihood functions are composed for each setting from unique result parts and setting-specific data
parts. Overall likelihood function is the product of all individual setting-related likelihood functions.

The Bayesian calibration description file <model>.bdf for the multiple setting case differs only in the value of
the sub-keyword settings from that for the other two cases. However, instead of checking and using the data
files as specified by the sub-keyword data setting specific data files are checked and used. They are ex-
pected with names as declared in the data sub-keyword and appended by “_s_<setting_number>”. Setting
numbers count from 1.

For each setting a single model run is performed. To distinguish between the model outputs of the individual
settings experiment output is stored for each setting to an individual subdirectory. Subdirectories are created
in the model output directory as specified in <model>.cfg. Subdirectory names are “s_<setting_number>”.
As usual, experiment related output files are stored in the current workspace. Multiple setting experiments
can not be post-processed in a common post-processing session. Instead, modify temporarily the model
output directory in <model>.cfg to a setting subdirectory and post-process a single setting experiment output
individually.

In the very artificial case the likelihood functions differ between settings, specify in <model>.bdf all likelihood
functions and assign a table consisting only of nodata elements for those settings where an individual likeli-
hood is not to be applied.

To interface the model to SimEnv for the multiple setting case the model wrap shell script <model>.run is
used that represents a single model run. Since a single run for the multiple setting case is a sequence of
individual single runs over all settings SimEnv provides a method how to deal with this feature:

3.1 (Ja 25, 2013) n -91- Multi-Run Simulation Environment SimEnv User Guide for Version

Instead of directly calling the model within <model>.run the shell script

 $SE_HOME/bin/simenv_bay_bc_sh <adapt_and_perform_setting_script>

is called.
The argument <adapt_and_perform_setting_script> to this script is the name of a shell script where the ad-
aptation of the model to one individual setting and afterwards the performance of the adapted model for this
individual setting have to be implemented. Within the shell script the operating system environment variable
SE_BAY_BC_SETTING is defined. Its value is the number of the current setting. It has to be used for the
adaptation.

As usual, the dot scripts $SE_HOME/bin/simenv_ini_sh and $SE_HOME/bin/simenv_end_sh have to be
applied in <model>.run. Dot scripts $SE_HOME/bin/simenv_get_sh and $SE_HOME/bin/simenv_get_run_sh
can be applied in <adapt_and_perform_setting_script>. If so, take care to perform
$SE_HOME/bin/simenv_ini_sh before. $SE_HOME/bin/simenv_end_sh must not be applied in
<adapt_and_perform_setting_script>.

6.7.3 Bayesian Calibration Log Files <model>.blog and <model>.bmlog

During the random walk by the Metropolis-Hastings algorithm a new candidate point in the factor space can
be

 outrange as it is outside the definition domain of the distribution of any factor and will be
 discarded afterwards.
 For an outranged point a single simulation run will not be performed.

 rejected for a Metropolis ratio MR ≤ 1
 a candidate is rejected with a probability of 1-MR
 For a rejected candidate point a single run was performed.

 accepted always for MR > 1 or
 for MR ≤ 1 a candidate is accepted with a probability of MR
 For a accepted candidate point a single run was performed.

 reflected for an accepted candidate that was reflected before
 (only for the Metropolis_reflected method)
 For a reflected candidate point a single run was performed.

The log file <model>.blog records information how a candidate point was classified according to the above
four categories. Additionally, the likelihood function value, the prior probability and the sampled values (and
not the adjusted values by simenv_get_*) of the point are reported to this file. For outranged and rejected
points the information from the previously accepted point is listed instead from the point itself. At the end of
the file a statistical summary is attached. The sequence of the records in the file relates to the sequence of
generated candidate points in the chain. The point with the default (nominal) factor values that correspond to
the run number 0 is assumed as an accepted point.
The number of points records in <model>.blog is larger than the number of sample points in <model>.smp
as for outranged candidates the model is not performed. <model>.smp is generated during performance of
the experiment. <model>.blog is also exploited by the BAY_BC specific post-processing operators
bay_bc_run_mask and bay_bc_run_weight (see Section 8.4.7).

For the multiple likelihood function case and the multiple setting likelihood function case another file
<model>.bmlog is generated during experiment performance. It lists individual likelihood functions for each
setting and/or each likelihood function. Likelihood function numbers correspond to the sequence of the likeli-
hood functions as defined in <model>.bdf. Unlike <model>.blog this file lists also the candidate point likeli-
hoods for rejected points. As the model is not run for outranged candidates the file can not supply informa-
tion for such candidates.

-92- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

6.7.4 Examples

 general descr Experiment description for the examples
general descr in the SimEnv User Guide
general type BAY_BC

factor p1 type set
factor p1 default 1.
factor p1 sample distr N(1,0.01)
factor p1 sample_include 0.9:1.1 sample only within the 3σ interval

factor p2 type set
factor p2 default 2.
factor p2 sample distr U(1.9,2.1)

factor p3 type set
factor p3 default 3.
factor p3 sample distr N(3,0.01)

factor p4 type set
factor p4 default 4.
factor p4 sample distr N(3.9,4.1)
factor p4 sample_include 3.9:4.1 sample only within the 3σ interval

specific runs 10000 chain length

Example file: world.edf_BAY_BC

Example 6.8 Experiment description file <model>.edf for BAY_BC

 general descr settings=1: multiple case
general descr =3: multiple setting case
general settings 1 or 3
general method metropolis_reflected
general cov_matrix file bay_bc.cov

likelihood lf_atmo model_output sum_l('001',atmo(*,*,c=7,i=1:16))
 16 values in total
likelihood lf_atmo data world.dat_BAY_BC1

likelihood lf_bios model_output sum_l('001',
likelihood lf_bios model_output bios(c=10:-10,c=-10:10,i=1:6))
 6 values in total
likelihood lf_bios data world.dat_BAY_BC2

Example file: world.bdf

Example 6.9 Bayesian calibration description file <model>.bdf

3.1 (Ja 25, 2013) n -93- Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

 <model>.run:

#! /bin/sh
. $SE_HOME/bin/simenv_ini_sh
my_model is a model that is initialized (calibrated) for a setting
by the file setting_<setting_no>.ini

only for the multiple case (running the model only in setting 1):
./my_model < setting_1.ini

only for the multiple setting case (running the model for all settings):
$SE_HOME/bin/simenv_bay_bc_sh my_model_setting_run.sh

. $SE_HOME/bin/simenv_end_sh

User shell script my_model_setting_run.sh
(for the multiple setting case: running my_model for one setting):
$SE_BAY_BC_SETTING is the current setting number
file setting_<setting_no>.ini holds setting-specific model information
./my_model < setting_$SE_BAY_BC_SETTING.ini

Excerpt from <model>.cfg:
model out_directory /scratch/modout

Experiment output is stored for the
- multiple case (and for other experiments with a single likelihood case) to /scratch/modout
- multiple setting case for setting 1 to /scratch/modout/s_1
- multiple setting case for setting 2 to /scratch/modout/s_2
- multiple setting case for setting 3 to /scratch/modout/s_3

Example 6.10 <model>.run for BAY_BC

 Multiple case (settings = 1) data files for the likelihood function:

file world.dat_BAY_BC1 file world.dat_BAY_BC2
(16 data entries in total and (6 data entries in total and
data pairs for time = 1 , 6 , 11 , 16: data pairs for time = 1 , 3 , 6
 float nodata value = 3.4E+38):

111.1 0.111 121.1 0.121
4*nodata 3.4E+38 3.4E+38
112.2 0.112 122.2 0.122
4*nodata 2*nodata
113.3 0.113 123.3 0.123
4*nodata
114.4 0.114

Multiple setting case (settings = 3) data files for the likelihood function:

for setting 1:
file world.dat_BAY_BC1_s_1 same as file world.dat_BAY_BC2_s_1 same as
file world.dat_BAY_BC1 file world.dat_BAY_BC2
(see <model>.run) (see <model>.run)

-94- Multi-Run Simulation Environment SimEnv User Guide

3.1 (Ja 25, 2013) n -95-

for setting 2:
file world.dat_BAY_BC1_s_2 file world.dat_BAY_BC2_s_2
(16 data entries in total and (6 data entries in total and
no data pair: a data pair for time = 4)
likelihood function lf_atmo is not used for setting 2):

16*nodata 3*nodata
 221.1 0.221
 2*nodata

for setting 3:
file world.dat_BAY_BC1_s_3 file world.dat_BAY_BC2_s_3
(16 data entries in total and (6 data entries in total and
a data pair for time = 1): a data pair for time = 6)

311.1 0.311 5*nodata
15*nodata 321.1 0.321

Example files: world.dat_BAY_BC1, world.dat_BAY_BC2

Example 6.11 Data files for the likelihood functions of a BAY_BC experiment
 (For syntax of data file records check sub-keyword data in Section 6.7.1)

6.8 Optimization – Simulated Annealing OPT_SA

The experiment specific information for experiment description files in Tab. 6.1 on page 69 is defined for an
OPT_SA experiment as follows:

To Tab. 6.12 the following additional rules and explanations apply:

 Sub-keyword seed:
This sub-keyword controls the seed of the used random number generator the simulated annealing
algorithm. A random seed will result in different generated samples for repetitive performance of the
same experiment while with a fixed seed the generated samples will be identical also across differ-
ent machines (without taking into account numerical inconsistencies, e.g., rounding errors). If the
sub-keyword is not stated initial seed is set to random.

Multi-Run Simulation Environment SimEnv User Guide for Version

Tab. 6.12 Experiment specific elements of an edf file for OPT_SA
 (line type: m = mandatory, o = optional)

Keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

factor <factor_
name>

sample m 1 <real_val1>:
<real_val2>

lower bound <real_val1> and
upper bound <real_val2> to
define the factor range where
the cost function is to be mini-
mized on.
<real_val1> ≤ <real_val2>
Values <factor_smp_val> are
sampled in this factor range.

seed o 1 [random | fixed] method how to initialize the
random number generator

function m ≥ 1 <result> cost function to minimize.
A 0-dimensional result formed
according to the rules of the
SimEnv post-processor. Do
not apply multi-run operators.
Result definition can be ar-
ranged at a series of function
lines in analogy to the rules
for result expressions (cf.
Section 8.1.1).

specific <nil>

runs m 1 <val_int> number of single runs to end
the experiment without check-
ing the other optimization
method related stopping crite-
ria.

6.8.1 Special Features in OPT_SA

For an optimization experiment in general and for the coupled simulated annealing algorithm in particular the
following features have to be kept in mind:

 This is an experiment type where the sample for the factors of the single runs are not determined be-
fore the experiment but in the course of the experiment by the optimization algorithm. Consequently,
only the header of the file <model>.smp is created during experiment preparation. The records be-
longing to the performed single runs are written during experiment performance.

 In parallel to the file <model>.smp an ASCII file <model>.fct is written during experiment perform-
ance with the value of the cost function for each of the single runs.

 The optimization algorithm itself is controlled by additional technical parameters and options that are
normally fixed by SimEnv. To modify these settings copy the ASCII file simenv_opt_sa_options.txt
from the sub-directory bin of the SimEnv home directory to <model>_opt_sa_options.txt in the cur-
rent workspace and edit this file. During the experiment the edited file is used instead of the file with
the default constellation in the SimEnv home directory. The description of the options and parame-
ters of this file can be found in Ingber (2004).

 OPT_SA experiments cannot be restarted by the SimEnv service simenv.rst.

-96- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

 In the configuration file <model>.cfg sub-keywords begin_run / end_run / include_runs / ex-
clude_runs are not allowed for an OPT_SA experiment. The experiment always starts with run num-
ber 0 and ends if one of the criteria in the file [<model> | simenv]_opt_sa_options.txt (see above) is
fulfilled or the explicitly stated end run number from the sub-keyword runs in <model>.edf is reached.

 As results of an OPT_SA experiment the optimization return code, the optimal factors, the corre-
sponding value of the cost function and the number of the corresponding single run are documented
at the end of the file <model>.fct.

 A protocol from the optimization procedure is made available by SimEnv in the ASCII file
<model>.olog.

6.8.2 Example

 general descr Experiment description for the examples
general descr in the SimEnv User Guide
general type OPT_SA

factor p1 descr latitudinal phase shift
factor p1 unit pi/12.
factor p1 type set
factor p1 default 1.
factor p1 sample -12:12 minimize cost function for p1є <–12 , 12>

factor p2 type set
factor p2 default 2.
factor p2 sample 1:10

factor p3 type set
factor p3 default 3.
factor p3 sample -12:12

factor p4 type set
factor p4 default 4.
factor p4 sample 1:10

specific function -sum(bios) maximize sum(bios) over land masses
specific runs 500

Example file: world.edf_OPT_SA

Example 6.12 Experiment description file <model>.edf for OPT_SA

3.1 (Ja 25, 2013) n -97- Multi-Run Simulation Environment SimEnv User Guide for Version

-98- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

7 Experiment Performance

After experiment preparation experiment performance is the second step in running a model inter-
faced to SimEnv. Each multi-run experiment can be performed sequentially or in a multi-processor hardware
environment. Besides experiment performance from scratch a restart after an experiment interrupt or only for
an experiment slice can be handled by SimEnv.

7.1 General Approach

SimEnv enables performance of an experiment in different modes: on the login node in foreground or in
background and controlled by a Distributed Resource Manager (synonym: job system) SimEnv supports the
Distributed Resource Managers load leveler LoadL and PBS/Torque. Experiment performance on the login
node is organized in a way that the single runs of the experiment are performed sequentially. Experiments
under a Distributed Resource Manager control enable assignment of the simulation load of the single runs of
the experiment to a number of processor cores in distributed, parallel or sequential mode.

The following conditions are valid when running an experiment. For more details check the corresponding
Sections.

 For all experiment settings the user model has to be wrapped in a shell script <model>.run (cf. Sec-
tion 7.2 and also Fig. 5.1).

 The model variables to be output during experiment performance are declared in the model output
description file <model>.mdf. Output of such declared model variables into SimEnv structures is
achieved by the application of the generic SimEnv model interface function simenv_put_* (and
simenv_slice_*) in the model source code.

 The type and the factors of the experiment to be performed are declared in the experiment descrip-
tion file <model>.edf. Mapping between experiment factors and factors in the model source code is
achieved by application of the generic SimEnv model interface function simenv_get_* in the model
code or at shell script level.

 Model output from run number <simenv_run_int> is stored in the file <model>.out[all |
<simenv_run_char>].[nc | ieee]. For all experiment types a run number 0 with the default (nominal)
values of all experiment factors is declared additionally to the runs described in the experiment de-
scription file <model>.edf.

 During experiment performance a model interface log file <model>.mlog is written where the ad-
justed experiment factor values are logged. All model output to the terminal is re-directed within
SimEnv to the experiment model native output log file <model>.nlog. During experiment perform-
ance an experiment log file <model>.elog is written with the minutes of the experiment.

 The status of any running experiment can be acquired by the SimEnv service simenv.sts. For more
information check Tab. 11.4. After the experiment has been finished an email is sent on demand (cf.
Section 11.1) to the address as specified in <model>.cfg.

 Experiments may be performed partially only for a slice out of the run ensemble. Experiment slices
are controlled by the general configuration file <model>.cfg by a range of single run numbers. Ex-
periments can be restarted for successive performance of experiment slices and/or after abnormal
experiment interrupt. The experiment log file <model>.elog is analyzed to identify these single runs
out of the run ensemble that have to be performed the first time and/or anew and the corresponding
model output data is appended to the output data that already exists for this experiment.

 For more information check Section 5.1, Fig. 5.1, and Fig. 7.1.

3.1 (Ja 25, 2013) n -99- Multi-Run Simulation Environment SimEnv User Guide for Version

7.2 Model Wrap Shell Script <model>.run,
Experiment-Specific Preparation and Wrap-Up Shell Scripts

The model to be applied within the SimEnv experiment has to be wrapped in the shell script <model>.run.
<model>.run is performed for each single run within the run ensemble.

 Make sure that in <model>.run

 #! /bin/sh is the first line
 . $SE_HOME/bin/simenv_ini_sh is performed always and

 as the first SimEnv dot script
 . $SE_HOME/bin/simenv_end_sh is performed always and

 as the last SimEnv dot script
(cf. Tab. 5.8 on page 59 and Example 7.1 below).

 Terminal output from <model>.run is redirected to the model native output log file <model>.nlog.

 To cancel the whole experiment after the performance of the current single run <simenv_run_int>
due to any condition of this run make sure a file $SE_WS/<model>.err<simenv_run_char> exists
as an indicator to stop. Create this file in the model or in <model>.run. Use the corresponding
SimEnv function simenv_get_run_* to get the current run number <simenv_run_char>. Cf. Tab. 5.8
on page 59 and Example 7.1 below.
From the cancelled experiment only those single runs are available for experiment post-processing
that were finished before the cancelled single run. Check the experiment log file <model>.elog to
identify these single runs.

 SimEnv supplies a shell script simenv_kill_process to kill processes of models / programs that were
started within <model>.run and that consumed more than a given threshold of CPU time. For exam-
ple, with this script the process associated with the model run that does not converge and would run
infinitely can be killed.
Start this script in background directly before the process is started that is to be monitored:

 $SE_HOME/bin/simenv_kill_process <program_to_monitor> <CPU_time_threshold_in sec>

When the program is killed a file $SE_WS/<model>.killed<simenv_run_char> exists as an indica-
tor. Keep in mind that for killed models the status of model output to SimEnv data structures may be
undefined. Sub-processes of the killed model are not killed by the shell script simenv_kill_process.
Check Example 7.4.

 For GAMS models and for the experiment type BAY_BC with the multiple setting case <model>.run
has to have a special pre-defined structure. For GAMS models check Section 5.7.1 and for the ex-
periment type BAY_BC with the multiple setting case check Section 6.7.2 for more information.

The user can define an optional model specific experiment preparation shell script <model>.ini that is per-
formed additionally after standard experiment preparation and before setting up a new experiment. For ex-
periment restart <model>.ini is performed only on request (cf. Section 7.4 below). After the experiment has
been finished the experiment can be wrapped up with the optional model / experiment specific shell script
<model>.end.

 In <model>.ini additional settings / checks can be performed. For return codes unless 0 from
<model>.ini the experiment will not be started. Terminal output from <model>.ini is re-directed to the
log file <model>.nlog. For Python, Java, Matlab and GAMS models <model>.ini is a mandatory shell
script with standardized contents. Check Sections 5.5.1 and 5.7.1 for more information.

 Terminal output from <model>.end is re-directed to the log file <model>.nlog. For GAMS models
<model>.end is a mandatory shell script with standardized contents. Check Section 5.7.1 for more
information.

The shell scripts <model>.run, <model>.ini, and <model>.end have to have execute permission. Ensure this
by the Unix / Linux command

chmod u+x <model>.[run | ini | end]

-100- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -101-

For the shell script world_f.run the following contents could be defined:

#! /bin/sh

perform always and as the first $SE_HOME/bin/simenv_*_sh dot script:
. $SE_HOME/bin/simenv_ini_sh

run the model:
./world_f

assuming a model return code ≠ 0 as an indicator to stop
the whole experiment for any reason.
Touch the file below in the current workspace $SE_WS
as an indicator to SimEnv for this.
if test $? –ne 0
then
 . $SE_HOME/bin/simenv_get_run_sh
 touch $SE_WS/world_f.err$simenv_run_char
fi

perform always and as the last $SE_HOME/bin/simenv_*_sh dot script:
. $SE_HOME/bin/simenv_end_sh

Example file: world_f.run

Example 7.1 Shell script <model>.run to wrap the user model

For the shell script world_*.ini the following contents could be defined
(for Matlab, the coarsed land sea mask is restructured additionally):

coarse 0.5° x 0.5° land-sea mask from file land_sea_mask.05x05
in the current directory
to a 4° x 4° resoluted land-sea-mask in file land_sea_mask.coarsed
in the current directory to use for all single runs
./land_sea_mask 4 4
rc_land_sea_mask=$?

exit from world_*.ini with return code ≠ 0
as an indicator not to start the experiment
exit $rc_land_sea_mask

Example files: world_[f | c | cpp | py | ja | m | sh | as].ini

Example 7.2 Shell script <model>.ini for user-model specific experiment preparation

For the shell script world_f.end the following contents could be defined:

remove the file of the coarsed land-sea mask
rm –f land_sea_mask.coarsed

Example file: world_[f | c | cpp | py | ja | m | sh | as].end

Example 7.3 Shell script <model>.end for user-model specific experiment wrap-up

Multi-Run Simulation Environment SimEnv User Guide for Version

For the shell script world_f.run the following contents could be defined:

#! /bin/sh

perform always and as the first $SE_HOME/bin/simenv_*_sh dot script:
. $SE_HOME/bin/simenv_ini_sh

enable to kill the process associated with the model $SE_WS/world_f
after 100 seconds of CPU time consumption
$SE_HOME/bin/simenv_kill_process $SE_WS/world_f 100 &

run the model:
$SE_WS/world_f

take some actions when the model was killed
. $SE_HOME/bin/simenv_get_run_sh
if test $SE_WS/world_f.killed$simenv_run_char
then
 . . .
 rm –f $SE_WS/world_f.killed$simenv_run_char
fi

perform always and as the last $SE_HOME/bin/simenv_*_sh dot script:
. $SE_HOME/bin/simenv_end_sh

Example file: world_f.run

Example 7.4 Shell script <model>.run with shell script simenv_kill_process

7.3 Experiment Performance, Parallelization

According to the general SimEnv approach how to design an experiment the single runs of an experiment
are independent from each other. The only exceptions are the experiment types OPT_SA and BAY_BC
where the sample values for the current single run are determined on the outcomes of previous single runs.
Keeping this in mind, SimEnv offers different modes how to disseminate the single runs of an experiment
during its performance. Experiments can run

 locally on the login node
in foreground, background and distributed mode and

 distributed on a compute cluster under control of a Distributed Resource Manager
in parallel, distributed and sequential mode

For an experiment performance controlled by a Distributed Resource Manager or on the login node in back-
ground make sure that the environment variable SE_HOME is set correctly in the file $HOME/.profile.

-102- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

7.3.1 Local Experiment Performance on the Login Node

Two different distribution strategies are offered by the simulation environment for running an experiment on
the login node:
Perform the single runs of an experiment …

 … sequentially on the login node
 foreg - foreground sub-mode
 backg - background sub-mode:
For an experiment in foreground sub-mode the login session must be active during the whole ex-
periment.
Choosing experiment performance in the background, a temporary shell script is generated by
SimEnv that represents the simulation experiment as a whole. This shell script is submitted as a
cron job to the cron daemon for one-time execution starting at a time specified during experiment
preparation. The cron job is removed from the cron job list directly after the start of the correspond-
ing experiment. After experiment preparation the login session can be closed. For background per-
formance make sure to have rights to manage cron jobs on the node the experiment is started from.

 … distributed on the multicore login node
 mcore - multi-core sub-mode:
For a multi-core processor login node the single runs of the experiment can be distributed across a
selected number of cores. The experiment can be started at once or at a specified time. For the lat-
ter, a cron job is generated which is removed from the cron job list directly after the start of the cor-
responding experiment. For cron job submission make sure to have rights to manage cron jobs on
the node the experiment is started from. As for background sub-mode, in multi-core sub-mode the
login session can be closed after experiment preparation.

7.3.2 Experiment Performance controlled by the Distributed Resource Manager

SimEnv enables the parallelization of the experiment in the sense that several single runs can be performed
in parallel without influencing each other. This opens an approach for a computer network or a compute clus-
ter of connected machines

 to distribute the single runs of an experiment across the network / on the cluster

 to perform the single runs there and

 to collect after the end of a single model run its model output data and related information

SimEnv supports distribution of single runs of an experiment for compute cluster architectures. Currently,
IBM’s Job management system load leveler LoadL with the parallel operating environment POE and the
Linux tools PBS/Torque are supported as Distributed Resource Managers DRM. For DRMs the processors
of a compute cluster are assigned to job classes / queues where jobs can be submitted to.

Three different distribution strategies are offered by the simulation environment:
Perform the single runs of an experiment …

 … on all the available processor cores of a job class / queue
 dis - distributed sub-mode:
The single runs are submitted to the job class / queue as single jobs in a way that all available proc-
essor cores of the class can be used. Due to controlling the submit process dynamically by SimEnv,
the job class / queue will not be overloaded by the single run jobs of the experiment. Instead, the
submit process will wait if necessary. The submit process itself is started in the background. The ex-
periment performance will start with the first submitted single run when a processor core of the se-
lected job class / queue is free.
Use this sub-mode for best utilization of all job class processor cores.

3.1 (Ja 25, 2013) n -103- Multi-Run Simulation Environment SimEnv User Guide for Version

 … on pre-allocated processor cores of a class / queue
 par - parallel sub-mode:
A number of processor cores are assigned to the experiment during experiment preparation and one
parallel job is submitted to the job class / queue. During the experiment one communication proces-
sor core is responsible for experiment management while the other processors serve as simulation
processor cores for the single runs.
The experiment performance will start when the assigned number of processor cores are available in
this class / queue. This sub-mode makes use of the Message Passing Interface MPI.
Use this sub-mode to make sure to run an experiment in a certain time.
For inter-node communication, check the remark below.

 … on one pre-allocated processor core of a class
 seq - sequential sub-mode:
SimEnv also offers a sequential sub-mode under control of the Distributed Resource Manager: One
processor core of a job class / queue is assigned to the whole experiment and the experiment is per-
formed sequentially on this processor core. The experiment performance will start when one proces-
sor core of this job class / queue is available.

After an experiment was submitted to the Distributed Resource Manager the current login session can be
closed.

Default job control files are supplied by SimEnv to ensure communication with the Distributed Resource
Manager. These job control files may be copied to the current workspace, can be modified and will then be
used instead of the default job control files to start an experiment with one of the SimEnv parallelization
strategies.
If necessary, copy the ASCII job control file simenv_[dis | par | seq]_[aix | linux].[jcf | pbs] from the
sub-directory bin of the SimEnv home directory to <model>_[dis | par | seq]_[aix | linux].[jcf | pbs] in the
current workspace, modify the file according to the needs of the model one wants to perform and / or the
node one wants to use and start afterwards simenv.run and/or simenv.rst. If available in the current work-
space, the modified job control file is used instead of the original file in the sub-directory bin of the SimEnv
home directory. simenv_[dis | par | seq]_[aix | linux].[jcf | pbs] and/or <model>_[dis | par | seq]_[aix |
linux].[jcf | pbs] submit a job in distributed / parallel / sequential sub-mode under Distributed Resource
Manager control.

The default job control files do not enable automatic restart of the experiment by the Distributed Resource
Manager after an abnormal end. The user has to restart the experiment manually after such an event.

For performing a parallel model itself in a DRM environment see Section 5.11.

7.3.3 Experiment Partial Performance

SimEnv enables to perform an experiment partially by performing only a run slice out of the whole run en-
semble. Therefor, assign appropriate run numbers to the corresponding sub-keywords begin_run / end_run /
include_runs / exclude_runs in <model>.cfg (check Section 11.1).

A partial experiment performance is also possible for an experiment restart. Experiment partial performance
is not possible for the experiment types UNC_MC with a stopping function, BAY_BC and OPT_SA.

For more information check Fig. 7.1.

-104- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

7.3.4 Peculiarities of Multi-Run Experiment Performance

Contrary to a single model run, a native model source code has to be analysed at least with respect to its
output files before setting up a multi-run simulation experiment. Often, models write output to files with fixed
file names and these files must not exist before running the model. Such assumptions conflict with running
the model in a loop sequentially or in parallel / distributed sub-mode.

Pragmatic workarounds for such conditions without changing the model source code are as follows:

 For sequential experiment performance on the login node and/or on a compute cluster
rename in the model wrap shell script <model>.run after running the model its outputs to run number
related file names. This solves most of the problems since always only one model run is active.

 For parallel and distributed experiments on the login node and/or on a compute cluster
The above solution fails since more than one model run is active and output files are opened. Here ,
the best choice is to perform each single model run in its own (temporary) subdirectory of the current
workspace, e.g. identified by the number of the single run. Keep in mind that input files also have to
be copied to this directory.

Check Example 7.5 for more information.

For a model my_model with an input file my_model.in and an output file my_model.out
the following contents could be defined for the model wrap shell script my_model.run:

#! /bin/sh

perform always and as the first $SE_HOME/bin/simenv_*_sh dot script:
. $SE_HOME/bin/simenv_ini_sh

get run number
. $SE_HOME/bin/simenv_get_run_sh

for sequential experiment performance:
./my_model
mv my_model.out my_model.out.$simenv_run_char
sequential end

for parallel and distributed experiment performance:
mkdir run$simenv_run_char
cd run$simenv_run_char
cp ../my_model.in .
../my_model
mv my_model.out ../my_model.out.$simenv_run_char

cd ..
rmdir run$simenv_run_char
parallel and distributed end

perform always and as the last $SE_HOME/bin/simenv_*_sh dot script:
. $SE_HOME/bin/simenv_end_sh

Example 7.5 Handling model input and output files in multi-run experiments

3.1 (Ja 25, 2013) n -105- Multi-Run Simulation Environment SimEnv User Guide for Version

7.3.5 Inter-Node Communication for Parallel Sub-Mode at Compute Clusters

The Message Passing Interface MPI is used for this sub-mode. To start the simenv binary $SE_HOME/bin/
simenv_run_par, MPI needs ssh-connections between the nodes / blades of the compute cluster. The ssh-
connections need public and private keys and appropriate authorization entries.
At the PIK compute clusters openssh is used. openssh uses the directory ~/.ssh for key files. A minimal di-
rectory contents of ~/.ssh looks like this:

 login02:~> ls
 id_[d | r]sa private key
 id_[d | r]sa.pub public key
 authorized_keys file of accepted public keys

id_[d | r]sa.pub must be authorised_keys.
Pay attention that id_[d | r]sa and id_[d | r]sa.pub are really a key pair.
It is recommended to keep the directories ~/.ssh and ~/.ssh2 disjunct.

7.4 Experiment Restart

When an experiment was interrupted / has failed due to any reason or in the case of partial experiment per-
formance (cf. Section 7.3.3) it can be restarted. Restart can be applied to an experiment several times suc-
cessively.

 Simply restart the experiment by simenv.rst. The SimEnv service simenv.rst has the same usage as
simenv.run. Do not change any of the SimEnv files describing the experiment and/or the model. The
only exception may be the values for the sub-keywords of the keyword experiment in the general
model configuration file <model>.cfg. Experiment restart works without standard SimEnv experiment
preparation. Instead, experiment preparation files and other information from the interrupted experi-
ment will be used. The configuration file <model>.cfg will be checked anew for experiment restart.

 Dependent on the experiment log file <model>.elog, written by the previous / interrupted experiment
a single model run out of run ensemble as defined in <model>.cfg for the experiment to restart will
be

 Performed if this run has neither a start nor a finish entry in the elog file
 Not performed if this run has a start and a finish entry in the elog file
 Performed anew if the run has a start entry but no finish entry in the elog file.

 For the latter case, a model restart shell script <model>.rst can be optionally provided by the user to
prepare the restart of this single model run (e.g., by deleting non-SimEnv temporary or output files).
Make sure that in <model>.rst

 #! /bin/sh is the first line
 . $SE_HOME/bin/simenv_ini_sh is performed always and

 as the first SimEnv dot script
 . $SE_HOME/bin/simenv_end_sh is performed always and

 as the last SimEnv dot script
(cf. Tab. 5.8 on page 59 and Example 7.6 below).
Make sure that <model>.rst has execute permission by the Unix / Linux command
chmod u+x <model>.rst.
After running . $SE_HOME/bin/simenv_get_run_sh the shell script variables simenv_run_int and
simenv_run_char are available in <model>.rst (cf. Tab. 11.10).
Terminal output from <model>.rst is re-directed to the log file <model>.nlog.

 For a restart, the optional user-defined experiment preparation shell script <model>.ini will be per-
formed only on demand. The corresponding request is specified in the configuration file <model>.cfg
with the sub-keyword restart_ini and its value “yes”.
For Python, Java, Matlab and GAMS models interfaced to SimEnv <model>.ini has to be performed
mandatorily. Consequently, the value of restart_ini has to be set to “yes” (cf. Sections 5.5.1 and
5.7.1)

-106- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

 Restart can be launched in a different mode (on the login node or under job Distributed Resource
Manager control, the latter also in an other job class / queue) and sub-mode and/or on an other node
than that of the previous / interrupted experiment.

 Minutes of the restarted experiment will be appended to the log files <model>.mlog, <model>.nlog,
and <model>.elog, respectively from the previous / interrupted experiment.

 Experiment restart is not possible for the experiment types UNC_MC with stopping rule, BAY_BC
and OPT_SA.

For the model world_sh (cf. Example 15.10 on page 236) the following contents could be
defined for the restart shell script world_sh.rst:

#! /bin/sh

perform always and as the first $SE_HOME/bin/simenv_*_sh dot script:
. $SE_HOME/bin/simenv_ini_sh

get run number
. $SE_HOME/bin/simenv_get_run_sh

remove all files from the temporary directory and the directory itself
if test –d run$simenv_run_char
then
 rm -fR run$simenv_run_char
fi

perform always and as the last $SE_HOME/bin/simenv_*_sh dot script:
. $SE_HOME/bin/simenv_end_sh

Example file: world_sh.rst

Example 7.6 Shell script <model>.rst to prepare model performance during experiment restart

3.1 (Ja 25, 2013) n -107- Multi-Run Simulation Environment SimEnv User Guide for Version

7.5 Experiment Related User Shell Scripts and Files

Tab. 7.1 Experiment related user shell scripts and files

Shell script /
file

Explanation

Used for
(*)

Exist
status

Shell scripts (terminal output is re-directed to <model>.nlog) (**)

<model>.run model shell script to wrap the model executable
Model interface dot scripts at shell script level simenv_*_sh
can / have to be applied in <model>.run:
 $SE_HOME/bin/simenv_ini_sh has to be performed al-

ways and as the first SimEnv dot script simenv_*_sh
 $SE_HOME/bin/simenv_end_sh has to be performed

always and as the last SimEnv dot script simenv_*_sh

S R mandatory

<model>.rst model shell script to prepare single model run restart for such
single runs that were started but not finished during the previ-
ous experiment start / restart
 $SE_HOME/bin/simenv_ini_sh has to be performed al-

ways and as the first SimEnv dot script simenv_*_sh
 $SE_HOME/bin/simenv_end_sh has to be performed

always and as the last SimEnv dot script simenv_*_sh
 $SE_HOME/bin/simenv_get_run_sh can be used

R optional

<model>.ini model shell script to prepare simulation experiment addition-
ally to standard SimEnv preparation
 Experiment will be not performed if return code from this

shell script is unequal 0
 For experiment restart <model>.ini will be performed only

on request

S (R)

optional,
for Python,
Java, Mat-
lab and
GAMS
models
mandatory

<model>.end model shell script to clean up simulation experiment from non-
SimEnv files

S R optional

Files

<model>.err
<simenv_run_char>

touch such a file in <model>.run and/or in <model>.rst as an
indicator to stop the complete experiment after single run
<simenv_run_int> has been finished

A optional

<model>.killed
<simenv_run_char>

generated from $SE_HOME/bin/simenv_kill_process in
<model>.run as an indicator that a process exceeded the
specified CPU-time limit and was killed

A optional

<model>_
[dis | par | seq]_
[aix | linux].
[jcf | pbs]

model-specific job control file to submit an experiment in dis-
tributed, parallel and/or sequential sub-mode under Distrib-
uted Resource Manager control (jcf for LoadL, pbs for
PBS/Torque)
 Copy from $SE_HOME/bin/simenv_[dis | par | seq]_

[aix | linux].[jcf | pbs] if required

D optional

<model>_opt_
options.txt

model-specific control and option file for experiment type
OPT_SA
 Copy from $SE_HOME/bin/simenv_opt_sa_options.txt if

required

O optional

 (*): shell script applied for
 R: Restart of an experiment by simenv.rst <model>
 S: Start of an experiment by simenv.run <model>
 file applied for
 A: All experiment performance on the login node or under Distributed Resource Manager control
 D: experiment performance under Distributed Resource Manager control
 O: OPT_SA experiment performance
 (**): make sure by the Unix / Linux command chmod u+x <model>.<ext>

that the shell script <model>.<ext> has execute permission

-108- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

simenv.run <model> simenv.rst <model>

3.1 (Ja 25, 2013) n -109-

Fig. 7.1 Flowcharts for performing simenv.run and simenv.rst
 First and last single run always refer to the corresponding settings in <model>.cfg

<model>.run

<model>.end

exists
<model>.<run_char>.err

<run> = last single run

stop

no

no

<run> =
first single run

yes

yes

no

return code = 0
from <model>.ini

<model>.ini

yes

start

<run> =
<run> + 1

single run completed
 in previous experiments

<model>.run

<model>.end

exists
<model>.<run_char>.err

<run> = last single run

stop

no

no

yes

yes

<run> =
 first single run

<model>.rst

single run unfinished
 in previous experiments

yes

no

no

yes

start

<run> =
<run> + 1

return code = 0
from <model>.ini

<model>.ini

restart_ini = yes
in <model>.cfg no

yes

no

yes

Multi-Run Simulation Environment SimEnv User Guide for Version

7.6 Saving Experiments

To save experiments for later use, e.g., by SimEnv experiment post-processing, make sure to store the files
listed in Tab. 7.2:

Tab. 7.2 SimEnv files to store for later experiment post-processing

File name

Remark

Mandatory from the model output directory

<model>.out[all | <simenv_run_char>].[nc | ieee]

Mandatory from the current workspace

<model>.cfg do not modify the information assigned
to the keyword model

<model>.mdf

<model>.edf

do not modify all information including
the sequence of the model output vari-
ables and/or experiment factors

<model>.smp

<model>.fct for UNC_MC with stopping rule,
BAY_BC, and OPT_SA

<model>.blog for BAY_BC

Optional from the current workspace

<model>.elog

<model>.mlog

<model>.nlog

<model>_[dis | par | seq]_[aix | linux].[jcf | pbs]

<model>.bmlog for BAY_BC

<model>.olog for OPT_SA

<model>.opt_sa_options.txt for OPT_SA

-110- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

8 Experiment Post-Processing

Goal of experiment post-processing is to navigate within the model / experiment output space by de-
riving interactively output functions / data that are to be visualized in experiment evaluation afterwards.
Therefor SimEnv supplies operators that can be applied to experiment output and reference data. There are
built-in basic and advanced operators and built-in experiment specific operators. The user can define its own
private operators and easily couple them to the post-processor. Additionally, composed operators can be
derived from both built-in and user-defined operators. Operator chains and recursions are possible. Macros
can be defined as abbreviations for operator chains.

8.1 General Approach

8.1.1 Post-Processor Results

In SimEnv experiment post-processing post-processor results (synonym: output functions) are derived from
experiment output of the experiment and from data. Generally speaking, a post-processor result is specified
by a chain of operators which are applied to model output variables and/or data. This operational description
of the result is optionally prefixed by a result descriptor where a name and/or attributes can be assigned to
the result.

 <result> := { <result_descriptor> := } <result_expression>

<result> by the string “Enter a result” the user is asked to enter a result.

Input lines with a character # as the first non-white space character are treated as
comments.
The experiment post-processing session is finished by entering <ret> instead of a
result, possibly prefixed by white spaces.
For case sensitivity of <result> check Tab. 11.12 on page 197.

 <result_descriptor> = ({ ‘result_name’ } , { ’result_description’ } , { ’result_unit’ })

Optionally describes the name of the result and its description and unit in the corre-
sponding result output file (cf. Chapter 10). For one post-processor output file (one
post-processor session) ‘result_name’ has to be unique.
The result descriptor with its separator “:=” has to be specified in the first input line.
The result expression itself may follow at the following input line. ‘result_description’
and ‘result_unit’ are case sensitive, ‘result_name’ is transformed to lower cases. All
three properties can be empty and/or a character string with white spaces).
In the absence of ‘result_description’ and ‘result_unit’ there are default values for
them if the result expression is a special type of a single operand – single operator
expression. In the absence of ‘result_name’ there is a general default name. All
three strings can comprise wildcard substrings. For all defaults and wildcard see be-
low.

<result_expression> is a chain of SimEnv and user-defined operators applied to model output variables
and/or data.

 Can be continued on a new input line (continue expression:) if the current input line
ends on one of the operators “+” , “-” , “*” , “/”, or “**” or on the operand separator “,”
in operators.
White spaces are filtered out from the result expression string, also from character
arguments.

3.1 (Ja 25, 2013) n -111- Multi-Run Simulation Environment SimEnv User Guide for Version

For a single operand – single operator result expression and in absence of ‘result_description’ and/or ‘re-
sult_unit’ in the result descriptor both properties may be substituted by defaults.
Here, a single operand – single operator result expression is defined as a result without any operator or only
from one operator and using exactly one model output variable and/or one experiment factor. For such op-
erators that are invariant with respect to the unit of the operand ‘result_description’ and/or ‘result_unit’ are
copied from the corresponding information for the sub-keyword descr in <model>.mdf (for a model output
variable as an operand of this operator) and/or from <model>.edf (for an experiment factor as an operand of
this operator). For all other cases <result_description> and <result_unit> are blank strings / undefined. For a
list of invariant operators check Section 15.5.5.

The default value for ‘result_name’ is ‘res_<digit><digit>’ where <digit><digit> where the first result in an
post-processing output file with a default name is ‘res_01’ and <digit><digit> can count up to 99.
If the result expression is composed from wildcard operands &v& and/or &f& (see Sections 8.1.2 and 8.7)
then the three elements of the optional result descriptor can also comprise these wildcard.

Having a model output variable definition as in Example 5.1 on page 44 then in experiment
post-processing

abs(atmo)+3 (multi-operand – multi-operator result expression)
 applies operator abs to atmo and adds 3
 <result_name> = ‘res_01’
 <result-description> (undefined)
 <result_unit> (undefined)
(‘Energy’,‘ ’,‘MWh’) := abs(atmo)+3 as above, but:
 <result_name> = ‘energy’
 <result_unit> = ‘MWh’
(‘Energy’,‘ ’,‘MWh’) := as above
abs(atmo)+
3
atmo (single operand – single operator expression)
 Applies no operator to variable atmo
 <result_name> = ‘res_02’
 <result_description> = ‘aggregated atmospheric state’
 (according to <model>.mdf)
 <result_unit> = ‘atmo_unit’
 (according to <model>.mdf)
abs(atmo) (single operand – single operator expression)
 Applies operator abs to atmo to variable atmo
 Operator abs is invariant w.r.t. the unit of its operand
 <result_name> = ‘res_03’
 <result_description> = ‘aggregated atmospheric state’
 (according to <model>.mdf)
 <result_unit> = ‘atmo_unit’
 (according to <model>.mdf)
sign(atmo) (single operand – single operator expression)
 Applies operator sign to variable atmo
 Operator sign is not invariant w.r.t. the unit of its operand)
 <result_name> = ‘res_04’
 <result_description> = (undefined)
 <result_unit> = undefined
(‘Energy’,‘new description’,‘ ’ := abs(atmo)
 <result_name> = ‘energy’
 <result_description> = ‘new description’
 <result_unit> = ‘atmo_unit’
 (according to <model>.mdf)

-112- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -113-

(‘Energy’,‘new description’,‘ ’ := sign(atmo)
 <result_name> = ‘energy’
 <result_description> = ‘new description’
 <result_unit> (undefined)

Example 8.1 Addressing results in experiment post-processing

8.1.2 Operands

essions can be

as defined in <model>.mdf
e by

Operands in result expr

 Model output variables
In the following abbreviat d arg

Example: atmo

 Experiment factors as defined in <model>.edf
ia e by In the following abbrev t d arg

Example: p1

 Integer _int> or real constants <val_float>
eal_arg

constants <val
In the following abbreviated by int_arg and/or r

Example: 12 and -12 or 12.34 1.234e+1 and -

 Character string tring>, d in single arks
y

s <s enclose quotation m
In the following abbreviated b char_arg

Example: ‘tie_avg’

 Operator lts
breviated by arg

resu
In the following ab

Example: abs(atmo) and atmo+3.

 Macros ed in <model>.mac (cf. Section 8.6 as defin)

Example: equ_100yrs_m

 Wildcard operan (cf. Section 8.7ds)

Example: &v&

s for model output variables also to each operand (with the exception of character string operands)

 A dimensionality dim > 0
with i=1 ,..., dim

A

Extents ext(i) > 1
Coordinates coord(i) with i=1 ,..., dim

are assigned to (cf. Section 5.1). The ionality is the numdimens ber of dimensions, an extent is re-
lated to each dimension and represents the number of elements in that dimension. Extents are al-
ways greater than 1. To each dimension a coordinate is assigned to. Coordinate specification for
operands follows that for model output variables. For more information see Section 5.1.

Multi-Run Simulation Environment SimEnv User Guide for Version

 Operators transform dimensionality, dimensions, and coordinates of the their non-character operator
arguments into unique dimensionality, dimensions and coordinates of the operator result (cf. Section
8.1.4).

 Consequently, the output of an operator and finally a post-processor result as a sequence of opera-
tors applied to operands also has unique dimensionality, extents and coordinates.

 Experiment factors and constants always have a dimensionality of 0.

 Operands of dimensionality 0 and character string operands do not have extents and a coordinate
assignment.

8.1.3 Model Output Variables

A variable of dimensionality n corresponds to an n-dimensional array and is defined at an n-dimensional grid,
spanned up from the coordinate values of the assigned coordinates The complete data field of a model out-
put variable or parts of it can be addressed in experiment post-processing (see below). Dimensionality, di-
mensions and coordinate description of this data field is derived from the model output variable description in
<model>.mdf.

Model output variables are specified in the ASCII model output description file <model>.mdf (cf. Tab. 5.3 on
page 42) by their

 Name

 Data type (cf. Tab. 5.4 on page 43).

 Dimensionality

 Extents

 Coordinate assignment to each dimension

 Index assignments to each dimension

 Use the service simenv.chk to check variables description in model output description file
<model>.mdf

Addressing model output data fields or parts of it in experiment post-processing is done by corresponding
model output variables names. For variables with a dimensionality greater than 0 it is possible to address
only a part of the whole variable field by

 Specifying for a dimension an index range i by
i = [<index_value1> { : <index_value2> } | *]
<index_value1> ≤ <index_value2>
<index_value2> = <index_value1> if <index_value2> is missing.
i = * denotes the complete range of a dimension.

 Specifying for a dimension a coordinate range c by
c = [<coordinate_value1> { : <coordinate_value2> } | *]
<coordinate_value1> ≤ <coordinate_value2> for strictly increasing coordinate values
<coordinate_value1> ≥ <coordinate_value2> for strictly decreasing coordinate values
<coordinate_value1> = <coordinate_value2> if <coordinate_value2> is missing
c = * denotes the complete range of a dimension.

 Dimensions with their individual index / coordinate ranges are separated from each other by a
comma, the sequence of ranges for all dimensions is enclosed in brackets and is appended after the
variable name.

 For one variable c= and i= can be used in mixed mode for different dimensions.
Or each dimension c= * is identical to i= * is identical to *

 In the general SimEnv configuration file <model>.cfg (cf. Section 11.1 on page 181) a global default
for index and/or coordinate addressing is established for the whole experiment post-processing ses-
sion. This global default can be overwritten locally by using c= and/or i=.

-114- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -115-

Having a model output variable definition as in Example 5.1 on page 44 then in experiment
post-processing result expressions can be

atmo and
atmo(*,*,*,*) and
atmo(c=*,*,i=*,*) and
atmo(c=88:-88,c=-178:178,c=1:16,c=1:20) and
atmo(i=1:45,i=1:90,i=1:4,i=1:20) and
atmo(i=1:45,c=-178:178,*,*) and
atmo(1:45,1:90,1:4,1:20) and (with address_default = index in model.cfg)
atmo(1:45,c=-178:178,1:4,1:20) and (with address_default = index in model.cfg)
 address all 45*90*4*20 values and

 the following holds for this addressed variable:
 Dimensionality = 4
 Coordinates = lat , lon , level , time
 Extents = 45 , 90 , 4 , 20
atmo(*,*,*,c=11:20) addresses all values of last 10 decades
 Dimensionality = 4
 Coordinates = lat , lon , level , time
 Extents = 45 , 90 , 4 , 10
atmo(*,*,c=1,c=1) addresses all values of the first decade for level 1
 Dimensionality = 2
 Coordinates = lat , lon
 Extents = 45 , 90
atmo(c=0,*,1,i=20) addresses all values of level 1for the last decade at
 equator
 Dimensionality = 1
 Coordinates = lon
 Extents = 90
atmo(i=23,*,1,i=20) addresses all values of level 1for the last decade at
 equator
 Dimensionality = 1
 Coordinates = lon
 Extents = 90
atmo(c=0,c=2,c=1,c=20) addresses the value for the last decade at
 (lat,lon,level,time) = (0°,2°,1,20)
 Dimensionality = 0
 Coordinates = (without)
 Extents = (without)
atmo(c=0,c=1:9,c=1,c=20) addresses the values for the last decade at
 (lat,lon,level,time) = (0°,2°,1,20) and (0°,6°,1,20)
 Dimensionality = 1
 Coordinates = lon
 Extents = 2
atmo(c=0,c=1,c=1,c=20) error in addressing: c=1 for lon does not exist

Example file: world.post_bas

Example 8.2 Addressing model output variables in experiment post-processing

Multi-Run Simulation Environment SimEnv User Guide for Version

8.1.4 Operators

Operators transform dimensionality, dimensions, and coordinates of the their non-character operator argu-
ments into unique dimensionality, dimensions and coordinates of the operator result (cf. Section 8.1.2).
There are

 Single-argument operators that replicate dimensionality, dimensions and coordinates from the only
argument to the operator result

Example: sin(atmo)

 Multi-argument operators that demand a certain relation between dimensionalities, dimensions and
coordinates of their arguments

Example: mod(atmo(c=84:-56,*,c=1,*),bios)

 Operators that increase the dimensionality of the operator result and assign new coordinates to the
additional dimensions (cf. Tab. 11.11) or form new coordinates from resulting factor adjustments. If
the dimensionality of an operator result is higher than that of one of its operands the additional di-
mensions of the result are appended to the dimensions of the operand.

Example: ens(atmo)

SimEnv experiment post-processing operators may have two special types of arguments / operands:

 Character arguments char_arg:
Only character strings enclosed in ‘ ‘ are valid as arguments. Some built-in operators (e.g., count)
have a pre-defined set of valid character argument strings (e.g., for operator count strings ‘all’, ‘def’,
and ‘undef’). Some built-in operators allow an empty string (e.g., dfd)

Example: count(‘undef’,atmo)
 dfd(‘ ’,atmo)

 Integer or real (float) constant arguments int_arg or real_arg:
Only constants in appropriate format are valid as arguments. Model output variables of dimensional-
ity 0 or general operands with dimensionality 0 are invalid.

Example: move_avg(‘0001’,‘lin’,3,atmo)
 qnt(33.333,atmo)

 If character and integer/real constant arguments are defined for an operator then there is always the
following sequence of the operator arguments:
{ char_arg } { int_arg } { real_arg } { arg }

Example: hgr_l(‘1000’,’bin_mid’,20,0.,0.,atmo)

Operators are generic with respect to the data types of their operands: Each non-character and non-constant
argument arg can be used with operands of all defined data types (cf. Section 5.1). Internally, arguments of
any type are converted to a float representation. This may lead to undefined arguments of type double in
float representation. Results of SimEnv experiment post-processing operators are always of the type float.

SimEnv post-processing follows for built-in or user-defined operators the standard approach for description
of variables. Advanced built-in or user-defined operators

 Have a unique name and a number of operands

 The sequence of operands is enclosed in parentheses directly after the operator name

 Operands are separated from each other by a comma.

-116- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

 Recursions of the same operator (also for user-defined operators) are possible.

Example: log10(min_n(3,min_n(log10(atmo(*,*,1,c=20)),400),10*bios_g))

Elemental operators use the common form of notation:

Example: for the operator addition with two operands atmo_g and 345
 atmo_g + 345

8.1.5 Operator Classification, Flexible Coordinate Checking

Tab. 8.1 lists for all built-in operators a classification of argument restrictions and result description that are
used in the following for the explanation of built-in operators.

The requirement for a lot of operators to have same coordinates for same dimensions may strongly restrict
application of experiment post-processing especially for hypothesis checking. To enable a broader flexibility
with respect to this situation a general solution is provided by SimEnv post-processing: With the sub-
keyword coord_check in the general configuration file <model>.cfg three different modi can be assigned
globally to the SimEnv complete post-processing session:

 coord_check = “strong”
To ensure for two arguments with same dimensionalities and extents to have same coordinates it is
necessary that

 assigned coordinate values for corresponding dimensions are unique
 assigned coordinate names for corresponding dimensions are unique

coord_check = “strong” is the default

 coord_check = “weak”
To ensure for two arguments with same dimensionalities and extents to have same coordinates it is
necessary that

 assigned coordinate values for corresponding dimensions are unique
 assigned coordinate names may differ.

Coordinate description of the appropriate operator result is delivered from its first non-character /
non-constant operand.

 coord_check = “without”
To ensure for two arguments with same dimensionalities and extents to have same coordinates

 Neither coordinate names nor coordinate values for corresponding dimensions are checked

Coordinate description of the appropriate operator result is delivered from its first non-character /
non-constant operand.

Check Example 8.3 for examples.

3.1 (Ja 25, 2013) n -117- Multi-Run Simulation Environment SimEnv User Guide for Version

Tab. 8.1 Classified argument restriction(s) / result description for post-processing operators
 (*): for the different levels of checking a coordinate description see below

Argument
restriction(s) /

result
description

type number

Argument restriction(s)

Result description
(cf. Section 8.1.2 for syntax)

(1)

dimensionality, extents and coordinates of the
only non-character / non-constant argument arg
can be arbitrary

same dimensionality, extents and
coordinates as the only non-character
/ non-constant argument:
dimres = dimarg
extres(j) = extarg(j) for all j
coordres(j) = coordarg(j) for all j

(2.1)

all non-character / non-constant arguments arg
with same dimensionality, extents and coordi-
nates (*)

same dimensionality, extents and
coordinates as all the non-character /
non-constant arguments:
dimres = dimarg
extres(j) = extarg(j) for all j
coordres(j) = coordarg(j) for all j

(2)

(2.2)

some non-character / non-constant arguments
arg with same non-zero dimensionality, extents
and coordinates (*), all the other non-character
arguments with dimensionality 0

same dimensionality, extents and
coordinates as all the non-character /
non-constant arguments with non-
zero dimensionality:
dimres = dimarg
extres(j) = extarg(j) for all j
coordres(j) = coordarg(j) for all j
The 0-dimensional argument is ap-
plied to each element of the non-zero
dimensional argument

(3)
dimensionality, extents and coordinates of the
only non-character argument can be arbitrary

dimres = 0

(4.1)
all non-character / non-constant arguments with
same dimensionality, extents and coordinates
(*)

dimres = 0

(4)

(4.2)

some non-character / non-constant arguments
with same non-zero dimensionality, extents and
coordinates (*), all the other non-character /
non-constant arguments with dimensionality 0

dimres = 0
the 0-dimensional argument is applied
to each element of the non-zero di-
mensional argument

(5)

dimensionality, extents and coordinates of the
first non-character / non-constant argument arg
can be arbitrary, all the other following argu-
ments have to have dimensionalities, extents
and coordinates (*) of this argument or have to
have dimensionality 0

same dimensionality, extents and
coordinates as the first non-character
/ non-constant argument:
dimres = dimarg
extres(j) = extarg(j) for all j
coordres(j) = coordarg(j) for all j

(6)

dimensionality, extents and coordinates of the
only non-character / non-constant argument arg
can be arbitrary

dimensionality is higher than that of
the only non-character / non-constant
argument. Extents and coordinates of
this argument are copied to the result,
appended dimensions are explained
individually.
dimres > dimarg
extres(j) = extarg(j) for all j
coordres(j) = coordarg(j) for all j

(7)
only character arguments, constant arguments
or without arguments

dimres = 0

-118- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -119-

Having a model output variable definition as in Example 5.1 on page 44 then the checking rules
for coordinates are applied in the following manner to operands with dimensionality 1:

Same coordinates for
coord_check = Result expression

strong

weak

without

bios(*,*,*) + atmo(c=84:-56,*,c=1,*)
(same coordinate names, same coordinate values)

yes yes yes

atmo_g(*) + hgr(‘bin_no’,20,0.,0.,atmo)
(differing coordinate names, same coordinate values)

no yes yes

atmo_g(c=6:16) + atmo_g(c=8:18)
(same coordinate names, differing coordinate values)

no no yes

atmo_g(c=20) + atmo(c=0,c=2,c=1,c=1)
(two operands with dimensionality 0)

yes yes yes

While determination of coordinate information is unique for coord_check = strong,
coordinate information is determined by the first summand for coord_check = [weak | without].

Example 8.3 Checking rules for coordinates

8.2 Built-In Generic Standard Aggregation / Moment Operators

The generic operators in Tab. 8.2 can be applied during experiment post-processing to derive aggregations
and moments from operands in different ways by appending suffixes (_n, _l, _e, without suffix) to the generic
operator name or by incorporating them into the filter argument for experiment specific operator dfd of ex-
periment type DFD:

Tab. 8.2 Built-in generic standard aggregation / moment operators

Generic
aggregation and
moment operator

Meaning

max maximum of values

min minimum of values

sum sum of values

avg arithmetic mean of values

var variance of values

avgg geometric mean of values

avgh harmonic mean of values

avgw weighted mean of values

count number of all, all defined or all undefined values

maxprop maximal, suffix related property of values

minprop minimal, suffix related property of values

hgr
histogram (heuristic probability density function)
of values

For more information check Sections 8.3.3.

Multi-Run Simulation Environment SimEnv User Guide for Version

8.3 Built-In Elemental, Basic, and Advanced Operators

8.3.1 Elemental Operators

Tab. 8.3 Built-in elemental operators

Name Meaning

Argument
restriction(s) /

result description
(Tab. 8.1, page 118)

Argument
value

restriction
Precedence

(left parenthesis - first

) right parenthesis - first

arg1 ** arg2 exponentiation (2) arg1 > 0 second

arg1 * arg2 multiplication (2) third

arg1 / arg2 division (2) arg2 ≠ 0 third

arg1 + arg2 addition (dyadic +) (2) fourth

arg1 – arg2 subtraction (dyadic -) (2) fourth

+ arg1 identity (monadic +) (1) fourth

– arg1 negation (monadic -) (1) fourth

The following explanations hold for the operators in Tab. 8.3:

 n-dimensional matrix algebra of built-in elemental operators is performed element by element

Example: atmo(*,*,1,*) + bios(*,*,*) = “atmo(i,j,1,k) + bios(i,j,k)”
 for all addressed (i,j,k)

 If an argument value restriction is not fulfilled for an operand element the corresponding element of
the operator result is undefined.

 For examples check Section 8.3.5.

-120- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

8.3.2 Basic and Trigonometric Operators

Tab. 8.4 Built-in basic and trigonometric operators

Name Meaning

Argument
restriction(s) /

result description
(Tab. 8.1, page 118)

Argument
value

restriction
Example

Basic operators

abs(arg1) absolute value (1) abs(-3) = 3.

dim(arg1,arg2) positive difference (2) dim(10,5) = 5.
dim(5,10) = 0.

exp(arg1) exponential function (1) exp(1.) = 2.7183

int(arg1) integer truncation value (1) int(7.6) = 7.
int(-7.6) = -7

log(arg1) natural logarithm (1) arg > 0 log(2.7183) = 1.

log10(arg1) decade logarithm (1) arg > 0 log10(10) = 1.

mod(arg1,arg2) remainder (2) arg2 ≠ 0 mod(10,4) = 2.

nint(arg1) nearest integer value (1) nint(7.6) = 8.
nint(-7.6) = -8.

round(int_arg1,
 arg2)

round arg2 to int_arg1
decimal places

(1) 1 ≤ int_arg ≤ 6 round(1,2.34) =
 2.3
round(1,2.36) =
 2.4

sign(arg1) sign of value (1) sign(-3) = -1.
sign(0) = 0.
sign(3) = 1.

sqrt(arg1) square root (1) arg ≥ 0 sqrt(4) = 2.

Trigonometric operators

sin(arg1) sine (1) sin(0) = 0.

cos(arg1) cosine (1) cos(0) = 1.

tan(arg1) tangent (1) arg ≠ π/2±n*π tan(0) = 0.

cot(arg1) cotangent (1) arg ≠ ±n*π cot(1.5708) = 0.

asin(arg1) arc sine (1) abs(arg1) ≤ 1 asin(0) = 0.

acos(arg1) arc cosine (1) abs(arg1) ≤ 1 acos(1) = 0.

atan(arg1) arc tangent (1) atan(0) = 0.

acot(arg1) arc cotangent (1) acot(0) = 1.5708

sinh(arg1) hyperbolic sine (1) sinh(0) = 0.

cosh(arg1) hyperbolic cosine (1) cosh(0) = 1.

tanh(arg1) hyperbolic tangent (1) tanh(0) = 0.

coth(arg1) hyperbolic cotangent (1) arg1 ≠ 0 coth(3.1416) = 1.

3.1 (Ja 25, 2013) n -121- Multi-Run Simulation Environment SimEnv User Guide for Version

The following explanations hold for the operators in Tab. 8.4:

 All operators are applied to each element of the argument.

Example: sin(bios(*,*,*)) = “sin(bios(i,j,k))” for all addressed (i,j,k)

 If an argument value restriction is not fulfilled for an operand element the corresponding element of
the operator result is undefined.

 For examples check Section 8.3.5.

8.3.3 Standard Aggregation / Moment Operators

The generic standard aggregation / moment operators in Tab. 8.2 can be applied during experiment post-
processing to derive aggregations and moments from operands in different ways by appending suffixes to
the generic operator name:

 Appending no suffix:
Aggregate the only non-character / non-constant argument
The result is a scalar (an operator result of dimensionality 0)

 Appending suffix _n (_n stands for n arguments):
Aggregate an arbitrary number of non-character / non-constant arguments element by element.
Currently, only operators min_n, max_n, minprop_n, and maxprop_n are implemented.
The result has same dimensionality, extents and coordinates as the arguments.

 Appending suffix _l (_l stands for loop):
Aggregate the only non-character / non-constant argument separately for selected dimensions. Di-
mensions to select are described by an additional loop character argument. These operators corre-
spond to the group-by clause of the standard query language SQL of relational database manage-
ment systems.
The result has a lower dimensionality as the only non-character argument according to the loop
character argument.

 Appending suffix _e (_e stands for run ensemble):
Aggregate separately for each element of the only non-character / non-constant argument over the
ensemble of all single simulation runs but single run 0. Such operators are multi-run operators
(check Section 8.4.1).
The result has same dimensionality, extents and coordinates as the argument.

 Exceptions to the above rules hold for operators minprop, maxprop and hgr.

 Additionally, the operators can be used in the selection / aggregation filter argument char_arg1 of
the multi-run operator dfd for the experiment type DFD. For details check Section 8.4.3.

 For examples without suffix and with suffix _n, _l check Section 8.3.5, with suffix _e check Section
8.4.5.

-122- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

Tab. 8.5 Built-in standard aggregation / moment operators without suffix

Aggregation and
moment operator

Argument restriction(s) /
result description (Tab. 8.1, page 118)

max(
 arg1)

min(
 arg1)

sum(
 arg1)

avg(
 arg1)

var(
 arg1)

avgg(
 arg1)

avgh(
 arg1)

(3)

avgw(
 arg1,
 arg2)

(4.1)

arg2 = weight

count(
 char_arg1,
 arg2)

(3)

char_arg1 = [‘all’ | ‘def’ | ‘undef’]

maxprop(
 arg1)

minprop(
 arg1)

for dimarg1 > 1 dimres = 1
 extres(1) = dimarg1
else dimres = 0

return the index of that element of arg1 where the extreme is reached the first
time according to the processing sequence of the argument field arg by the
column-major order model (cf. Section 15.7 – Glossary).

hgr(
 char_arg1,
 int_arg2,
 real_arg3,
 real_arg4,
 arg5)

one heuristic pdf from all
values of arg5

dimres = 1
extres(1) = number of bins (no._of_bins)
coordres(1) = char_arg1
for char_arg1 = ‘bin_no’ (bin number):
 coordres(1) values = equidist_end 1(1) no._of_bins
for char_arg1 = ‘bin_mid’ (bin mid):
 coordres(1) values = equidist_end 1st_bin_mid (bin_width) no._of_bins

char_arg1 [‘bin_no’ | ‘bin_mid‘]
int_arg2 = no._of_bins: 4 ≤ int_arg2 ≤ no._of_values
 or
 = 0: automatic determination:
 no._of_bins = max(4,no._of_values_of_arg5/10)
real_arg3 left bin bound for bin number 1
real_arg4 right bin bound for bin number int_arg2
real_arg3 = real_arg4 = 0.:
 determine bounds by min(arg5) and max(arg5)
 min(arg5) = max(arg5): all result values are undefined

3.1 (Ja 25, 2013) n -123- Multi-Run Simulation Environment SimEnv User Guide for Version

Tab. 8.6 Built-in standard aggregation / moment operators with suffix _n

Aggregation and
moment operator

Argument restriction(s) /
result description (Tab. 8.1, page 118)

max_n(
 arg1 , arg2
 {, arg3 ,..., argn})

min_n(
 arg1 , arg2
 {, arg3 ,..., argn})

(4)

maxprop_n(
 arg1 , arg2
 {, arg3 ,..., argn})

minprop_n(
 arg1 , arg2
 {, arg3 ,..., argn})

(4)

return per result element the argument position (1 ,..., n) where the extreme is
reached the first time. Processing sequence starts with arg1.

Tab. 8.7 Built-in standard aggregation / moment operators with suffix _l

Aggregation and
moment operator

Argument restriction(s) /
result description

min_l(
 char_arg1,arg2)

max_l(
 char_arg1,arg2)

sum_l(
 char_arg1,arg2)

avg_l(
 char_arg1,arg2)

var_l(
 char_arg1,arg2)

avgg_l(
 char_arg1,arg2)

avgh_l(
 char_arg1,arg2)

avgw_l(
 char_arg1,
 arg2,
 arg3)

dimarg2 = dimarg3
extarg2(i) = extarg3(i)
arg3 = weight

count_l(
 char_arg1,
 char_arg2,
 arg3)

dimargi > 1
extargi = arbitrary
dimres, extres(i) according to
char_arg1 and argi

char_arg2 = [‘all’ | ‘def’ | ‘undef’]

minprop_l(
 char_arg1,
 arg2)

maxprop_l(
 char_arg1,
 arg2)

as above but
dimres is increased by 1
extres(dimres) = dimarg2
coordres(dimres):
 name = index
 values =equidist_end 1(1)”n”

return the indices of those elements of
arg2 where the extreme is reached the first
time according to char_arg1 and to a For-
tran-like processing sequence / storage
model (cf. Section 15.7 – Glossary) of the
argument field arg2.

-124- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -125-

Aggregation and Argument restriction(s) /
moment operator result description

hgr_l(
 char_arg1,
 char_arg2,
 int_arg3,
 real_arg4,
 real_arg5,
 arg6)

heuristic pdfs separately
calculated for each index
of the those dimensions
of arg5 that remain
according to char_arg1.

dimres = 1 + dimres of all other operators of this Tab.
extres(dimres) = number of bins no._of_bins
coordres(dimres) = char_arg2
for char_arg2 = ‘bin_no’ (bin number):
 coordres(dimres) values = equidist_end 1(1) no._of_bins
for char_arg2 = ‘bin_mid’ (bin mid):
 coordres(dimres) values = equidist_end 1st_bin_mid (bin_width)
 no._of_bins

char_arg2 [‘bin_no’ | ‘bin_mid’]
int_arg3 number of bins
 4 ≤ int_arg3 ≤ no._of_values_of_arg6
 or
 0: automatic determination
 = max(4,no._of_values_of_arg6/10)
real_arg4 left bin bound for bin number 1
real_arg5 right bin bound for bin number int_arg3
real_arg4 = real_arg5 = 0.:
 determine bounds by min(arg6) and max(arg6)
 min(arg6) = max(arg6): all result values are undefined

The loop character argument char_arg1 is characterised as follows:

 The length of the string is equal to the dimensionality of the non-character / non-constant argument

 The string consists of 0 and 1
0 at position n means: aggregate over the corresponding dimension n of the argument
1 at position n means: do not aggregate over the corresponding dimension n of the argument

 Loop character arguments formed only of 0 (‘0…0’) or 1 (‘1…1’)are forbidden

Multi-Run Simulation Environment SimEnv User Guide for Version

8.3.4 Advanced Operators
Tab. 8.8 Built-in advanced operators

Name

Argument
restriction(s) /

Meaning
result description

(Tab. 8.1, page 118)

Argument
value

restriction
Example

classify(
 int_arg1,
 real_arg2,
 real_arg3,
 arg4)

classify(classify arg4 into int_arg1
classes;
potentially restrict classi-
fication to interval
(real_arg2 , real_arg3).

(1)

dimarg4 > 0
int_arg1 = number of classes
 2 ≤ int_arg1 ≤

 10,

 number of values of arg4
 = 0: automatic
 determination:
 number of classes =
 max(2,nmb of values/10.)
real_arg2 = minimum bound for
 values in class # 1
real_arg3 = maximum bound for
 values in class # int_arg1
arg2 = 0. and arg3 = 0.:
 automatic bound
 determination

 0.,
 0.,
 atmo)

clip(
 char_arg1,
 arg2)

clip arg2 according to
char_arg1

dimarg2 > 0
dimres, extres(i) depend on char_arg1
and arg2

char_arg1 = clip range

clip(
 ‘0,*,1,10’,
 atmo)

cumul(
 char_arg1,
 arg2)

cumulate (compute par-
tial sums of) arg2
according to char_arg1

(1)

dimarg2 > 0
char_arg1 = cumulation indicator
 per dimension

cumul(
 ‘0001’,
 atmo)

distr_par(distr_par(
 char_arg1,
 int_arg2)

get for experiment types
with probabilistic sam-
pling the value of a fac-
tor’s distribution parame-
ter

(7)

char_arg1 = factor name
int_arg2 = number of the distribu-
 tion parameter ≤ 2

 ‘p1’,2)

flip(flip(
 char_arg1,
 arg2)

flip arg2 according to
char_arg1

(1),
but coordinates are also flipped ‘0001’,

 atmo)
dimarg2 > 0
char_arg1 = flip indicator per
 dimension

get_data(get_data(get data from an external
file

dimensionality, extents and coordi-
nates according to char_arg3 and
char_arg4

 ‘netcdf’, char_arg1,
 ‘data.nc’, char_arg2,

 char_arg3,

char_arg1 = data file format
 arg4)

 = [‘netcdf’ | ‘ascii’]
char_arg2 = data file name
char_arg3 = coordinate specification
 / transformation file
 name
arg4 = variable to get from the
 data file

 ‘data.def’,
 variable)

-126- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -127-

Argument
Argument

restriction(s) /
Name Meaning

result description
(Tab. 8.1, page 118)

value Example
restriction

get_experiment(
 char_arg1,
 char_arg2,
 char_arg3,
 arg4)

include an other
post-processed experi-
ment output

(1)
but coordinates according to

char_arg3

char_arg1 = experiment directory
char_arg2 = model experimented with
char_arg3 = coordinate transfor-
 mation file
arg4 = result from the other
 experiment

get_experiment(
 ‘mod_res’,
 ‘mod’,
 ‘mod.ctf’,
 avg(atmo)-400)

get_table_fct(
 char_arg1,
 arg2)

apply table function with
linear interpolation of table
char_arg1 to arg2

(1)

char_arg1 = file name

get_table_fct(
 ‘table.usr’,
 atmo)

if(
 char_arg1,
 arg2,
 arg3,
 arg4)

conditional if-construct (5)

char_arg1 = comparison operator
arg2 = comparator
arg3, arg4 = new assignments

if(
 ‘<’,
 atmo,
 400,
 atmo)

mask(
 char_arg1,
 arg2,
 arg3)

mask values of arg2
(set them undefined) by
comparing arg2 and arg3
using operator char_arg1

(5)

char_arg1 = comparison operator

mask(
 ‘<’,
 atmo,
 400)

{un}mask_file(
 char_arg1,
 arg2)

mask values of arg2
(set them undefined) as
specified in the file
char_arg1

(1)

char_arg1 = mask file name

mask(
 ‘mask.dat’,
 atmo)

matmul(
 arg1,
 arg2)

matrix multiplication dimarg1 = dimarg2 = dimres = 2

extres(i) according to matrix
 multiplication rules

matmul(
 atmo(*,*,1,1),
 transpose(‘21’,
 atmo(*,*,1,1)))

move_avg(
 char_arg1,
 char_arg2,
 int_arg3,
 arg4)

moving average of arg4 (1)

dimarg4 > 0
char_arg1 = moving average
 sequence per dimension
char_arg2 = average type
 = ‘lin’: linear
 ‘exp’: exponential
int_arg3 = running length
 for average
 int_arg3 > 1
 int_arg3 = 0:
 automatic determination:
 = max(3, extarg4(i)/20.

move_avg(
 ‘001’,
 ‘lin’,
 0,
 atmo)

rank(
 char_arg1,
 arg2)

assign rank numbers to
arg2 according to ranking
type argument char_arg1

(1)

dimarg2 > 0
arg1 = ranking type
 [‘tie_plain’ | ‘tie_min’ |
 ‘tie_avg’]

rank(
 ‘tie_avg’,
 atmo)

Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

Argument
Argument

restriction(s) /
Name Meaning

result description
(Tab. 8.1, page 118)

value Example
restriction

regrid(
 char_arg1,
 arg2)

assign completely or par-
tially new coordinates to
arg2

(1)
but coordinates according to

char_arg1

char_arg1 = file how to transform
 coordinates of arg2
arg2 result to transform
 coordinates

regrid(
 ‘mod.ctf’,
 atmo_g-13)

run(
 char_arg1,
 arg2)

values of arg 2 for the
selected single run
number explicitly or implic-
itly coded in char_arg1

(1)

char_arg1 = run number selection
 for all experiment
 types:
 = <run_number>
 0 ≤ char_arg1 ≤
 no._of_runs
 addit. for DFD and LSA:
 = <filter argument>
 same as filter argument
 of operators dfd and
 [’sens’ | ’lin’ | ’sym’]’_’
 [’abs’ | ’rel’]
 (cf. Sections 8.4.3
 and 8.4.5)

run(
 ‘0’,
 atmo)
run(
 ‘sel_t(p1(4))’,
 atmo)

run_info(
 char_arg1)

number of the current
single run
and/or
total number of runs of the
experiment

(7)

char_arg1 = run information type
 = ‘run_nr’
 for current run number
 = ‘nr_of_runs’
 for number of runs of the
 experiment

run_info(
 ‘run_nr’)

transpose(
 char_arg1,
 arg2)

transpose arg2 according
to sequence in char_arg1

dimarg2 > 1
dimres = dimarg2
extres(i) = extarg2(j) (re-sorted)

char_arg1 = transpose sequence

transpose(
 ‘3142’,
 atmo)

undef(
)

undefined value (7) undef()

usage(
 char_arg1)

get usage of a post-
processing operator

(7)

char_arg1 = operator name
 or

[‘all’ | ‘basic’ | ‘trigonometric’ |
‘aggr/moment’ | ‘advanced’ |
‘multi-run’ | ‘user-defined’]

for the corresponding operator
classes

usage(‘run_info’)
usage(‘advanced’)

-128- Multi-Run Simulation Environment SimEnv User Guide

The following explanations hold for the operators in Tab. 8.8:

 All operators but experiment and matmul are applied to each element of the argument(s). These

operators deal with an unfulfilled argument value restriction for an operand element in a way that the cor-
responding element of the operator result will be undefined.

 Operator classify

The operator classify transforms the values of an operand arg4 that has dimensionality > 0 into the class
numbers 1 ,..., int_arg1 of int_arg1 classes. Classes are assumed to be equidistant.
If both arguments real_arg2 and real_arg3 are equal zero then min(arg4) forms the lower bound of class
number 1 and max(arg4) forms the upper bound of class number int_arg1. For min(arg4) = max(arg4) all
result values of the operator classify are undefined.
For real_arg2 ≠ 0. or real_arg3 ≠ 0. real_arg2 and real_arg3 are used as boundaries for the classification
and all of those result values are undefined where values of argument arg4 are outside the specified
bound range.

 Operator clip

The operator clip clips an operand arg2 that has dimensionality > 0. The portion to clip from the operand
arg2 is described by the argument char_arg1. The argument char_arg1 uses syntax for model output
variable addressing (cf. Section 8.1.3 on page 114). Note, that for all dimensions of argument arg2 lower
bound index is 1. This applies also to model output variables where the lower bound index is unequal 1
in the model output description file. In general, extents differ between the result of the operator clip and
the argument arg2. Clip reduces the dimensionality of the result with respect to the argument arg2 to clip
if the portion to be clipped is limited to one value for at least one dimension.
A character argument char_arg1 = ‘* ,..., *’ results for operator clip in the identity of argument arg2.

 Operator cumul

The operator cumul cumulates (computes partial sums of) an operand arg2 that has dimensionality > 0.
Cumulation is performed for all values of the argument arg2 from the first addressed index position up to
the current index position. With the character argument char_arg1 those dimensions are identified that
are to be cumulated. Character 1 at position i means cumulation across dimension i while a 0 stands for
no accumulation. cumul(‘0...0’,arg2) results in the identity to arg2.

 Operator distr_par

The operator distr_par is applicable for all experiment types that demand explicitly a probabilistic sam-
pling scheme (experiment types GSA_EE, GSA_VB, UNC_MC, and BAY_BC). The operator provides
the value of a distribution parameter of a factor as specified in the experiment description file
<model>.edf. The operator is not applicable to factors where the sample is imported from a file.

 Operator flip

The operator flip enables flipping of variable fields. For a one-dimensional field (a vector) flip changes
the value of the first index position with the value of the last position, the value of the second position
with that of the last but one position, etc. With the character argument char_arg1 these dimensions are
identified that are due to flip. Character 1 at position i means flipping also for dimension i while a 0
stands for no flipping at this dimension. Flipping includes adaptation of coordinates and the assigned
grid. flip(‘0...0’,arg2) results in the identity to arg2.

 Operator get_data

With the operator get_data data from external files can be included in post-processing. Character argu-
ment char_arg1 specifies the data file format. Character argument char_arg2 addresses the data file.
Character argument char_arg3 is used to define or transform structure information and coordinates from
the data file. Argument arg4 holds the variable that is to be extracted from the data file. For restrictions in
the path to the directory of the character arguments char_arg2 and char_arg3 check Tab. 12.3. Cur-
rently, ASCII and NetCDF files are supported (char_arg1 = [‘ascii’ | ‘netcdf’]).
For ASCII data files the file syntax rules from Section 12.3 are valid. Since the ASCII data file itself does
not come with any structure and coordinate information a coordinate specification / transformation file
can be specified by the character argument char_arg3. For ASCII data files this argument is a manda-
tory one. It follows the same rules as for any coordinate transformation file (cf. Section 12.2). Keywords
general, assign, and coordinate and the appropriate sub-keywords from Tab. 12.4 can be used to struc-

3.1 (Ja 25, 2013) n -129- Multi-Run Simulation Environment SimEnv User Guide for Version

ture the data file and to assign coordinates and coordinate values. Consequently, the keyword modify is
not allowed. See Example 8.4 for more information. For ASCII files it is assumed that the file holds only
the values for one variable in a sequence according to the column-major order model (cf. Section 15.7 –
Glossary). For ASCII files argument arg4 is only a dummy placeholder.
For NetCDF files argument 4 addresses the variable name to extract from the data file. The character
argument char_arg3 is an optional argument. Unlike for ASCII data files, the keyword modify is allowed.

Having a model output variable definition as in Example 5.1 on page 44 and assuming

a data file data.asc as
data file with 6 values
10 , 20 , 30
40 , 50 , 60

and a file data.def to define data structure and coordinates as
general descr structure for data.asc
assign as second dimension coordinate time
(already defined in world_*.mdf)
assign 2 coord time
assign 2 coord_extent 11:13
assign as first dimension a new coordinate new_coord
assign 1 coord new_coord
assign 1 coord_extent 100:110
coordinate new_coord values list 100,110

then
get_data(‘ascii’,‘data.asc’,‘data.def’,dummy)
 has Dimensionality = 2
 Coordinates = new_coord , time
 Extents = 2 , 3

and the result of this operator is a 2 x 3 matrix 10 30 50
 20 40 60

To get same dimensionality, coordinates and extents but result values as the “original matrix”
in data.asc
- exchange coordinate numbers in data.def: 1 by 2 and 2 by 1 and
- apply transpose(‘21’,get_data(‘ascii’,‘data.asc’,‘data.def’,dummy))
 It has Dimensionality = 2
 Coordinates = new_coord , time
 Extents = 2 , 3

and the result of this operator chain is a 2 x 3 matrix 10 20 30
 40 50 60

Example 8.4 Experiment post-processing operator get_data and coordinate transformation file

 Operator get_experiment
The operator get_experiment is to access to external SimEnv experiment output from the same or an
other model performed with the same or another experiment type and stored in the same or in an other
model output format. Model output variables can differ from that used for the current model. Use for the
experiment directory char_arg1 always that workspace the external experiment was started from. The
external experiment is always post-processed completely over all single runs. Argument char_arg3 is the
coordinate transformation file. It can be used to transform coordinates from the external result for usage
in the current result of the current experiment. If no coordinate transformation file is to be used argument
char_arg3 is empty (‘ ‘). If after potential application of a coordinate transformation file the imported re-

-130- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

sult has same coordinate names as defined in the original experiment coordinate descriptions are
checked against each other, otherwise coordinate descriptions are imported from the external into the
original experiment. For syntax of coordinate transformation files check Section 12.2. For restrictions in
the path to the directory of the character arguments char_arg1 and char_arg3 check Tab. 12.3.

Attention:

Make sure
 that no SimEnv service is running from the directory char_arg1 of the external experiment be-

fore applying this operator
 to have full access permissions to the experiment directory char_arg1
 the experiment directory char_arg1 differs from the current workspace

In the experiment directory a file simenv_get_experiment.exc is used to exchange information be-
tween the external and the current experiment.

 Operator get_table_fct

With the operator get_table_fct a table function is applied to each element of the operand arg2. If neces-
sary, table values are interpolated linearly. Outside the definition range of the table function the first
and/or the last table value is used. File char_arg1 has to hold the name of the table function file. It must
be an ASCII file with two columns: The first column is the argument value x associated with the elements
of the operand arg2, the second column is the function value f(x) of the table associated with the ele-
ments of the operator result. Argument values x have to be ordered in a strictly increasing manner. Syn-
tax rules for comments and separators in the table function file are the same as for user-defined files (cf.
Section 12.3). For restrictions in the path to the directory of the character argument char_arg1 see Tab.
12.3. Check the table function world.dat_adv in the example directory $SE_HOME/exa of SimEnv for
more information.

 Operator if

The operator if supplies a general conditional if-construct. It operates for each element of the operand
arg2 in the following way:

if (condition(char_arg1,arg2)) then
res=arg3

else
res=arg4

endif
with
condition(char_arg1,arg2): arg2 < 0. (char_arg1 = ‘<’)

 arg2 ≤ 0. (char_arg1 = ‘<=’)
 arg2 > 0. (char_arg1 = ‘>’)
 arg2 ≥ 0. (char_arg1 = ‘>=’)
 arg2 = 0. (char_arg1 = ‘==’)
 arg2 ≠ 0. (char_arg1 = ‘!=’)
 arg2 defined (char_arg1 = ‘def’)
 arg2 undefined (char_arg1 = ‘undef’)

 Operator mask

The operator mask supplies a method to mask (to set undefined) elements based on their values. It op-
erates for each element of the operand arg2 in the following way:

if (condition(char_arg1,arg2,arg3)) then
res=undef()

else
res=arg2

endif
with
condition(char_arg1,arg2,arg3): arg2 < arg3 (char_arg1 = ‘<’)

 arg2 ≤ arg3 (char_arg1 = ‘<=’)
 arg2 > arg3 (char_arg1 = ‘>’)
 arg2 ≥ arg3 (char_arg1 = ‘>=’)
 arg2 = arg3 (char_arg1 = ‘==’)
 arg2 ≠ arg3 (char_arg1 = ‘!=’)

3.1 (Ja 25, 2013) n -131- Multi-Run Simulation Environment SimEnv User Guide for Version

 Operators mask_file and unmask_file
The operators mask_file and unmask_file mask the elements of arg2 (set them undefined) according to
their position, the latter stored in the ASCII file char_arg1. For operator mask_file all those values of arg2
are masked that are specified in the mask file char_arg1 while for operator unmask_file all values of arg2
are masked that are not specified in the file char_arg1. Each line of the mask file char_arg1 has to follow
the subsequent syntax:

 { [i | c] = } <value11> { : <value12> } <sep> … <sep> { [i | c] = } <valuen1> { : <valuen2> }

It uses the syntax for model output variables as described in Section 8.1.3 on page 114. In particular, i=
stands for local index addressing, c= for local coordinate addressing and if they are missing the global
default as defined in the general SimEnv configuration file <model>.cfg (cf. Section 11.1 on page 181)
for index and/or coordinate addressing is used. Additionally, a local (file) default can be set by lines
 i=
or
 c=
indicating that all addresses in the following records without a local setting are interpreted in the appro-
priate manner.
n corresponds with the dimensionality of arg2, <valuei2> = <valuei1> if <valuei2> is missing and * instead
of <valuei1> { : <valuei2> } is allowed (i=1,…,n). Comment lines starting with the first non-white space
character # are allowed as for each ASCII data file (cf. Section 12.3 on page 208).
Each line defines for the argument arg2 a block of values that are masked (for operator mask_file) or not
masked (for operator unmask_file).
The line
 <sep> … <sep> *
in the mask file char_arg1 results for operator mask_file that all values of arg2 are masked and for the
operator unmask_file in the identity of argument arg2.
For restrictions in the path to the directory of the character argument char_arg1 see Tab. 12.3.

Having a model output variable definition as in Example 5.1 on page 44 and assuming

a data file mask.dat as
this file masks the variable atmo
tropical Africa and Arabia, level 2, last two decades:
c=
20:-20 -20:60 7 19:20
this is equivalent to:
i=
17:27 41:50 2 19:20
this is equivalent to:
c=20:-20 c=-20:60 2 19:20

Antarctica, all levels and decades:
c=
-60:-88 * * *
this is equivalent to:
i=
38:45 * * *
this is equivalent to:
c=-60:-88 1:90 1:4 1:20

then
 mask_file(‘mask.dat’,atmo)
masks for atmo the above two regions with the declared levels and decades and
 unmask_file(‘mask.dat’,atmo)
masks for atmo all but the two regions with the declared levels and decades.

Example 8.5 Experiment post-processing operators {un}mask_file

-132- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

 Operator matmul
The operator matmul performs a simple matrix multiplication for 2-dimensional arguments arg1 and arg2.

 Operator move_avg

The operator move_avg performs a moving average operation successively for selected dimensions of
the argument arg4.
For a vector (a1 , a2 ,..., alen) the moving average of running length rl is a vector (ma1 , ma2 ,..., malen)
with elements

 j

i

)1rli,1max(j
iji

)1rli,1max(j
ij

i aw

w

ma  
 



1

where wij are weights. Value mai is averaged from the rl values ai , ai-1 ,..., ai-rl+1. Accordingly, the first rl-1
values ma1, ma2 ,..., marl-1 are averaged from less than rl values.

For the linear moving average the weights are 1wij  and ,)i,rlmin(w
i

)1rli,1max(j
ij 


for the exponential moving average the weights are rl

ji

ij ew



 .

While the moving average is normally applied to time-dependent one-dimensional data vectors the op-
erator move_avg allows processing of multi-dimensional data fields in a general and successive manner.

If arg4 is the three-dimensional variable bios(1:lat,1:lon,1:time)
then the linear moving average could be applied to the dimension time
successively for all combinations of lat and lon.

This means that
 (lat1 = 1 ,..., lat) * (lon1 = 1 ,..., lon) = lat*lon moving averages
will be performed for the vector
 (bios(lat1,lon1,1) , bios(lat1,lon1,2) ,..., bios(lat1,lon1,time)).

Afterwards, this moving averaged temporary result tmp could be moving averaged
for all values of lat:
 (lon1 = 1 ,..., lon) * (time1 = 1 ,..., time) = lon*time moving averages
will be performed for the vector
 (tmp(1,lon1,time1) , tmp(2,lon1,time1) ,..., tmp(lat,lon1,time1)).

The operator that allows for this double averaging would have the arguments
 move_arg(‘201’ , ’lin’ , 0 , bios) .

Example 8.6 Operator move_avg

The character argument char_arg1 supplies those dimensions that are to be involved in the moving av-
erage operation. If the n-th digit of char_arg1 is a digit > 0 then the moving average for dimension n of
argument arg4 is performed at position number “digit” (i.e. after performing moving averages for those
dimensions that correspond to digits smaller than the current one). If the n-th digit of arg1 is 0 then the
moving average for the dimension n of arg4 will not be performed.
Keep in mind that the sequence of moving averages for single coordinates influences the result of the
operator.

3.1 (Ja 25, 2013) n -133- Multi-Run Simulation Environment SimEnv User Guide for Version

 Operator rank
The operator rank transforms all values of the operand arg2 that has dimensionality > 0 into their ranks.
Small values get low ranks, large values get high ranks. The smallest rank is 1. Character argument
char_arg1 determines how to rank ties, i.e., values arg21 and arg22 of arg2 that are identical or have a
maximum relative difference of abs(arg21-arg22) / arg21 < 10-6:

Assume an argument arg2 with 6 values (4., 2., 4., 4., 4., 8.)

char_arg1 = ‘tie_plain’ returns ranks (2 , 1 , 2 , 2 , 2 , 3)
 four times rank 2; next rank is 3,
 does not take into account the number of identical values

char_arg1 = ‘tie_min’ returns ranks (2 , 1 , 2 , 2 , 2 , 6)
 four times rank 2; next rank is 6,
 takes into account the number of identical values

char_arg1 = ‘tie_avg’ returns ranks (3.5 , 1 , 3.5 , 3.5 , 3.5 , 6)
 four times mean rank 3.5 = (2+3+4+5)/4; next rank is 6,
 takes into account number of identical values

Example 8.7 Operator rank

 Operator regrid

The operator regrid can be used to assign new coordinates to argument arg2. Character argument
char_arg1 is the name of the coordinate transformation file that holds the information how to transform
the coordinates. The keyword modify and the corresponding sub-keywords are not allowed. For syntax
of coordinate transformation files check Section 12.2. For restrictions in the path to the directory of the
character arguments char_arg1 check Tab. 12.3.

 Operator run

The operator run selects a single run from the run ensemble. The operator run must not contain experi-
ment specific (multi-run) operators as operands, since these operators may refer to the operator run.
Additionally, run must not contain itself as an argument.
The character argument char_arg1 can hold the run number string explicitly. An explicit run number
string in character argument char_arg1 is allowed for all experiment types. Additionally, for DFD and
LSA a run number unequal 0 can be selected implicitly by applying a filter of the corresponding opera-
tors (cf. Sections 8.4.3 and 8.4.5) as char_arg1 of the operator run.
The file <model>.smp holds the sampled factor values to be adjusted by the default (nominal) values for
the current experiment. Run number n corresponds to record number n+1 of this file. Single run number
0 corresponds to the default single run 0. For more information on <model>.smp check Section 6.1 on
page 69. For examples see Example 8.12 and Example 8.13.

 Operator run_info

The operator run_info returns for the character argument ‘run_nr’ the run number of the current single
run of the experiment. For the character argument ‘nr_of_runs’ the number of performed single runs of
the current post-processed experiment without the run number 0 is returned.

 Operator transpose

The operator transpose enables to transpose an operand that has a dimensionality > 1. Sequence of ex-
tents of the transposed result is described by character argument char_arg1: It consists of digits 1 ,...,
dimarg2 where the digit sequence corresponds to the re-ordered sequence of the operator result extents.
A character argument char_arg1 = ‘123...’ results for the operator transpose in the identity of argument
arg2.

-134- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

 Operator undef
The operator undef supplies a 0-dimensional result as undefined. Among others, this operator can be
used as an argument for the if-operator.

 Operator usage

The operator usage prints a short usage for the post-processing operator name char_arg1. Additionally,
operator class names can be used instead of an operator name:

‘all’ for all operators
‘basic’ for basic operators (Section 8.3.2)
‘trigonometric’ for trigonometric operators (Section 8.3.2)
‘aggr/moment’ aggregation/moment operators (Section 8.3.3)
‘advanced’ advanced operators (Section 8.3.4)
‘multi-run’ multi-run operators (Section 8.4)
‘user-defined’ user-defined operators (Section 8.5)

The operator is a stand-alone operator: It must not be operands of any other operator.

 For (additional) examples of the described operators check Section 8.3.5.

8.3.5 Examples

Having a model output variable definition as in Example 5.1 on page 44 and
assuming address_default=coordinate in world_*.cfg then in experiment post-processing

atmo_g+2*atmo_g value of result 3*atmo_g
 Dimensionality = 1
 Coordinates = time
 Extents = 20
sqrt(atmo_g) square root of atmo_g
 Dimensionality = 1
 Coordinates = time
 Extents = 20
clip(‘i=23,*,1,19:20’,atmo) last two decades for level 1 at equator
 equivalent with atmo(i=23,*,1,19:20)
 Dimensionality = 2
 Coordinates = lon , time
 Extents = 90 , 2
atmo – get_experiment(‘./other_dir’,‘other_model’,‘ ’,atmo)
 Difference for atmo between the current experiment and
 another model other_model, located in directory ./other_dir
 without application of a coordinate transformation file
 Dimensionality = 4
 Coordinates = lat , lon , level , time
 Extents = according to definition of atmo in other_model
get_table_fct(‘world.dat_adv’,atmo)
 Operator table_fct with table world.dat_adv applied to
 each element of atmo
 Dimensionality = 4
 Coordinates = lat , lon , level , time
 Extents = 45 , 90 , 4 , 20
if(‘<’,atmo-10,10,atmo) maximum from atmo and 10 for each element of atmo
 equivalent with max_n(atmo,10)
 Dimensionality = 4
 Coordinates = lat , lon , level , time
 Extents = 45 , 90 , 4 , 20

3.1 (Ja 25, 2013) n -135- Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

avg(atmo(*,*,*,19:20)) global all-level mean over the last two decades
 Dimensionality = 0
 Coordinates = (without)
 Extents = (without)
maxprop(atmo) indices of this element of atmo where the maximum of atmo
 is reached the first time
 Dimensionality = 1
 Coordinates = index
 Extents=4
min_n(atmo(84:-56,*,1,19:20),10.)
 minimum per grid cell for level 1 without polar regions
 for the last two decades from atmo and 10
 Dimensionality = 3
 Coordinates = lat , lon , time
 Extents = 36 , 90 , 2
min_l(‘10’,atmo(20:-20,*,1,20))
 zonal tropical minima of atmo for the last decade and
 level 1
 Dimensionality = 1
 Coordinates = lat
 Extents = 11
minprop_l(‘10’,atmo(20:-20,*,1,20))
 zonal tropical indices of those elements of
 atmo for the last decade and level 1 where the minimum is
 reached the first time
 Dimensionality = 2
 Coordinates = lat , index
 Extents = 11 , 2
hgr_l(‘10’,‘bin_no’,8,0.,0.,atmo(20:-20,*,1,20))
 zonal tropical histograms with 8 bins of atmo for the
 last decade and level 1. Bin bound extremes are deviated
 from the values of atmo
 Dimensionality = 2
 Coordinates = lat , bin_no
 Extents = 11 , 8
avg_l(‘100’,min_l(‘1011’,atmo(20:-20,*,*,*)))
 temporally averaged all-level zonal tropical minima
 Dimensionality = 1
 Coordinates = lat
 Extents = 11

Example file: world.post_adv

Example 8.8 Experiment post-processing with advanced operators

8.4 Built-In Experiment Specific Operators

8.4.1 Multi-Run Operators

Experiment specific operators are to navigate and process in the factor space according to the layout of the
individual experiment type. A multi-run operator operates on one or more operands for all runs of the whole
run ensemble or parts of it. The multi-run operator gets its result from the all single runs of the experiment
that have to be taken into account. By contrast, a non multi-run (single run) operator gets its results individu-
ally from each single run and assigns this result also to that single run.

-136- Multi-Run Simulation Environment SimEnv User Guide

Addressing an operand within a multi-run operator normally results in application of the operator on the op-
erand values from the whole run ensemble or parts of it and in aggregating across the run ensemble accord-
ing to the operator. Addressing an operand outside a multi-run operator results in using the operand for the
default run number 0 of the experiment.

The majority of the built-in experiment specific operators are multi-run operators. Exceptions are referenced
explicitly.

Experiment specific operators for UNC_MC can be applied for all other experiment types. Keep in mind that
for the other experiment types generally the factors do not follow a pre-defined distribution.

Multi-run operators can not be applied recursively.

For experiment type UNC_MC one of the multi-run operators is
avg_e(arg) that computes for each element the run ensemble average
 for the operand arg.

The corresponding single-run operator is
avg(arg) that compute the average from all elements of the (multi-dimensional)
 operand arg.

avg(arg) computes the average of arg from all of its elements for the default run
 number 0 of the experiment as it is applied outside a multi-run operator
 Dimensionality = 0
 Coordinates = (without)
 Extents = (without)
avg_e(arg) computes for each element of arg its average over all single runs
 (excluding run no. 0) of the run ensemble
 Dimensionality = dimensionality of arg
 Coordinates = coordinates of arg
 Extents = extents of arg
avg_e(avg(arg)) at first computes for all single run individually from all values of arg
 their average (1 value per single run) and thereof the average over the
 whole run ensemble.
 Dimensionality = 0
 Coordinates = (without)
 Extents = (without)
avg(avg_e(arg)) at first computes the run ensemble average of arg that has the same
 dimensionality, coordinates and extents as the operand arg itself and
 afterwards computes the average from all values of the previous
 multi-run intermediate result
 Dimensionality = 0
 Coordinates = (without)
 Extents = (without)
avg(arg) + avg_e(arg) avg_e(avg(arg))+avg(avg_e(arg))
 is allowed and is the sum of the four summands as described above
 Dimensionality = dimensionality of arg
 Coordinates = coordinates of arg
 Extents = extents of arg

Example 8.9 Multi and single run experiment post-processing operators

3.1 (Ja 25, 2013) n -137- Multi-Run Simulation Environment SimEnv User Guide for Version

8.4.2 Global Sensitivity Analysis – Elementary Effects Method GSA_EE

Tab. 8.9 Experiment specific operators for GSA_EE

Name Meaning

Argument
restriction(s) /

result description
(Tab. 8.1, page 118)

Argument value
restriction

morris(
 arg1)

global sensitivity measures for
argument arg

(6)

dimres = dimarg1 + 2
extres(dimres-1) =
 no._of_factors
coordres(dimres-1):
 name =
 factor_sequ
 values =
 equidist_end 1(1)
 no._of_factors
extres(dimres) = 2
coordres(dimres) =
 name =
 stat_measure
 values =
 equidist_end 4(1)5

same as for
UNC_MC

see Section 8.4.5 see Section 8.4.5 see Section 8.4.5

Having a model output variable definition as in Example 5.1 on page 44.
Assume the experiment description file GSA_EE from Example 6.3 on page 77
then in result-processing

morris(max(atmo)) importance measures μabs and σ
 for max(atmo) for the four defined factors
 Dimensionality = 2
 Coordinates = factor_sequ , stat_measure
 Extents = 4 , 2
rank(‘tie_plain’,-clip(‘*,i=1’,morris(max(atmo))))
 ranks the importance measure μabs
 (rank 1 for the most important factor)
 for max(atmo) for the four defined factors
 Dimensionality = 1
 Coordinates = factor_sequ
 Extents = 4

Example file: world.post_GSA_EE

Example 8.10 Experiment post-processing operators for GSA_EE

-138- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

The following explanations hold for the operators in Tab. 8.10:

 The operator morris appends two additional dimensions to the dimensionality of its argument. The
first corresponds to the factors and the second to the derived statistical measures. According to the
coordinate values as described above the second additional dimension has the extent 2 and accord-
ing to Tab. 11.11 the first index of this dimension holds the averages μabs and the second index the
variances σ2 to describe the importance of the corresponding factors. The sequence of the factors in
the appended factor dimension corresponds to the sequence of the factors in <model>.edf.

 This experiment type allows to post-process the whole run ensemble as an UNC_MC experiment.
Keep in mind that generally the sampled factor points do not follow a pre-defined distribution as they
form special designed trajectories in the factor space.

8.4.3 Global Sensitivity Analysis – Variance-Based Method GSA_VB

Tab. 8.10 Experiment specific operators for GSA_VB

Name Meaning

Argument
restriction(s) /

result description
(Tab. 8.1, page 118)

Argument value
restriction

effects_1st(
 arg1)

first order sensitivity indices of
arg1

(6)

dimres = dimarg1 + 1
extres(dimres) =
 no._of_factors
coordres(dimres):
 name =
 factor_sequ
 values =
 equidist_end 1(1)
 no._of_factors

arg1 must not contain
strings enclosed in ‘ ‘

effects_tot(
 arg1)

total effect sensitivity indices
of arg1

(6)

dimres = dimarg1 + 1
extres(dimres) =
 no._of_factors
coordres(dimres):
 name =
 factor_sequ
 values =
 equidist_end 1(1)
 no._of_factors

arg1 must not contain
strings enclosed in ‘ ‘

gsa_vb_run_mask(
 char_arg1)

this is NOT a
multi-run operator!

mask runs to use for subse-
quent UNC_MC experiment
specific operators

(7) sample+resample
sample
resample
all
resample_but_
 <factor_name>
resample_but_all

same as for
UNC_MC

see Section 8.4.5 see Section 8.4.5 see Section 8.4.5

3.1 (Ja 25, 2013) n -139- Multi-Run Simulation Environment SimEnv User Guide for Version

The following explanations hold for the operators in Tab. 8.10:

 For operators effects_1st and effects_tot first order and total effects (indices) are derived for rea-
sons of numerical stability from the standardized variable (arg1 – avg_e(arg1)) / sqrt(var_e(arg1)) in-
stead of arg1. This normalization does not change the indices. Both operators append an additional
dimensions to the dimensionality of its argument. It corresponds to the factors. Their sequence cor-
responds to the sequence of the factors in <model>.edf.

 As the run ensemble is composed from the sample S, the re-sample R and the resulting samples
RSi (check Section 4.3) the operator gsa_vb_run_mask allows for selection of those sub-samples
out of the run ensemble that are to be included into the performance of subsequent UNC_MC opera-
tors:

If the character argument of the operator gsa_vb_run_mask is

 sample+resample all runs from the sample and the re-sample
 sample all runs from the sample
 resample all runs from the re-sample
 all all runs
 resample_but_<factor_name> all runs where all factors but <factor_name>

 are from the re-sample
 resample_but_all all runs but the sample and the re-sample

are taken into account. The selected case is active until a new selection is made. The default value
when starting the post-processor is set to sample+resample. Keep in mind that only the resulting
runs of the first three cases follow the distributions as specified in <model>.edf by the sub-keyword
sample. Generally, for the remaining cases the statistical measures of the factors (e.g., var_e) show
a bias and this may be for measures of model output variables as well.
The operator gsa_vb_run_mask is a stand-alone operator.

Having a model output variable definition as in Example 5.1 on page 44.
Assume the experiment description file GSA_VB from Example 6.4 on page 79
then in result-processing

gsa_vb_run(‘sample+resample’) set runs to use from the sample S and the re-sample R
 for following post-processing with UNC_MC operators
effects_tot(atmo_g) get total sensitivity indices for atmo_g
 for the four defined factors
 Dimensionality = 2
 Coordinates = time , factor_sequ
 Extents = 20 , 4
max_e(atmo_g) run ensemble maximum of atmo_g
 from the sample S and the re-sample R
 Dimensionality = 1
 Coordinates = time
 Extents = 20
sum(effects_1st(max(atmo))) sum up linear sensitivity indices of max(atmo)
 for a linearity test of this model output
 Dimensionality = 0
 Coordinates = (without)
 Extents = (without)

Example file: world.post_GSA_VB

Example 8.11 Experiment post-processing operators for GSA_VB

-140- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

8.4.4 Deterministic Factorial Design DFD

There is only one experiment specific operator for DFD experiment post-processing. With this operator dfd

 A single run can be selected from the run ensemble

 The complete run ensemble can be addressed

 Sub-spaces from the factor space can be addressed and

 Sub-spaces can be projected by aggregation and moment operators

dependent on the way the experiment factor space was to be scanned according to the sub-keyword comb
in the experiment description file.

To show the power of the operator dfd the simple experiment layouts as described in Fig. 4.6 on page 26 are
used in the examples below.

 With the operator dfd it is possible to address for any operand a single run out of the run ensemble
by fixing values of experiment factors. Dimensionality and extents of the operator result is the same
as that of the operand.

Example:
 for Fig. 4.6 (a) fix a value of factor p1 and of factor p2
 for Fig. 4.6 (b) fix a value of the parallel factors p1 or p2
 for Fig. 4.6 (c) fix values of factors p3 and p1 or p2

 Without any selection in the factor space the dimensionality of the operator result is formed from the
dimensionality of the operand enlarged by the dimensionality of the factor space. The extents of the
appended dimensions are determined by the number of sampled values.

Example:
 for Fig. 4.6 (a) two additional dimensions are appended to the operand dimension
 for Fig. 4.6 (b) one additional dimension is appended to the operand dimension
 for Fig. 4.6 (c) two additional dimensions are appended to the operand dimension
For the latter two cases it is important which of the axis p1 and p2 is used for further processing
and/or output of the operator result.

 As a third option it is possible to select only a sub-space out of the factor space.

Example:
 for Fig. 4.6 (a) this could be the sub-space formed from the first until the third
 sampled value of p1 and all adjusted values of p2 between 3 and 7
 Dimensionality of the operator result increases by 2 and extents of
 these additional dimensions are 3 and 2 with respect to the
 corresponding experiment description file DFD_a in Example 6.5 in
 Section 6.4.2 on page 82.

 The operator dfd also enables to aggregate operands in the factor space. Sequence of performing
aggregations is important.

Example:
 for Fig. 4.6 (a) the operand could be aggregated (e.g., averaged) over the first until
 the third sampled value of p1 autonomously for all runs with different
 values of p2 and afterwards this intermediate result (that now depends
 only on p2) could be summed up for all adjusted values of p2 between
 3 and 7.
 Consequently, the result has the same dimensionality as the operand
 of dfd.

3.1 (Ja 25, 2013) n -141- Multi-Run Simulation Environment SimEnv User Guide for Version

Tab. 8.11 Experiment specific operators for DFD

Name Meaning

Argument
restriction(s) /

result description

Argument value
restriction

dfd(
 char_arg1,
 arg2)

navigation and aggregation in the
factor space for arg2 according
to char_arg1

dimres = dimarg2 +
 appended dimensions
 according to
 char_arg1

char_arg1= selection /
 aggregation filter
 according to
 Tab. 8.15

same as for
UNC_MC

see Section 8.4.5 see Section 8.4.5 see Section 8.4.5

Tab. 8.12 Syntax of the filter argument 1 for operator dfd

Placeholder

Explanation

<filter> ‘ { <operator1> {, <operator2> ... {, <operatorn> } ... } } ‘

<operator> [<select_operator> | <aggreg_operator>]

<select_operator> sel { _<factor_val_type>} (<factor_name> { <factor_val_range> })

<aggreg_operator> <aggreg_type> {_<factor_val_type>} (<factor_name> { <factor_val_range> })

<factor_name> name of the experiment factor according to the experiment description file

<factor_val_type> specification how to interpret <factor_val_range>:
i as a range of position indices of factor values (always count from 1)
s as a range of sampled factor values <factor_smp_val>
a as a range of adjusted factor values <factor_adj_val>

<factor_val_range> [(<val1> { : <val2> }) | (*)]
for <val2> = <nil> : <val2> = <val1>
* : use all values from <factor_name>
<vali> = <val_int> for <factor_val_type> = i
<vali> = <val_float> else

<aggreg_type> an aggregation / moment operator from Tab. 8.5 on page 123.
The following restrictions apply:





aggregations avgw and hgr cannot be used
aggregation count has a differing syntax:

 count_<factor_value_type> ([all | def | undef] ,
 <factor_name> { <factor_value_range> })

multiple application of minprop and/or maxprop causes senseless
 results

-142- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

The following rules hold for the operator dfd:

 Generally, by the filter argument arg1 those runs from the run ensemble are selected and/or aggre-
gated (here interpreted as filtered) that are used for the formation of the result.
Consequently, if no filter is specified all runs are used:

Example: dfd(‘ ’,atmo_g)

The select operator has to be specified only if values are to be restricted by a corresponding factor
value range.
For the aggregation and the select operator the factor value type is redundant if the value range
represents the full range of values by <factor_name> or <factor_name>(*):

Example: sel(p1) = sel(p1(*)) =
 sel_i(p1) = sel_s(p1) = sel_a(p1) =
 sel_i(p1(*)) = sel_s(p1(*)) = sel_a(p1(*))
 and all these select operators are redundant.

 The select-operator can also be applied to force a certain experiment factor to be used as a coordi-
nate in the result of the operator dfd if this factor is combined in parallel with other factors. By de-
fault, the first factor of a parallel factor sub-space as declared in the normalized (see Section 6.4.1)
comb-line of the experiment description file is used in the dfd-result.

 Aggregation operators reduce dimensionality of the covered experiment factor space in the dfd-
result. The sequence of aggregation operators in the first argument of the operator dfd influences the
result: Computation starts with the first aggregation operator and ends with the last:

Example: avg(p1), min(p2) normally differs from min(p2), avg(p1)

 An unused experiment factor in the selection and aggregation filter contributes with an additional di-
mension to arg2 to the result of the operator dfd. The extent of this additional dimension corresponds
to the number of sampled values of this factor in the experiment description file.
A factor that is restricted by any of the select operators also contributes with an additional dimension
to the result of the operator dfd if the number of selected values is greater than 1. The extent of the
additional dimension corresponds to the number of selected values of this factor by the select opera-
tor.
Consequently, an empty character string arg1 forces to output the operand arg2 over the whole fac-
tor space of the experiment.

 The name of the coordinate that is assigned to an additional dimension is the name of the corre-
sponding factor. Coordinate description and coordinate unit (cf. Section 5.1 on page 37) are associ-
ated with the corresponding information for the factor from the experiment description file.
Coordinate values are formed from adjusted factor values. For strictly ordered factor sampled values
in the experiment description file and finally for strictly ordered factor adjusted values the coordinate
values are ordered accordingly in an increasing or decreasing manner. Unordered factor sampled
values and finally unordered factor adjusted values are ordered in an increasing manner for coordi-
nate usage.
The result of the operator dfd is always arranged according to ascending coordinate values for all
additional dimensions.

 Independently from the declared sequence of the applied aggregation- and select-operators in ar-
gument 1 of the operator dfd the factors that contribute to additional dimensions of the result of the
operator dfd are appended to the dimensions of the operand arg2 of dfd according to the sequence
they are used in the normalized (see Section 6.4.1) comb-line of the experiment description file).
From parallel changing factors that factor is used in this sequence that is addressed explicitly or im-
plicitly by the select-operator.

 For experiment factors that are changed in the experiment in parallel, that increase dimensionality of
the result and where a select-operator is missing the first factor from this parallel sub-space in the
normalized (see Section 6.4.1) comb-line is used in the result.

3.1 (Ja 25, 2013) n -143- Multi-Run Simulation Environment SimEnv User Guide for Version

 For experiments that use a sample file (<model>.edf: specific comb file ...) instead of explicit sam-
ple definitions (<model.edf>: specific comb [default | <combination>]) all experiment factors are
assumed to be combined in parallel.

 Additionally, this experiment type allows to post-process the whole run ensemble as an UNC_MC
experiment. Keep in mind that generally the factors do not follow a pre-defined distribution.

Having a model output variable definition as in Example 5.1 on page 44 and
assuming address_default = coordinate in world_*.cfg.
Assume the experiment layout in Fig. 4.6 (c) on page 26 and
the corresponding experiment description file from Example 6.5 DFD_c on page 82
then in result-processing

dfd(‘ ’,bios(*,*,20)) last time step of bios dependent on (p2,p1) and p3
 Dimensionality = 4
 Coordinates = lat , lon , p2 , p3
 Extents = 36 , 90 , 4 , 3
dfd(‘sel(p2)’,bios(*,*,20))
 last time step of bios dependent on (p1,p2) and p3
 Dimensionality = 4
 Coordinates = lat , lon , p2 , p3
 Extents = 36 , 90 , 4 , 3
dfd(‘sel_a(p2(4)),sel_i(p3(1))’,atmo(*,*,1,*))
 select the single run out of the run ensemble for level 1
 p2 = 4 and p3 = 3.3
 Dimensionality = 3
 Coordinates = lat , lon , time
 Extents = 45 , 90 , 20
dfd(‘sel_i(p2(1:3)),sel_s(p3(2:3))’,atmo(*,*,1,20))
 last time step of atmo for level 1 depend. on (p2,p1) and p3
 use only runs for p2 = 1, 2, 3 and for p3 = 6.0, 8.4
 Dimensionality = 4
 Coordinates = lat , lon , p2 , p3
 Extents = 45 , 90 , 3 , 2
dfd(‘avg_i(p2(1:3)),sel_i(p3(2:3))’,atmo(*,*,1,*))
 mean of atmo for level 1 and for runs with p2 =1, 2, 3
 for each value of p3 = 8.4, 9.9
 Dimensionality = 4
 Coordinates = lat , lon , time , p3
 Extents = 45 , 90 , 20 , 2
dfd(‘min(p2),max(p3)’,avg(atmo(*,*,1,19:20)))
 determine single minima of avg(atmo) for level 1 and the
 last two decades for each value of p2
 afterwards determine from that the maximum over all p3.
 Dimensionality = 0
 Coordinates = (without)
 Extents = (without)
dfd(‘max(p3),min(p2)’,avg(atmo(*,*,1,19:20)))
 Result differs normally from min(p2),max(p3)
 (previous result expression)
dfd(‘count(def,p3),sel_i(p2=1)’,bios(*,*,20))/3
 determine single numbers of defined values of
 bios for last decade for runs with p2=1.
 Result consists of values 0 (for water) and 1 (for land)
 Dimensionality = 2
 Coordinates = lat , lon
 Extents = 36 , 90

-144- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -145-

dfd(‘ ’,atmo(*,*,1,20)-run(‘sel_i(p1(1)),sel_i(p3(3))’,
 atmo(*,*,1,20)))
 deviation of the last time step of atmo for level 1
 from the run with p1=1, p2=1, p3=6
 dependent on (p1,p2) and p3
 Dimensionality = 4
 Coordinates = lat , lon , p1 , p3
 Extents = 45 , 90 , 4 , 3

Example file: world.post_DFD_c

Example 8.12 Experiment post-processing operator dfd for DFD

8.4.5 Uncertainty Analysis – Monte Carlo Method UNC_MC

Tab. 8.13 shows experiment specific operators for an UNC_MC experiment that can be used in post-
processing.

Tab. 8.13 Experiment specific operators for UNC_MC
(without standard aggregation / moment operators)

Name Meaning

Argument
restriction(s) /

result description
(Tab. 8.1, page 118)

Argument value
restriction

min_e(
 arg1)

run ensemble minimum (1)

max_e (
 arg1)

run ensemble maximum (1)

sum_e (
 arg1)

run ensemble sum (1)

avg_e (
 arg1)

run ensemble average (1)

var_e (
 arg1)

run ensemble variance (1)

avgg_e (
 arg1)

run ensemble geometric mean (1)

avgh_e (
 arg1)

run ensemble harmonic mean (1)

avgw_e (
 arg1,
 arg2)

run ensemble weighted mean of
arg1

(2.1)

arg2 = weight

Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

Argument

Name Meaning
restriction(s) / Argument value

result description restriction
(Tab. 8.1, page 118)

hgr_e(
 char_arg1,
 int_arg2,
 real_arg3,
 real_arg4,
 arg5)

run ensemble
heuristic
pdf’s sepa-
rately calcu-
lated for each
index of arg5

dimres = dimarg5+1
extres(j) = extarg5(j) for j = 1,…, dimarg5
extres(dimres) = number of bins
coordres(dimres) = char_arg1
for char_arg1 = ‘bin_no’ (bin number):
 coordres(dimres) values = equidist_end 1 (1) no._of_bins
for char_arg1 = ‘bin_mid’ (bin mid):
 coordres(dimres) values = equidist_end 1st_bin_mid (bin_width)
 no._of_bins

char_arg1 = [‘bin_no’ | ‘bin_mid’]
int_arg2 = number of bins
 4 ≤ int_arg2 ≤ no._of_runs or
 = 0: automatic determination =
 max(4,no._of_runs/10)
real_arg3 left bin bound for bin number 1
real_arg4 right bin bound for bin number arg2
real_arg3 =
real_arg4 = 0.: determine bounds by min_e(arg5) and
 max_e(arg5)
 min_e(arg5) = max_e(arg5):
 all result values are undefined

count_e(
 char_arg1,
 arg2)

run ensemble number of values (1)

char_arg1 = [‘all’ | ‘def’ |
 ‘undef’]

maxprop_e(
 arg1)

return the run number where the
maximum is reached the first
time

(1)

processing sequence
starts with run number 1

minprop_e(
 arg1)

return the run number where the
minimum is reached the first time

(1)

processing sequence
starts with run number 1

cnf_e (
 real_arg1,
 arg2)

run ensemble positive distance of
confidence measure from
avg_e(arg2)

(1)

real_arg1 probability of
 error

real_arg1 = [0.001 |
 0.01 | 0.05 | 0.1]

cor_e (
 arg1,
 arg2)

run ensemble correlation coeffi-
cient between arg1 and arg2

(2.1)

cov_e (
 arg1,
 arg2)

run ensemble covariance be-
tween arg1 and arg2

(2.1)

ens(
 arg1)

run ensemble values (6)

dimres = dimarg1+1
extres(dimres) =
 no._of_runs
coordres(dimres) =
 name = run
 values =
 equidist_end 1(1)
 no._of_runs

-146- Multi-Run Simulation Environment SimEnv User Guide

3.1 (Ja 25, 2013) n -147-

Argument

Name Meaning
restriction(s) / Argument value

result description restriction
(Tab. 8.1, page 118)

krt_e (
 arg1)

run ensemble kurtosis
(4th moment)

(1)

med_e (
 arg1)

run ensemble median (1)

qnt_e (
 real_arg1,
 arg2)

run ensemble quantile of arg2 (1)

real_arg1 quantile value

0. ≤ real_arg1 ≤ 100.

reg_e (
 arg1,
 arg2)

run ensemble linear regression
coefficient to forecast arg2 from
arg1

(2.1)

rng_e (
 arg1)

run ensemble range =
max_e(arg1) - min_e(arg1)

(1)

skw_e (
 arg1)

run ensemble skewness
(3rd moment)

(1)

stat_full(
 real_arg1,
 real_arg2,
 real_arg3,
 real_arg4,
 arg5)

run ensemble full basic statistical
measures of arg5

(6)

dimres = dimarg5+1
extres(dimres) = 10
coordres(dimres) =
 name =
 stat_measure
 values =
 equidist_end 1(1)10

real_arg1, real_arg2 =
 [0.001 | 0.01 |
 0.05 | 0.1]
real_arg1 < real_arg2
probability of error for
confidence distance
measure
0. ≤ real_arg3 <
 real_arg4 ≤ 100.
quantile values

stat_red(
 real_arg1,
 real_arg2,
 arg3)

run ensemble reduced basic
statistical measures of arg3

(6)

dimres = dimarg5+1
extres(dimres) = 7
coordres(dimres) =
 name =
 stat_measure
 values =
 equidist_end 1(1)7

real_arg1, real_arg2 =
 [0.001 | 0.01 |
 0.05 | 0.1]
real_arg1 < real_arg2
probability of error for
confidence distance
measure

The following explanations hold for the operators in Tab. 8.13:

 All UNC_MC operators but ens, stat_full and stat_red have the postfix _e.

 All UNC_MC operators are also available for all other experiment types. Keep in mind that in general
the samples from these experiment types do not follow any distribution.

 The operators stat_full and stat_red supply basic statistical measures for their last argument. Both
operators are stand-alone operators: They must not be operands of any other operator but their last
argument can be composed from other non-multi-run operators. To store the statistical measures,
dimensionality of both operators is that of their last argument, appended by an additional dimension
with an extent of 10 and/or 7. Appended coordinate description and meaning is pre-defined by
SimEnv (cf. Tab. 11.11).

The values of the dimension generated additionally as the last argument by applying the operators
stat_full and stat_red of the correspond to the following statistical measures:

 1. Deterministic run (run number 0)
 2. Run ensemble minimum

Multi-Run Simulation Environment SimEnv User Guide for Version

 3. Run ensemble maximum
 4. Run ensemble mean
 5. Run ensemble variance
 6. Run ensemble positive distance of confidence measure from run ensemble mean for a probabil-

ity of error real_arg1
 7. Run ensemble positive distance of confidence measure from run ensemble mean for a probabil-

ity of error real_arg2
Only for operator stat_full:
 8. Run ensemble median
 9. Run ensemble quantile for quantile value real_arg3
10. Run ensemble quantile for quantile value real_arg4

Both operators were designed for application of an appropriate visualization technique in result
evaluation in future. The operator stat_red was introduced as computation of the median and quan-
tiles consumes a lot of auxiliary storage space.

Having a model output variable definition as in Example 5.1 on page 44 and
assuming address_default=coordinate in world_*.cfg.
Assume the UNC_MC experiment with the experiment description file UNC_MC from Example 6.6
on page 86
then in experiment post-processing

avg_e(p1*atmo(*,*,1,19:20)) global run ensemble mean of p1*atmo for level 1

 and the last two decades
 Dimensionality = 3
 Coordinates = lat , lon , time
 Extents = 45 , 90 , 2
avg(atmo(*,*,1,19:20)) global mean of atmo for level 1 and the last two decades
 for run number 0
 Dimensionality = 0
 Coordinates = (without)
 Extents = (without)
ens(atmo(*,*,1,20) run ensemble values of atmo for level 1 and the last decade
 Dimensionality = 3
 Coordinates = lat , lon , run
 Extents = 45 , 90 , 250
minprop_e(atmo(*,*,1,19:20)) run ensemble run number for level 1 and the last two
 decades
 where the minimum of atmo is reached the first time
 Dimensionality = 3
 Coordinates = lat , lon , time
 Extents = 45 , 90 , 2
var_e(atmo(*,*,1,19:20))–atmo(*,*,1,19:20)
 anomaly for run ensemble variance from the default
 (nominal) run for level 1 the last two decades
 Dimensionality = 3
 Coordinates = lat , lon , time
 Extents = 45 , 90 , 2
var_e(atmo(*,*,1,19:20)-run(‘0’,atmo(*,*,1,19:20)))
 global run ensemble variance of the anomaly of atmo for
 level 1 and the last two decades.
 Differs normally from the previous result expression
 Dimensionality 4
 Coordinates = lat , lon , time
 Extents = 45 , 90 , 4 , 20

-148- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -149-

hgr_e(‘bin_no’,0,0.,0.,min_l(‘10’,atmo(20:-20,*,1,20)))
 histogram with 25 bins for the zonal tropical minima
 for level 1 and the last decade. Bin bound extremes are
 derived from the values of the last argument of the operator
 hgr_e.
 Dimensionality = 2
 Coordinates = lat , bin_no
 Extents = 11 , 25
stat_full(0.01,0.05,25,75,min_l(‘10’,atmo(20:-20,*,1,20)))
 full basic statistical measures for the zonal tropical minima
 of atmo for level 1 and the last decade
 Dimensionality = 2
 Coordinates = lat , stat_measure
 Extents = 11 , 10

Example file: world.post_UNC_MC

Example 8.13 Experiment post-processing operators for UNC_MC

8.4.6 Local Sensitivity Analysis LSA

Tab. 8.14 shows the experiment specific operators for LSA that can be used in post-processing. For a defini-
tion of these operators check Tab. 4.5 on page 30.

Tab. 8.14 Experiment specific operators for LSA

Name Meaning

Argument
restriction(s) /

result description

Argument value
restriction

sens_abs(
 char_arg1,
 arg2)

absolute sensitivity measure for
arg2 according to char_arg1

sens_rel(
 char_arg1,
 arg2)

relative sensitivity measure for
arg2 according to char_arg1

lin_abs(
 char_arg1,
 arg2)

absolute linearity measure for
arg2 according to char_arg1

lin_rel(
 char_arg1,
 arg2)

relative linearity measure for arg2
according to char_arg1

sym_abs(
 char_arg1,
 arg2)

absolute symmetry measure for
arg2 according to char_arg1

sym_rel(
 char_arg1,
 arg2)

relative symmetry measure for
arg2 according to char_arg1

dimres = dimarg2 +
 appended
 dimensions
 according to
 char_arg1

char_arg1
 = selection /
 aggregation filter

same as for
UNC_MC

see Section 8.4.5 see Section 8.4.5 see Section 8.4.5

This experiment type allows to post-process the whole run ensemble as an UNC_MC experiment. Keep in
mind that generally the factors do not follow a pre-defined distribution.

Multi-Run Simulation Environment SimEnv User Guide for Version

Tab. 8.15 Syntax of the filter argument 1 for LSA

Placeholder

Explanation

<filter> ‘ { <select_operator1> {, <select_operator2> ... {, <select_operator3> } ... } } ‘

<select_operator> [self | seli | sels] { _<factor_val_type>} (<factor_val_range>)
 with self = select factor range
 seli = select increment range
 sels = select sign range (only for sens_abs and sens_rel)

<factor_val_type> specification how to interpret <val_range>
 i as a range of position indices (always count from 1) for self and seli
 s as a range of sampled increment values for seli
 n as a range of factor names (sequ. as in <model>.edf) for self
 as a range of signs for sels

<factor_val_range> [(<val1> { : <val2> }) | (*)]
for <val2> = <nil> : <val2> = <val1>
(*) : use all values from <factor_name>
<vali> = <val_int> for <val_type> = i
<vali> = <val_float> for <val_type> = s
<vali> = <factor_name> for <val_type> = n (self)
<val1> = [+ | -] and <val2> = <nil> for <val_type> = n (sels)

The following rules hold for the filter argument in the LSA operators:

 Generally, by the filter argument char_arg1 those runs from the run ensemble are selected (here in-
terpreted as filtered) that are used for the formation of the result.
Consequently, if no filter is specified all runs are used:
 sens_abs(‘ ’,atmo_g)

The filter operator has to be specified only if values are to be restricted by corresponding factor val-
ues, increment values and/or sign ranges.

 For the above three select operators self, seli and sels the factor value type is redundant if the factor
value range represents the full range of values by [self | seli | sels] (*):

 self(*) = self_n(*) = self_i(*) and all are redundant.

 Each select operator can be applied only once within the filter argument.

 For <val_type> = i, i.e. if a factor value range is specified by position indices those factors are se-
lected for self and/or those increments are selected for seli that correspond to the specified position
indices. Position indices are assigned from index 1 to the factors and or increments according to
their specification sequence in the corresponding experiment description file <model>.edf.

 If more than one factor, increment value and/or sign was selected by the filter argument arg1 it con-
tributes with an additional dimension to the result of the LSA operator:

 For factors an additional dimension factor_sequ
 for increments an additional dimension incr
 for signs an additional dimension sign

is appended to the dimensions of the argument arg2 to form the result of the LSA operator. The ex-
tent of this additional dimension corresponds to the defined and/or selected number of factors, in-
crement values and/or signs. For a definition of the additional dimensions check Tab. 11.11.
Firstly, dimension factor_sequ is appended on demand, secondly dimension incr and thirdly dimen-
sion sign.

-150- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

Having a model output variable definition as in Example 5.1 on page 44 and
assuming address_default=coordinate in <model>.cfg
Assume the experiment description file LSA from Example 6.7 on page 87
then in result-processing

sens_abs(‘ ’,atmo_g) absolute sensitivity measure for atmo_g
 for all factors, increments and signs
 Dimensionality = 4
 Coordinates = time , factor_sequ , incr , sign
 Extents = 20 , 3 , 4 , 2
sens_rel(‘sels_n(+),self_i(1)’,atmo_g)
 relative sensitivity measure for atmo_g
 for factor p1 and all positive increments
 Dimensionality = 2
 Coordinates = time , incr
 Extents = 20 , 4
sens_abs(‘seli_s(0.001:0.05)’,atmo_g)
 absolute sensitivity measure for atmo_g
 for all factors, increment values 1 to 3 and all signs
 Dimensionality = 4
 Coordinates = time , factor_sequ , incr , sign
 Extents = 20 , 3 , 3 , 2
lin_abs(‘seli_s(0.001:0.05)’,atmo_g)
 absolute linearity measure for atmo_g
 for all factors and increment values 1 to 3
 Dimensionality = 3
 Coordinates = time , factor_sequ , incr , sign
 Extents = 20 , 3 , 3

Example file: world.post_LSA

Example 8.14 Experiment post-processing operators for LSA

8.4.7 Bayesian Technique – Bayesian Calibration BAY_BC

Tab. 8.16 shows experiment specific operators for a BAY_BC experiment that can be used in post-
processing.

The following explanations hold for the operators in Tab. 8.16:

 As discussed in Section 6.7.3, for points in the MCMC chain that are marked as outranged in the file
<model>.blog a single simulation run is not performed. Consequently, they are not available from
experiment output.

 For the multiple setting likelihood function case (check Section 6.7.2) only the run ensemble from an
individual setting can be post-processed. Individual setting experiment outputs are stored in subdi-
rectories “_s_<setting_number>” of the model output directory as specified in <model>.cfg. For post-
processing adapt <model>.cfg accordingly.

 Operators bay_bc_run_weight and bay_bc_run_weight:
Both operators are not multi-run post-processing operators. By definition, such operators can be ap-
plied outside (a multi-run operator is an argument to the operator) as well as inside (the operator is
an argument of a multi-run operator) multi-run operators. In fact, both operators do not make sense
when applying outside a multi-run operators. This is not checked when analysing a result expres-
sion.

3.1 (Ja 25, 2013) n -151- Multi-Run Simulation Environment SimEnv User Guide for Version

 Operator bay_bc_run_weight:
The weight that is assigned to a single run of type “accepted” or “reflected” is the number of all sub-
sequent single runs of types “outrange” or “rejected” until the next single run of type “accepted” or
“reflected”. The single run under consideration also contributes to the weight. The resulting weight is
multiplied with arg1. Single runs of type “rejected” get an undefined weight.

 This experiment type allows to post-process the whole run ensemble as an UNC_MC experiment.

Tab. 8.16 Experiment specific operators for BAY_BC

Name Meaning

Argument
restriction(s) /

result description
(Tab. 8.1, page 118)

Argument value
restriction

bay_bc_run_mask(
 arg1)

this is NOT a
multi-run operator!

mask all values of arg1 (set
them undefined) that belong
to single runs of type
“rejected”

(1) arg1 must not be a multi-
run operator

bay_bc_run_weight(
 arg1)

this is NOT a
multi-run operator!

mask all values of arg1 (set
them undefined) that belong
to single runs of type
“rejected” and weight arg1 of
unmasked values (values that
belong to single runs of type
“accepted” or “reflected”)

(1) arg1 must not be a multi-
run operator

same as for
UNC_MC

see Section 8.4.5 see Section 8.4.5 see Section 8.4.5

Mask rejected runs of the whole run ensemble:

ens(bay_bc_run_mask(arg)) returns for rejected runs the undefined value,
 otherwise arg
run(‘1’,bay_bc_run_mask(arg)) returns for run no. 1 the undefined value if it was
 rejected, otherwise arg
bay_bc_run_mask(ens(arg)) returns a meaningless result

Mask rejected runs and weight runs of type accepted or reflected of the whole run ensemble:

ens(bay_bc_run_weight(arg)) rejected runs get undefined weights, accepted and
 reflected runs get a weight which is the number of
 assigned subsequent runs of type outrange or
 rejected. Sum is icreased by 1.
 Weight is multiplied with arg.
sum_e(bay_bc_run_weight(1)) + run(‘0’,bay_bc_run_weight(1))-1
 the result returns the chain length

Example file: world.post_BAY_BC

Example 8.15 Experiment post-processing operators for BAY_BC

-152- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

8.4.8 Optimization – Simulated Annealing OPT_SA

The goal of an optimization experiment is to minimize a cost function by determining the corresponding op-
timal point in the factor space. Nevertheless, the specified model output from all single runs is stored during
the experiment.

Tab. 8.17 Experiment specific operators for OPT_SA

Name Meaning

Argument
restriction(s) /

result description

Argument value
restriction

same as for
UNC_MC

see Section 8.4.5 see Section 8.4.5 see Section 8.4.5

While the single run that corresponds to the optimal cost function can be post-processed in the single-run
modus, the whole experiment can be post-processed as an UNC_MC experiment. Keep in mind that the
factors generally do not follow a pre-defined distribution.

Having a model output variable definition as in Example 5.1 on page 44 and
assuming address_default=coordinate in <model>.cfg
Assume the experiment description file LSA from Example 6.12 on page 97
then in result-processing

minprop_e(-sum(bios)) run number with the minimal cost function
 Dimensionality = 0
 Coordinates = (without)
 Extents = (without)
ens(-sum(bios)-run(‘xxx’,-sum(bios)))
 run ensemble of the bias of cost function from its optimal
 value. Replace xxx by the result of the previous operator.
 Dimensionality = 1
 Coordinates = run
 Extents = 500
rank(‘tie_min’,ens(-sum(bios)))
 run ensemble of the ranks of the cost function
 Dimensionality = 1
 Coordinates = run
 Extents = 500

Example file: world.post_OPT_SA

Example 8.16 Experiment post-processing operators for OPT_SA

3.1 (Ja 25, 2013) n -153- Multi-Run Simulation Environment SimEnv User Guide for Version

8.5 User-Defined and Composed Operators / Operator Interface

Besides application of built-in operators during experiment post-processing SimEnv enables construction
and application of user-defined and composed post-processing operators. A user-defined operator is sup-
plied by the user in the form of a stand-alone executable that is to perform the operator. Contrarily, a com-
posed operator can be derived from both built-in and user-defined operators to generate more complex op-
erators. User-defined and composed operators are announced to the simulation environment in a user-
defined operator description file <model>.odf by their names and the number of character, integer constant,
real constant and “normal” arguments. This information is used to check user-defined and composed opera-
tors syntactically during experiment post-processing and by the SimEnv service simenv.chk. Sequence of
the operator arguments types follows the same rule as for built-in operator (cf. Section 8.1.4).

A user-defined operator itself is a stand-alone executable that is executed during the check and the compu-
tation of the operator chain. While the main program of this executable is made available by SimEnv the user
has to supply two functions with pre-defined names in C/C++ or Fortran that represent the check and the
computational part of the user-defined operator. For declaration of both functions SimEnv comes with a set
of operator interface functions. They can be used among others to get dimensionality, length, extents and
coordinates of an argument and to get and check argument values and to put operator results.

For a composed operator the operator description file <model>.odf simply holds the definition of the corre-
sponding operator chain composed from built-in and user-defined operators and using formal arguments.

User-defined operators must not be multi-run operators. Consequently, such operators can not process the
whole run ensemble according to any processing strategy for the individual experiment type. For example,
for experiment type UNC_MC, it is impossible to declare a user-defined operator that derives any measure
from the whole run ensemble. However, the concept of composed operators allows for such an approach by
applying built-in multi-run operators.

8.5.1 Declaration of User-Defined Operator Dynamics

User-defined operators consist of a declarative and a computational part, that are described in one source
file in two C/C++ or Fortran functions (cf. Tab. 8.18):

 Function simenv_check_user_def_operator
This is the declarative part of the operator. The consistency of the non-character operands can be
checked with respect to dimensionality, dimensions and coordinates as well as the values of charac-
ter arguments can be checked. Dimensionality, extents and coordinates of the result have to be de-
fined, normally in dependence on the argument information.

 Function simenv_compute_user_defined_operator
This is the computational part of the operator. In the computational part the result of the operator in
dependency of its operands is computed.

-154- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

Tab. 8.18 Operator interface functions for the declarative and computational part

Function
name

Function
description

Inputs /
outputs /

function value

Inputs / outputs / function value
description

Functions to host the declarative and computational part in usr_opr_<opr>.[f | c | cpp]

simenv_
check_user_
def_operator
(
)

check consistency
of operator argu-
ments and defines
dimensionality and
dimensions of
result

integer*4
simenv_
check_user_
def_operator
(function value)

return code
= 0 ok
≠ 0 inconsistency between operands

real*4
res(len_res)

(output)
result vector of the operator

integer*4
len_res

(input)
length of the result vector of the operator

simenv_
compute_user_
def_operator
(
res,
len_res
)

compute result of
the operator in
dependency on
operands

integer*4
simenv_
compute_user_
def_operator
(function value)

return code
= 0 ok
≠ 0 user-defined interrupt of calculation

Operator results of a dimensionality > 1
have to be stored to the array res
using the Fortran storage model
(cf. Section 15.7 – Glossary).

A function value ≠ 0 of simenv_check_user_def_operator() should be set according to the following rules:

 If appropriate, forward function value from the operator interface function simenv_chk_2args_[f | c]
(see below) to the function value of simenv_check_user_def_operator(). The corresponding error
message is reported automatically by the experiment post-processor. Return code 4 from
simenv_chk_2args_[f | c] is only an information and no warning and is not reported.

 Other detected inconsistencies between operands have to be reported to the user by a simple print-
statement within simenv_check_user_def_operator. The corresponding return code has to be
greather than 5.

Tab. 8.19 summarizes these SimEnv operator interface functions that can be applied in the declarative and
computational part written in Fortran or C/C++ (postfix f for Fortran, c for C/C++) to get and put structure
information. In this table the input and output data types are documented for functions used in Fortran. For
C/C++ the corresponding data types are valid. Implementation of the functions for C/C++ is based on a call
by reference for the function arguments.

3.1 (Ja 25, 2013) n -155- Multi-Run Simulation Environment SimEnv User Guide for Version

Tab. 8.19 Operator interface functions to get and put structural information

Function
name

Function
description

Inputs /
outputs /

function value

Inputs / outputs / function value
description

Functions to get and put structure information in the declarative and computational part

integer*4
iarg
(input)

argument number

character*(*)
char
(output)

string of the character argument
Declare char with a sufficient length.

simenv_
get_char_arg_
[f | c]
(
iarg,
char
)

get string and
string length of a
character argu-
ment

integer*4
simenv_
get_char_arg_
[f | c]
(function value)

length of character argument

integer*4
iarg
(input)

argument number, 0 for result

integer*4
iext(9)
(output)

extents of argument / result
iext(1) ,..., iext(simenv_get_dim_arg_[f | c]...)

simenv_
get_dim_arg_
[f | c]
(
iarg,
iext
)

iarg > 0:
get dimensionality
and extents of an
argument
iarg = 0:
get dimensionality
and extents of the
result integer*4

simenv_
get_dim_arg_
[f | c]
(function value)

dimensionality of argument / result

integer*4
iarg
(input)

argument number, 0 for result simenv_
get_len_arg_
[f | c]
(
iarg
)

iarg > 0:
get length of an
argument
iarg = 0:
get length of the
result

integer*4
simenv_
get_len_arg_f
(function value)

length of argument / result

simenv_
get_nr_arg_
[f | c]
(
)

get number of
arguments of the
current operator

integer*4
simenv_
get_nr_arg_
[f | c]
(function value)

number of arguments

integer*4
iarg
(input)

argument number, 0 for result simenv_
get_type_arg_
[f | c]
(
iarg
)

iarg > 0:
get data type of an
argument
iarg = 0:
get data type of
the result

integer*4
simenv_
get_type_arg_f
(function value)

type of argument / result
= -1 byte = 4 float
= -2 short = 8 double
= -4 int

simenv_
get_co_chk_
modus_
[f | c]
(
)

get level of coordi-
nate check for
arguments
according to
<model>.cfg

integer*4
simenv_
get_co_chk_
modus_
[f | c]
(function value)

level of coordinate check for arguments
= 0 without
= 1 weak
= 2 strong

-156- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -157-

Inputs /
Function Function Inputs / outputs / function value

outputs /
name description description

function value

integer*4
iarg
(input)

argument number

integer*4
ico_nr(9)
(output)

formal numbers of the coordinates
ico_nr(1) ,..., ico_nr(simenv_get_dim_
 arg_[f | c]...)

integer*4
ico_beg_pos(9)
(output)

formal begin value positions of the coordinates
ico_beg_pos(1) ,..., ico_beg_pos(simenv_get_dim_
 arg_[f | c]...)

character*64
co_name(9)
(output)

coordinate names
co_name(1) ,..., co_name(simenv_get_dim_
 arg_[f | c]...)

simenv_
get_co_arg_
[f | c]
(
iarg,
ico_nr,
ico_beg_pos,
co_name
)

get formal coordi-
nate numbers and
formal coordinate
begin value posi-
tions of an argu-
ment

integer*4
simenv_
get_co_arg_
[f | c]
(function value)

return code
= 0 ok

integer*4
ico_nr
(input)

formal number of the coordinate
(from simenv_get_co_arg_[f | c])

integer*4
ico_pos
(input)

formal position within all coordinate values of the
value to get.
The smallest ico_pos to use corresponds to the
value ico_beg_pos from the function
simenv_get_co_arg_[f | c]

real*4
co_val
(output)

coordinate value
For non-monotonic coordinate values:
Do not get value number ico_pos but the
(ico_pos)-th smallest value (sort values in increas-
ing manner)

simenv_
get_co_val_
[f | c]
(
ico_nr,
ico_pos,
co_val
)

get for a coordi-
nate a coordinate
value at a speci-
fied position

Application of this
function in
simenv_check_
user_def_operator
for coordinate
bin_mid results in
an error

integer*4
simenv_
get_co_arg_
[f | c]
(function value)

return code
= 0 ok
= 1 ico_pos out of range
= 2 storage exceeded

integer*4
iarg1
(input)

argument number

integer*4
iarg2
(input)

argument number

simenv_
chk_2args_
[f | c]
(
iarg1,
iarg2
)

check two argu-
ments on same
dimensionality,
extents and coor-
dinates

If appropriate
forward return
code ≠ 0 to the
function value of
simenv_check_
user_def_
operator()

integer*4
simenv_
chk_2args_
[f | c]
(function value)

return code
= 0 ok
= 1 differing dimensionalities
= 2 differing extents
= 3 differing coordinates according to the sub-
 keyword coord_check in <model>.cfg
= 4 iarg1 = iarg2

Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

Inputs /
Function Function Inputs / outputs / function value

outputs /
name description description

function value

integer*4
inplace
(input)

potential in-place indicator for result.
result can be computed in-place with the following
non-character arguments
= -1 all
= 0 none
> 0 e.g. = 135 with arguments 1, 3 and 5

integer*4
idimens
(input)

dimensionality of the result

integer*4
iext(9)
(input)

only for idimens > 0:
extents of the result
iext(1) ,..., iext(idimens)

integer*4
ico_nr(9)
(input)

only for idimens > 0:
formal coordinate numbers of the result
ico_nr(1) ,..., ico_nr(idimens)

integer*4
ico_beg_pos(9)
(input)

only for idimens > 0:
formal coordinate begin position for formal coordi-
nate number ico_nr of the result
ico_beg_pos(1) ,..., ico_beg_pos(idimens)

simenv_
put_struct_res_
[f | c]
(
inplace,
idimens
{,
iext,
ico_nr,
ico_beg_pos
}
)

put
- potential in-

place-storage
- dimensionality
- extents
- formal coordi-

nate number
- formal coordi-

nate value begin
number

of the result

Currently, only
coordinates from
the arguments can
be assigned to the
result.

Must be applied
in the declarative
part and only
there.

integer*4
simenv_
put_dim_res_
[f | c]
(function value)

return code
= 0 ok
≠ 0 inconsistency between operands

All of these operator interface functions return -999 as an error indicator if an argument iarg is invalid. Output
arguments are set to -999 as well.

Tab. 8.20 summarizes these SimEnv operator interface functions that can be applied in the computational
part written in Fortran or C/C++ (postfix f for Fortran, c for C/C++) to get and check argument values and put
results. In this table the input and output data types are documented for functions used in Fortran. For C/C++
the corresponding data types are valid. Implementation of the functions for C/C++ is based on a call by ref-
erence for the function arguments.
To handle real*4 underflow and overflow during computation of the operator results with real*4 argument
values it is advisable to compute operator results temporarily as real*8 values and afterwards to transform
these values back to the final real*4 operator result by the function simenv_clip_undef_[f | c].

-158- Multi-Run Simulation Environment SimEnv User Guide

Tab. 8.20 Operator interface functions to get / check / put arguments and results

Function
name

Function
description

Inputs /
outputs /

function value

Inputs / outputs / function value
description

Functions to get and check argument values and to put results in the computational part

integer*4
iarg
(input)

argument number

integer*4
index
(input)

vector index of an argument

simenv_
get_arg_
[f | c]
(
iarg,index
)

get value of a non-
character argu-
ment with index
index

real*4
simenv_
get_arg_
[f | c]
(function value)

value of argument iarg at index index

Operands of any type are transferred by
simenv_get_arg_[f | c] to a real*4 / float repre-
sentation.
Operands of a dimensionality > 1 are forwarded
to user-defined operators as one-dimensional
vectors, using the column-major order model
(cf. Section 15.7 – Glossary). Adjust the second
argument of simenv_get_arg_[f | c] (index)
accordingly.

real*8
value
(input)

value to be checked simenv_
clip_undef_
[f | c]
(
value
)

overflow:
set a real*8 value
to an undefined
real*4 result
if appropriate
underflow:
set a real*8 value
to real*4 0.
if appropriate

real*4
simenv_
clip_undef_
[f | c]
(function value)

Example:
res(i)=simenv_clip_undef_[f | c]
 (value)

real*4
value
(input)

argument value to be checked simenv_
chk_undef_
[f | c]
(
value
)

check whether
value is undefined
before processing
it integer*4

simenv_
is_undef_
[f | c]
(function value)

= 0 value is defined
= 1 value is undefined

simenv_
put_undef_
[f | c]
(
)

set a result value
as undefined

real*4
simenv_
put_undef_
[f | c]
(function value)

Example:
res(i)=simenv_put_undef_[f | c] ()

3.1 (Ja 25, 2013) n -159- Multi-Run Simulation Environment SimEnv User Guide for Version

 In SimEnv the declarative and computational part of a user-defined operator <opr> is hosted in a
source file usr_opr_<opr>.[f | c | cpp]. The assigned executable has the name usr_opr_<opr> and
has to be located in that directory that is stated in <model>.cfg as the hosting directory opr_directory
for user-defined operators.

 The include files simenv_opr_f.inc and simenv_opr_c.inc from the inc subdirectory of the SimEnv
home directory can be used in user-defined operators to declare the SimEnv operator interface func-
tions for Fortran and/or C/C++ (cf. also Tab. 11.6).

 Apply the shell script

 link_simenv_opr_[f | c | cpp].sh <opr>

from the SimEnv library directory $SE_HOME/lib to compile and link from usr_opr_<opr>.[f | c | cpp
] an executable usr_opr_<opr> that represents the user-defined operator <opr>. Like the main pro-
gram for the operator also the object $SE_HOME/bin/simenv_opr.o is supplied by SimEnv. This ob-
ject file has to be linked with usr_opr_<opr>.o and the object library $SE_HOME/lib/libsimenv.a.

 Tab. 15.14 lists the additionally used symbols when linking a user-defined operator.

 In Section 15.3 on page 241 implementation of the user-defined operator matmul_[f | c] is de-
scribed in detail. It corresponds to the built-in operator matmul. Additionally, check the user-defined
operators from Tab. 15.6 and apply them during experiment post-processing.

8.5.2 Undefined Results in User-Defined Operators

Check always by the SimEnv operator interface function simenv_chk_undef(val) (cf. Tab. 8.20) whether an
argument value val is undefined before it is processed.

Set a result to be undefined by the SimEnv operator interface function simenv_put_undef_[f | c]() (cf. Tab.
8.20)
Check usr_opr_matmul_[f | c].[f | c] in Section 15.3 or usr_opr_div.f in the example directory
$SE_HOME/exa of SimEnv for more detailed examples.

If things go so wrong that computation of the whole result expression has to be stopped it is possible to al-
ternatively

 Set all elements of the results to be undefined

 Set simenv_compute_user_def_operator ≠ 0 (otherwise set it always = 0)

 In both cases application of the following operators in the operator chain of the result expression will
be suppressed and consequently computation of the result expression will be stopped

 Check usr_opr_char_test.f for a detailed example

8.5.3 Composed Operators

A composed operator is an operator chain composed from built-in and user-defined operators. The concept
of composed operators enables construction of more complex operators from built-in and user-defined ones.
A composed operator is defined with formal arguments that are used in the operator chain as arguments.
Formal arguments are replaced by current arguments when applying a composed operator during experi-
ment post-processing. In this sense, the definition of a composed operator in SimEnv corresponds to the
definition of a function in a programming language: When calling the function formal arguments are replaced
by current arguments. Consequently, composed operators offer the same flexibility as built-in or user-defined
operators.

Like built-in and user-defined operators, a composed operator can have nine formal arguments at maximum.
Sequence of these arguments is also the same as for the other operators: Character arguments followed by
integer constant arguments, real constant arguments and normal arguments.

-160- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

For composed operators the operand set (cf. Section 8.1.2) to form the operator by a chain of operators is
restricted to

 Constants in integer and real / float notation

 Character strings

 Operator results from built-in and user-defined operators

Not allowed as operands are

 Model output variables

 Experiment factors

 Composed operators

 Macros

Additionally have to be used

 Formal arguments arg1 ,…, arg9

Check the following example how to specify composed operators.

composed character “normal” composed operator
operator name argument argument definition
--
rel_count (arg1 , arg2) = 100 * count(arg1,arg2) /
 count(‘all’,arg2)
error_1 (arg1 , arg2) = count(arg1,arg2) *
 hgr(arg1,0,0.,0.,arg2)
error_2 (arg1) = arg1 *
 hgr(‘bin_mid’,10,0.,0.,arg1)

Having a model output variable definition as in Example 5.1 on page 44
then for example, the operator rel_count can be applied by

rel_count(‘def’,bios)
rel_count(‘def’,bios(c=20:-20,*,1))
rel_count(‘undef’,100*bios)

Example 8.17 Composed operators

Composed operators are checked syntactically by the SimEnv service simenv.chk. When performing
simenv.chk validity of the following information is not cross-checked between formal arguments:

 Character arguments of operators

Example: (related to Example 8.17)

The composed operator error_1 is considered by simenv.chk to be valid though
 argument 1 of operator count is limited to values [‘all’ | ‘def’ | ‘undef’] and
 argument 1 of operator hgr is limited to values [‘bin_no’ | ‘bin_mid’]

 Use of “normal” formal arguments in the operator chain with respect to their dimensionality, extents
and coordinates

Example: (related to Example 8.17)

The composed operator error_2 is considered by simenv.chk to be valid though
 the dimensionality of the operator hgr in this constellation is always higher than
 that of argument arg1
 and consequently, multiplication between arg1 and hgr(.) is impossible.

3.1 (Ja 25, 2013) n -161- Multi-Run Simulation Environment SimEnv User Guide for Version

8.5.4 Operator Description File <model>.odf

<model>.odf is an ASCII file that follows the coding rules in Section 12.1 on page 203 with the keywords,
names, sub-keywords, and values as in Tab. 8.21. <model>.odf announces the user-defined and composed
operators by their names, and the number of character, integer constant, real constant, and normal argu-
ments that belong to an operator. Additionally, <model>.odf hosts for composed operators the corresponding
operator chain using formal arguments. <model>.odf is evaluated to check a user-defined and/or composed
operator syntactically when performing it during experiment post-processing.

Tab. 8.21 Elements of an operator description file <model>.odf
 (line type: m = mandatory, o = optional)

Max.
Sub- Line

type
Keyword Name Values Explanation line

keyword
nmb.

general <nil> descr o any <string> general operator descriptions

descr o 1 <string> operator description opr_
defined

<user_
defined_
operator_
name>

arguments m 1 <int_val1>,
<int_val2>,
<int_val3>,
<int_val4>

number of arguments defined
for the operator:
<int_val1> ≥ 0:
character arguments
<int_val2> ≥ 0:
integer constant arguments
<int_val3> ≥ 0:
real constant arguments
<int_val4> > 0:
“normal” arguments

descr o 1 <string> operator description

arguments m 1 <int_val1>,
<int_val2>,
<int_val3>,
<int_val4>

number of arguments defined
for the operator.
Explanations and restrictions
are the same as for a user-
defined operator

opr_
composed

<composed_
operator_
name>

define m ≥ 1 <string> operator definition string
Operator definition can be
arranged at a series of define-
lines in analogy to the rules
for result expressions (cf.
Section 8.1.1).

To Tab. 8.21 the following additional rules and explanations apply:

 The sequence of the four integer values <int_val1> ,…, <int_val4> follows the sequence of arguments
in built-in, user-defined and composed operators.

 The sum <int_val1> +…+ <int_val4> has to be less equal 9.

 Use the SimEnv service simenv.chk to check user-defined and composed operators.

-162- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

general descr Operator description for the
general descr examples in the SimEnv User Guide

opr_defined matmul_f descr matrix multiplication (in Fortran)
opr_defined matmul_f arguments 0,0,0,2

opr_defined matmul_c descr matrix multiplication (in C)
opr_defined matmul_c arguments 0,0,0,2

opr_defined corr_coeff descr correlation coefficient r
opr_defined corr_coeff arguments 0,0,0,2

opr_defined div descr arithmetic division
opr_defined div arguments 0,0,0,2

opr_defined simple_div descr division without undefined-check
opr_defined simple_div arguments 0,0,0,2

opr_defined char_test descr test character arguments
opr_defined char_test arguments 2,0,0,1

opr_composed rel_count descr relative count [%]
opr_composed rel_count arguments 1,0,0,1
opr_composed rel_count define 100*count(arg1,arg2)/
opr_composed rel_count define count('all',arg2)

Example files: world_[f | c | cpp | py | ja | m | sh].odf

Example 8.18 Operator description file <model>.odf

8.6 Macros and Macro Definition File <model>.mac

In experiment post-processing a macro is an abbreviation for a result expression, consisting of an operator
chain applied on operands. Generally, they are model related and they are defined by the user.

 Macros are identified in experiment post-processing expressions by the suffix _m.

 A macro is plugged into a result expression by putting it into parentheses during parsing:

Example:

equ_100yrs_m*test_mac_m from Example 8.19 below is identical to
(avg(atmo(c=20:-20,*,c=1,c=11:20))-400)*(1+(2+3)*4)

 Macros must not contain macros.

 Use simenv.chk to check macros. During the macro check validity of the following information is not
checked:

 Un-pre-defined character arguments of built-in operators (cf. Tab. 15.10)

 Integer or real constant arguments of built-in operators (cf. Tab. 15.11)

 Character arguments of user-defined operators

 Operators with respect to dimensionality and dimensions of its operands

In SimEnv macros are defined in the file <model>.mac. <model>.mac is an ASCII file that follows the coding
rules in Section 12.1 on page 203 with the keywords, names, sub-keywords, and values as in Tab. 8.22.
<model>.mac describes the user-defined macros.

Multi-Run Simulation Environment SimEnv User Guide for Version 3.1 (Jan 25, 2013) -163-

Tab. 8.22 Elements of a macro description file <model>.mac
 (line type: m = mandatory, o = optional)

Keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

general <nil> descr o any <string> general macro descriptions

descr o 1 <string> macro description

unit m 1 <string> unit of the value of the macro

macro <macro_
name>

define m ≥ 1 <string> macro definition string
macro definition can be ar-
ranged at a series of define-
lines in analogy to the rules
for result expressions (cf.
Section 8.1.1).

To Tab. 8.22 the following additional rules and explanations apply:

 Values for sub-keywords descr and unit are not evaluated during parsing a result expression.

general descr Macro definitions for the
general descr examples in the SimEnv User Guide

macro equ_100yrs descr 2nd century tropical level 1 average
macro equ_100yrs unit without
macro equ_100yrs define avg(atmo(c=20:-20,*,c=1,c=11:20))

macro tst descr test macro
macro tst define 1+(2+3)*
macro tst define 4

Example files: world_[f | c | cpp | py | ja | m | sh].mac

Example 8.19 User-defined macro definition file <model>.mac

8.7 Wildcard Operands &v& and &f&

In SimEnv, wildcard operands offer a convenient approach to compute a result expression successively for
all defined model output variables and experiment factors. Wildcard operands are used in the same manner
as normal operands when defining a result expression. There are two wildcard operands at disposal:

 &v& wildcard operand for any model output variable
 &f& wildcard operand for any experiment factor

When applying in a result expression and the corresponding optional result descriptor (for both check Sec-
tion 8.1.1) only one wildcard type (i.e., either &v& or &f&) the result expression is performed repetitively
where the wildcard is replaced successively by all model output variables and experiment factors, respec-
tively. When applying both &v& and &f& in a result expression the result expression is performed for the
Cartesian product of all model output variables and experiment factors. The same applies to the optional
result descriptor.

-164- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

Wildcard operands must not be used in macro definitions (cf. Section 8.6). The wildcard operand &v& for
model output variables cannot be restricted to a portion of the variable by appending a sub-specification in
brackets as explained in Section 8.1.3 (e.g., &v&(i=3:10) is not allowed).

Note that the strings &v& and &f& are only substituted in the result string by model variables and/or model
factors if they are

 prefixed by [(| + | - | / | * | , | begin of result string] and

 postfixed by [(| + | - | / | * | , |) | end of result string]

Having a model output variable definition as in Example 5.1 on page 44 and
assuming the experiment description file DFD_b from Example 6.5 on page 82
then in result-processing

dfd(‘ ’,sin(&v&)) results in
 dfd(‘ ’,sin(atmo))
 dfd(‘ ’,sin(bios))
 dfd(‘ ’,sin(atmo_g))
 dfd(‘ ’,sin(bios_g))
dfd(‘ ’,&v&*&f&) results in
 dfd(‘ ’,atmo*p1)
 dfd(‘ ’,bios*p1)
 dfd(‘ ’,atmo_g*p1)
 dfd(‘ ’,bios_g*p1)
 dfd(‘ ’,atmo*p2)
 dfd(‘ ’,bios*p2)
 dfd(‘ ’,atmo_g*p2)
 dfd(‘ ’,bios_g*p2)

Example 8.20 Experiment post-processing with wildcard operands

8.8 Undefined Results

By performing operator chains and due to possibly undefined / unwritten model output during simulation
parts of the intermediate and/or final result values can be undefined within the float data representation.

If an operand is completely undefined the computation of the result is stopped without evaluating the follow-
ing operands and operators.

For undefined / nodata value representation check Section 11.8.

8.9 Saving Results

The result files <model>.res<simenv_res_char>.[nc | ieee | ascii] and <model>.inf<simenv_res_char>.[ieee
| ascii] contain all the model and experiment information for further processing of results.

3.1 (Ja 25, 2013) n -165- Multi-Run Simulation Environment SimEnv User Guide for Version

-166- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

9 Visual Experiment Evaluation

Experiment evaluation in SimEnv is based on its visualization framework SimEnvVis. The SimEnvVis
approach is to apply visualization techniques to the output data, derived during experiment post-processing
and stored in NetCDF format. SimEnvVis does not belong to the standard SimEnv distribution. It can be
obtained from the SimEnvVis developers on request.

Analysis and evaluation of post-processed data selected and derived from large amount of relevant experi-
ment output benefits from visualization techniques. Based on metadata information of the post-processed
experiment type, the applied operator chain, and the dimensionalities of the post-processor output pre-
formed visualization modules are evaluated by a suitability coefficient how they can map the data in an ap-
propriate manner.
The SimEnvVis framework offers visualization modules with a high degree of user support and interactivity to
cope with multi-dimensional data structures. They cover among others standard techniques such as isolines,
isosurfaces, direct volume rendering and a 3D difference visualization techniques (for spatial and temporal
data visualization). These techniques are accompanied by parallel coordinates, graphical table and scatter-
plot matrixes techniques. Furthermore, approaches to navigate intuitively through large multi-dimensional
data sets have been applied, including details on demand, interactive filtering and animation.
Using the OpenDX platform, OpenGL and Ferret visualization techniques have been adapted, designed and
implemented, suited in the context of analysis and evaluation of derived multi-run output functions.

Currently, visual experiment evaluation is the only SimEnv service that comes with a graphical user inter-
face. In this user interface a help-services is implemented that should be used to gather additional informa-
tion on how to select post-processed results for visualization and on visualization techniques provided by
SimEnvVis. Additionally, a SimEnvVis user documentation is available from the SimEnv website.

Visualization of post-processed experiment output is started by the SimEnv service simenv.vis (check Sec-
tion 11.2) and directly during experiment post-processing by the service simenv.res if in the file <model>.cfg
(check Section 11.1) this feature is enabled by

 postproc visualization yes

At PIK, the SimEnvVis framework is installed at viss01.pik-potsdam.de. Access to viss01 is requested by the
SimEnv service simenv.key. Check Section 11.2 for more information.

To apply SimEnvVis, an X11 server must run on the client machine. On Windows systems this may be
Hummingbird or Cygwin/X, on Mac machines an XTerm.

3.1 (Ja 25, 2013) n -167- Multi-Run Simulation Environment SimEnv User Guide for Version

http://www.pik-potsdam.de/software/simenv/simenvvis

-168- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

10 Model and Experiment Post-Processor Output Data
Structures

This chapter summarizes information on available data structures for model and experiment post-

processor output. SimEnv supports several output formats from the experiment and the post-processor.
NetCDF is a self-describing data format and can be used for model and post-processor output. Other format
specifications for both outputs is IEEE compliant binary format and ASCII for post-processor output. This
chapter describes all the used data structures.

Dependent on the specification of the supported experiment post-processor output formats in <model>.cfg
model output can be stored in NetCDF format and post-processor output in NetCDF, IEEE or ASCII format.
During experiment performance model output is written either to single output files

 <model>.out<simenv_run_char>.[nc | ascii]

per experiment single run or to a common output file

 <model>.outall.[nc | ieee]

for all single runs from the experiment run ensemble. Output to single files or a common file depends on
specification of the value for the sub-keyword out_separation in <model>.cfg. <simenv_run_char> is a six-
digit placeholder for the corresponding single run number.
During experiment post-processing output and structure of results is written to files

 <model>.res<simenv_res_char>.[nc | ieee | ascii] and
 <model>.res<simenv_res_char>.[ieee | ascii].

<simenv_res_char> is a two-digit placeholder for the number of the result file. It ranges from 01 to 99.
For IEEE and ASCII model output and experiment post-processor output formats, multi-dimensional data is
organized in the column-major order model (cf. Section 15.7 – Glossary).
Use the SimEnv service command simenv.dmp for browsing model and result output files. See Tab. 11.4 for
more information.

10.1 NetCDF Model and Experiment Post-Processor Output

The intention for applying NetCDF format for model and experiment post-processor output is to provide a
self-describing, platform-independent data file format with metadata that can be interpreted by subsequent
analyses techniques such as visualization. The conventions applied for SimEnv represent a compromise
between existing standards and the metadata requirements for a flexible and expressive visualization that is
adapted to the requirements of the specific data sets of concern. SimEnv follows the NetCDF Climate and
Forecast (NetCDF-CF) metadata convention 1.6 (LLNL, 2012). Additionally, global and local attributes – the
latter in NetCDF terminology for independent and dependent NetCDF variables – that are to be deleted,
replaced or defined are described by the file <model>.ndf (see Section 10.1.3).

In principle, any NetCDF file can be viewed by the NetCDF service program

 ncdump <NetCDF_file>

Model output data types as declared in the model output description file <model>.mdf (cf. Tab. 5.4) are
automatically transferred into NetCDF data types (cf. the Table below). By default, all post-processor output
data is of type float / real*4.

3.1 (Ja 25, 2013) n -169- Multi-Run Simulation Environment SimEnv User Guide for Version

Tab. 10.1 NetCDF data types

SimEnv data type
(cf. Tab. 5.4)

NetCDF data type

byte / int*1 NF_BYTE

short / int*2 NF_SHORT

int / int*4 NF_INT

float / real*4 NF_FLOAT

double / real*8 NF_DOUBLE

10.1.1 Global Attributes

The global attributes used in SimEnv from the NetCDF-CF standard for model and post-processor output are
:Conventions, :institution, and :title. They are complemented by CF non-compliant attributes that are all pre-
fixed by “SimEnv_”

Tab. 10.2 Global NetCDF attributes

Name

Value

Data
type

:Conventions CF-<CF_version> char

:institution as specified in $SE_HOME/bin/simenv_settings.txt char

:title SimEnv Vers. <SimEnv_version> [model | post-processor] output #
Workspace: <user_name>@<hostname>:<SimEnv_workspace> #
Timestamp: <YYYY-MM-DD>T<hh:mm:ss>Z #
SimEnv: http://www.pik-potsdam.de/software/simenv/

char

:SimEnv_Conventions

(NetCDF-CF non-compliant)

information on CF convention extensions char

:SimEnv_model

(NetCDF-CF non-compliant)

<model>:
<model description from “ general descr “ of <model>.mdf>

char

:SimEnv_experiment

(NetCDF-CF non-compliant)

<xxx> single runs
with experiment type <acronym and long name – see Tab. 4.1>:
<experiment description from “ general descr “ of <model>.edf>

char

10.1.2 Variable Labeling and Variable Attributes

For NetCDF variables, two cases of labeling are distinguished:

 If

 during experiment performance for a SimEnv model output variable or
 during post-processing for a SimEnv result

one of its coordinates spans the entire range of definition, the already defined coordinate is used.

 Otherwise, an additional coordinate

 <var_name>-<co_name>

is defined, where the NetCDF variable depends on. The additional coordinate is described in the di-
mension and data part of the NetCDF file. Additionally, the SimEnv specific attribute

 index_range_<original_coordinate_name> (see Tab. 10.3)

is assigned to such a NetCDF variable. Check also Example 10.1 and Example 10.2.

-170- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -171-

Having a model output variable definition as in Example 5.1 on page 44 and
assuming in <model>.cfg
 model out_format netcdf
 model out_separation yes

During experiment performance model output variables atmo and bios are stored as follows:
(excerpt from ncdump)

netcdf world_f.out000000 {
dimensions:
 lat = 45 ;
 lon = 90 ;
 level = 4 ;
 time = 20 ;
 bios-lat = 36 ;
variables:
 float lat(lat) ;
 lat:standard_name = "SimEnv model coordinate" ;
 lat:long_name = "geographic latitude" ;
 lat:units = "deg" ;
 lat:axis = "Y" ;
 …
 float atmo(time, level, lon, lat) ;
 atmo:standard_name = "SimEnv model output variable" ;
 atmo:long_name = "aggregated atmospheric state" ;
 atmo:units = "atmo_unit" ;
 atmo:_FillValue = 3.4e+38f ;
 atmo:data_range = -1999.95f, 2002.39f ;

 float bios-lat(bios-lat) ;
 bios-lat:standard_name = "SimEnv model coordinate" ;
 bios-lat:axis = "Y" ;

 float bios(time, lon, bios-lat) ;
 bios:standard_name = "SimEnv model output variable" ;
 bios:long_name = "aggregated biospheric state" ;
 bios:units = "bios_unit" ;
 bios:index_range_lat = 2, 37 ;
 bios:_FillValue = 3.4e+38f ;
 bios:data_range = -1982.372f, 1999.391f ;
 …
lat = 88, 84, …, -84, -88 ;
 …
bios-lat = 84, 80, …, -52, -56 ;
 …

Example 10.1 Additional coordinates in NetCDF model output

Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

Having a model output variable definition as in Example 5.1 on page 44 and
assuming in <model>.cfg
 postproc out_format netcdf

During experiment post-processing results atmo and run(‘0’,sin(atmo(i=2:37,*,*,*)))
are stored as follows: (excerpt from ncdump)

netcdf world_f.res01 {
dimensions:
 lat = 45 ;
 lon = 90 ;
 level = 4 ;
 time = 20 ;
 res_02-lat = 36 ;
variables:
 float lat(lat) ;
 lat:standard_name = "SimEnv model coordinate" ;
 lat:long_name = "geographic latitude" ;
 lat:units = "deg" ;
 lat:axis = "Y" ;
 …
 float res_01(time, level, lon, lat) ;
 res_01:standard_name = "aggregated atmospheric state" ;
 res_01:long_name = "atmo" ;
 res_01:units = "atmo_unit" ;
 res_01:data_range = -1999.95f, 2002.39f ;
 res_01:_FillValue = 3.4e+38f ;

 float res_02-lat(res_02-lat) ;
 res_02-lat:standard_name = "SimEnv model coordinate" ;
 res_02-lat:long_name = "geographic latitude" ;
 res_02-lat:axis = "Y" ;
 res_02-lat:units = "deg" ;

 float res_02(time, level, lon, res_02-lat) ;
 res_02:standard_name = "aggregated atmospheric state" ;
 res_02:long_name = "sin(atmo(i=2:37,*,*,*))" ;
 res_02:units = "atmo_unit" ;
 res_02:data_range = -1.f, 1.f ;
 res_02:index_range_lat = 2, 37 ;
 res_02:_FillValue = 3.4e+38f ;
 …
lat = 88, 84, …, -84, -88 ;
 …
res_02-lat = 84, 80, …, -52, -56 ;
 …

Example 10.2 Additional coordinates in NetCDF post-processor output

-172- Multi-Run Simulation Environment SimEnv User Guide

The following NetCDF variable attributes are used according to the NetCDF-CF standard.

Tab. 10.3 Variable NetCDF attributes

Name

Value Data type

NetCDF-CF compliant

NetCDF_variable_name
:standard_name

see below char

NetCDF_variable_name
:long_name

see below char

NetCDF_variable_name
:units

see below char

NetCDF_variable_name
:axis

[X | Y | Z | T]
(only for
NetCDF_variable_name = <co_name>)

char

NetCDF_variable_name
:_FillValue

variable type-depending missing value –
see Tab. 11.13

type-dep.

NetCDF-CF non-compliant

NetCDF_variable_name
:data_range

value_min> <value_max type-dep.

NetCDF_variable_name
:index_range_<coordinate

index_min> <index_max int

To Tab. 10.3 the following rules and explanations apply:

 For the :standard_name, :long_name and :units attributes the following information from the op-
tional result descriptor of an result (see Section 8.1.1) and from <model>.mdf, <model>.edf are
used. Keep in mind that the :standard_name attribute value normally does not follow the NetCDF-CF
standard as it is defined in the optional result descriptor, <model>.edf, or <model>.mdf and is not
checked for CF compliance.

 For model output:

If NetCDF_variable_name = var_name or built-in variable name (see Tab. 11.9)
then :long_name = ‘SimEnv {built-in} model output variable’

If NetCDF_variable_name = factor_name
then :long_name = ‘SimEnv model factor’

For both types is

 :standard_name = <descr_string> (if specified)
 (Attribute is omitted) (otherwise)
 :units = <unit_string> (if specified)
 ‘ ‘ (otherwise)
where <descr_string> und <unit_string> are the related strings for <var_name> from
<model>.mdf and/or for factor_name from model.edf

 Post-processor output:

 NetCDF_variable_name = result_name (if defined in result descriptor)
 res<digit><digit> (otherwise)
 :standard_name = <result_description> (if defined in result descriptor and/or
 <model>.mdf; see below)
 (Attribute is omitted) (otherwise)

3.1 (Ja 25, 2013) n -173- Multi-Run Simulation Environment SimEnv User Guide for Version

 :long_name = <result_expression> ‘SimEnv post-processor output chain’
 (see Section 8.1.1,
 macros are resolved)
 :units = <result_unit> (if defined in result descriptor and/or
 <model>.mdf; see below)
Check Section 8.1.1 for more information on the approach how missing information on <re-
sult_description> and <result_unit> from the optional result descriptor can be emulated from
the corresponding information from <model>.mdf for single operand – single operator result
expressions.

 For coordinates in model output or post-processor output:

If NetCDF_variable_name = co_name or [var_name> | res_<digit><digit>]-
 co_name

 (see above)
then :standard_name = <descr_string> (if specified in <model>.mdf)
 (Attribute is omitted) (otherwise)
 :long_name = ‘SimEnv model coordinate’
 :units = <unit_string> (if specified in <model>.mdf)
 ‘ ‘ (otherwise)
where <descr_string> und <unit_string> are the related strings for <co_name> /
[<var_name> | res_<digit><digit>]-co_name from <model>.mdf or a built-in coordinate
name (see Tab. 11.11)

 The :axis attribute is assigned to a coordinate variable and used according to the NetCDF-CF stan-
dard to identify coordinates that correspond to latitude, longitude, vertical, or time axes. If the lower-
case representation of a coordinate name <co_name> or [<var_name> | res_<digit><digit>]-
co_name (for the latter see above) is

 ‘longitude’ or ‘lon’ then :axis = ‘X’
 ‘latitude’ or ‘lat’ then :axis = ‘Y’
 ‘level’ or ‘lev’ or ‘height’ then :axis = ‘Z’
 ‘time’ or ‘date’ then :axis = ‘T’

For all other cases the :axis attribute is omitted.

 The :_FillValue attribute holds SimEnv type dependent undefined values according to Tab. 11.13.
As result variables res_<digit><digit> are always of type float / real*4, the corresponding SimEnv
undefined value is used. The _FillValue is not applied to coordinate variables but coordinate ‘run’.

 The :data_range attribute provides the value range that is covered by the variable in the NetCDF
file. The value range is bounded by the minimum and the maximum value of the variable.
The visualization system SimEnvVis (see Chapter 9) that is coupled to SimEnv expects that the no-
data value (see Section 11.8) assigned to the variable data type is outside the value range of this
variable. Normally, type dependent default nodata values are outside the value range. This may be
violated for user-defined nodata values. In particular, pay attention to a user-defined float / real*4
nodata type when post-processor output is stored in NetCDF format as post-processor NetCDF out-
put files are visualized by SimEnvVis and all post-processor output is of type float / real*4.

 The :index_range attribute is used only in case a NetCDF variable does not cover the complete
range of a coordinate and an additional coordinate was defined and assigned as [<var_name> |
res_<digit><digit>]-co_name (for the latter see above) to this NetCDF variable. The index_range
attribute describes the sub-range of the coordinate <co_name> for which the NetCDF variable is de-
fined. Range indices count from 1.

-174- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

10.1.3 NetCDF Attribute Description File <model>.ndf

The optional SimEnv NetCDF attribute description ASCII file <model>.ndf allows to delete / insert and/or
replace global and local (= NetCDF variable) attributes during experiment performance and result post-
processing from / in the respective NetCDF output files. SimEnv NetCDF file based experiment performance,
post-processing analysis, and the coupled visualization system SimEnvVis work with the global and local
attributes as defined in Sections 10.1.1 and 10.1.2, respectively. Other analysis software with input from
SimEnv NetCDF output may require modified or additional information / attributes. The file <model>.ndf eas-
ily and flexibly facilitates basic management of NetCDF attributes. Advanced functionality for NetCDF man-
agement is provided by open source tools such as the CDO (Schulzweida et al., 2009) or NCO (NCO, 2012)
operators.

<model>.ndf is an ASCII file that follows the coding rules in Section 12.1 on page 203 with the keywords,
names, sub-keywords, and value as in Tab. 10.4. Use the SimEnv service simenv.chk to check a NetCDF
attribute description file.

Tab. 10.4 Elements of a NetCDF attribute description file <model>.ndf
 (line type: o = optional)

Keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

general <nil> descr o any <string> general attribute description

delete o 1 <attrib_name> delete global attribute
<attrib_name>

glob_attr <nil>

replace o

any <attrib_name>
<string>

replace / insert global attribute
<attrib_name> by <string>

delete o 1 <attrib_name> delete local (NetCDF variable)
attribute <attrib_name> for
<var_name>,
<co_name> or
wildcard &...&

loc_attr [<var_
name> |
<co_name>
|
&v& |
&c& |
&r& |
&*&]

replace o 1 <attrib_name>
[text <string> |
[byte | short | int |
float | double]
<val_list>]]

<val_list> =
 list
 <val1>,…,<valn>

replace / insert local (NetCDF
variable) attribute
<attrib_name>
by <string> and/or <val_list>
for
<var_name>,
<co_name> or
wildcard &...&

3.1 (Ja 25, 2013) n -175- Multi-Run Simulation Environment SimEnv User Guide for Version

To Tab. 10.4 the following additional rules and explanations apply:

 Attribute names <attr_name> and character strings <string> are case sensitive. Attribute names
are not checked for NetCDF-CF compliance.

 The meaning of the wildcard &...& are as follows:

 &v&: all variables (only active for model output)
 &c&: all coordinates
 &r&: all results (only active for post-processor output)
 &*&: &c& and &v& (model output) and/or
 &c& and &r& (post-processor output)

 By the sub-keyword replace the specified attribute is replaced (and not appended!) if the attribute is
already defined, otherwise it is inserted.

 If the sub-keywords delete and replace are declared for the same attribute name <attrib_name>
and for a local attribute for the same <var_name> or <co_name> or wildcard &…& then the attribute
is deleted first by ‘delete’ and afterwards inserted by ‘replace’. Consequently, for such constellations
delete is a redundant entry.

 If for a local attribute a coordinate <co_name> is addressed then also all derived coordinates
<var_name>-<co_name> (see Section 10.1.2) are handled by this entry.

 For a local attribute <attrib_name> and multiple declarations for <var_name> / <co_name> and wild-
card &…& the processing sequence is as follows independently on the declaration sequence in
<model>.ndf:

 &*&
 &c& and &v& or &r&
 <var_name> or <co_name>

and within each processing step if specified, first for ‘delete’ and afterwards for ‘replace’.

loc_attr &*& replace <attr_name> text <string_*>
to define for each variable <var_name> and each coordinate <co_name>
an attribute <attr_name> with the value <string_*>

loc_attr &v& replace <attr_name> text <string_v>

afterwards to overwrite for each variable <var_name> the attribute <attr_name>
by the value <string_v>

loc_attr <var_name1> replace <attr_name> text
 <string_var_name1>

afterwards to overwrite for variable <var_name1> the attribute <attr_name>
by the value <string_var_name>

loc_attr <var_name2> delete <attr_name>

and to delete for variable <var_name2> the attribute <attr_name>

Example 10.3 Processing sequence of the NetCDF attribute definition file

 All global attribute values are of data type character, which corresponds to the identifier ‘text’ in
<model>.ndf. Local attributes allow besides character attributes for numerical data type attributes,
identified by ‘byte’, ‘short’, ‘int’, ‘float’ and/or ‘double’. Numerical values of the corresponding type are
declared after the type identifier in an explicit value list (see Tab. 12.5) as

 <val_list> = list <val1>,…,<valn>

 For additional examples check Example 10.4.

-176- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -177-

Having a model output description file as in Example 5.1 and an experiment description file
DFD_a as in Example 6.5: then a NetCDF attribute definition file world.ndf could look like:

 # replace global attribute SimEnv_model:
glob_attr replace SimEnv_model text my own model description
 # replace in model output for factor p1 text attribute units:
loc_attr p1 replace units text new_unit
 # define in model output for all variables text attribute new_attr_1:
loc_attr &v& replace new_attr_1 text new attribute 1 text
 # delete in model output for variable atmo text attribute new_attr_1:
loc_attr atmo delete new_attr_1
 # define in model output for variable bios float attribute new_attr_2 with 3 values:
loc_attr bios replace new_attr_2 float list 3.14,1.e-12,4711
 # delete in post-processor output for all results text attribute standard_name:
loc_attr &r& delete standard_name

Example 10.4 NetCDF attribute definition file world.ndf

10.2 IEEE Compliant Binary Model Output

IEEE compliant binary model output is written in records of fixed length to files

 <model>.out<simenv_run_char>.ieee and/or

 <model>.outall.ieee.

For the determination of the record length see below.

Sequence of data for each single run is as follows:

 Experiment factors as specified in <model>.edf
Sequence as in <model>.edf

 Built-in (pre-defined) model output variables
Sequence as in Tab. 11.9

 Model output variables
Sequence as in <model>.mdf

Storage demand for each model output variable / factor is according to its dimensionality, extents and data
type. Storage demand in bytes for each model output variable / factor is re-adjusted to the smallest number
of bytes divisible by 8, where the data can be stored. Multi-dimensional data fields are organized according
to the column-major order model (cf. Section 15.7 – Glossary).
Data is stored in records with a fixed record length of

 minimum (512000 Bytes , re-adjusted storage demand in Bytes).

In <model>.outall.ieee each single run starts with a new record. Sequence of the single runs corresponds to
the sequence of the single run numbers <simenv_run_int>. Consequently, data from default (nominal) single
run 0 is stored in the first and potentially the following records.

Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

Having a model output description file as in Example 5.1 and an experiment description file
DFD_a as in Example 6.5 each single run is stored in the following way:

 Factor / Extents Data type Storage demand Storage demand
model variable [Byte] re-adjusted [Byte]

p1 1 float 4 8
p2 1 float 4 8
sim_time 1 float 4 8
atmo 45 x 90 x 4 x 20 float 1.296.000 1.296.000
bios 36 x 90 x 20 float 259.200 259.200
atmo_g 20 int 80 80
bios_g 1 int 4 8

 1.555.312

One single run needs int(1.555.312 : 512.000) +1 = 4 records with a fixed length of 512.000 Bytes.
Remaining bytes in the last record are undefined.

Example 10.5 IEEE compliant model output data structure

10.3 IEEE Compliant Binary and ASCII Experiment Post-Processor
Output

For IEEE and ASCII experiment post-processor output result information is stored in two files:

 <model>.res<simenv_res_char>.[ieee | ascii] holds the result dynamics

 <model>.inf<simenv_res_char>.[ieee | ascii] holds structure and coordinate information

The IEEE post-processor output files

 <model>.res<simenv_res_char>.ieee and

 <model>.inf<simenv_res_char>.ieee

are unformatted binary files with IEEE float / int number representation, while for the ASCII post-processor
version

 <model>.res<simenv_res_char>.ascii and

 <model>.inf<simenv_res_char>.ascii

formatted ASCII files are used. Files for both output file formats have for each result subsequently the follow-
ing structure:

-178- Multi-Run Simulation Environment SimEnv User Guide

Record structure of <model>.inf<simenv_res_char>.[ieee | ascii] for each result:

Tab. 10.5 Record structure of <model>.inf<simenv_res_char>.[ieee | ascii] for each result

Record #

Record length Record contents

File header

1 33+max. 10 characters used SimEnv Version

2 33+max. 465 characters user workspace, prefixed by user name and login
node

3 33+20 characters timestamp

Result number 1

4 33+max. 1024 characters result name string: same as the NetCDF variable
name for post-processor output
(Section 10.1.2)

5 33+max. 128 characters result description string: same as NetCDF attribute
:standard_name for post-processor output
(Section 10.1.2)

6 33+max. 1024 characters result operator string: same as NetCDF attribute
:long_name for post-processor output
(Section 10.1.2)

7 33+max. 32 characters result unit string: same as NetCDF attribute
:units for post-processor output
(Section 10.1.2)

8 33 characters+9 int values extents ext(1) ... ext(dim) 0 ... 0
of the result

9 33 +max. 64 characters coordinate name of dimension 1

10, … 10 float values ext(1) coordinate values of dimension 1
in records of 10 values
(last record may have less values)

...

xxx 33+max. 64 characters coordinate name of dimension dim

xxx+1, … 10 float values ext(dim) coordinate values of dimension dim
in records of 10 values
(last record may have less values)

Result number 2, …

…

The 33 characters prefixed in most of the records hold information on what the contents of the record is.

3.1 (Ja 25, 2013) n -179- Multi-Run Simulation Environment SimEnv User Guide for Version

Record structure of <model>.res<simenv_res_char>.[ieee | ascii] for each result:

result number 01:
record no. 1 ... 10 float in records of 10 values (last record may have less values):
 result_value(1) ... result_value(length_result)

 with length_result = for dim > 0 


dim

1i

)i(ext

 = 1 else
result number 02:
 ...

The vector result_value is stored in the column-major order model (cf. Section 15.7 – Glossary).

The Fortran code in Example 15.15 reads experiment post-processing ASCII output files
<model>.res<simenv_res_char>.ascii and <model>.inf<simenv_res_char>.ascii in their general structure. In
the examples-directory $SE_HOME/exa of SimEnv it is accompanied by the corresponding version for IEEE
result output.

-180- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

11 General Control, Services, User Files, and Settings

In the control file simenv_settings.txt general SimEnv settings are defined, while <model>.cfg is a
model and workspace-related general configuration file to control preparation, performance and analysis of
an experiment. Besides simulation performance and experiment post-processing SimEnv supplies a set of
auxiliary services to check status of the model, to dump model and post-processor output and files and to
clean a model from output files. General built-in settings reflect case sensitivity, nodata values and other
information related to SimEnv.

11.1 General Configuration Files simenv_settings.txt and <model>.cfg

$SE_HOME/bin/simenv_settings.txt is the general SimEnv settings file. It is a case-sensitive ASCII file with
the structure
 <keyword> <sep> <value>

Tab. 11.1 lists the keywords and their values. Unless marked by (*), each of the keywords has to be used
exactly one time, even it is not necessary for the current SimEnv installation. Keywords marked by (*) can be
multiple specified. While all the entries in the table above and including “SimEnvVis_availability” are manda-
tory for any SimEnv installation, all entries below “SimEnvVis_availability” are only requested if SimEnvVis is
available for / reachable from the current SimEnv installation.

Tab. 11.1 Elements of the file simenv_settings.txt

Keyword

Value

Explanation

institution character string institution SimEnv is used by
(used in NetCDF output in global attrib-
ute "institution")

SimEnv_admin (*) email address email address of the SimEnv adminis-
trator

logfile_directory <directory> directory to store SimEnv log files
(which services were used, …)

SimEnv_home_directory2log (*) <directory> SE_HOME directory to store log files
from

drm_system [LoadL | PBS/Torque] installed distributed resource manager

drm_login_node (*) hostname login node for a compute cluster to ac-
cess the

SimEnvVis_availability [yes | no] availability of visualization tool
SimEnvVis

SimEnvVis_server_hostname hostname name of the visualization server that
hosts the visualization component
SimEnvVis

SimEnvVis_home_directory <directory> SimEnvVis home directory

SimEnvVis_working_directory <directory> SimEnvVis working directory on the
visualization server

server_SimEnv_home_directory <directory> SE_HOME directory on the visualization
server

ssh_local <directory>/binary ssh implementation of the client com-
puter

3.1 (Ja 25, 2013) n -181- Multi-Run Simulation Environment SimEnv User Guide for Version

scp_local <directory>/binary scp implementation of the client com-
puter

ssh-keygen_local <directory>/binary ssh-keygen implementation of the client
computer

nc_libpath <directory> directory the NetCDF shared object
libraries are located for Linux

In the ASCII file <model>.cfg general SimEnv control variables can be declared. <model>.cfg is workspace
and model related and is an ASCII file that follows the coding rules in Section 12.1 on page 203 with the
keywords, names, sub-keywords, and info as in Tab. 11.2.

Tab. 11.2 Elements of a general model-related configuration file <model>.cfg
 (line type: o = optional)

Keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

descr o any <string> general configuration
description

message_level o 1 [info | warning |
error]

specifies which message types
to show

nodata_value_
byte

o 1 <byte_val> nodata value for integer*1 /
byte data

nodata_value_
short

o 1 <short_val> nodata value for integer*2 /
short data

nodata_value_
int

o 1 <int_val> nodata value for integer*4 /
int data

nodata_value_
float

o 1 <float_val> nodata value for real*4 /
float data

general <nil>

nodata_value_
double

o 1 <double_val> nodata value for real*8 /
double data

out_directory o 1 <directory> model output directory

out_format o 1 [netcdf | ieee] model output format

out_separation o 1 [yes | no] indicates whether to store
model output in a single file
per single run or in one file
per experiment

out_builtin_vars o 1 [yes | no] indicates whether built-in
model variables (check Tab.
11.9) are stored to SimEnv
model output files

slices o 1 [no | f_c |
py_ja_m]

indicates whether
simenv_slice_* is not used,
used for Fortran / C or
Python / Java / Matlab models

model <nil>

structure o 1 [standard |
distributed |
parallel]

indicates model structure with
respect to experiment per-
formance

-182- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -183-

Max.
Sub- Line

Keyword Name
keyword type

line Value Explanation
nmb.

restart_ini o 1 [no | yes] perform <model>.ini for ex-
periment restart

begin_run o 1 <val_int> begin single run number

end_run o 1 [last | <val_int>] end single run number

include_runs o 1 <val_list> single run numbers to include
in the experiment

exclude_runs o 1 <val_list> single run numbers to exclude
from the experiment

experiment <nil>

email o 1 <string> email notification address

out_directory o 1 <directory> experiment post-processing
output directory

out_format o 1 [netcdf | ieee |
ascii]

experiment post-processing
output format

address_default o 1 [coordinate |
index]

experiment post-processing
address default for model
output variables

coord_check o 1 [strong | weak |
without]

post-processing coordinate
check by operators

opr_directory o 1 <directory> directory the post-processors
expects user-defined operator
executables

factors_in_output o 1 [yes | no] determine whether factor val-
ues are stored in SimEnv
model output

display_values o <val_int> specify number of values per
result that are displayed addi-
tionally

postproc <nil>

visualization o

1

[yes | no] determine whether to directly
visualize an entered result
during experiment post-
processing

To Tab. 11.2 the following additional rules and explanations apply:

 For keyword general, sub-keyword message_level:
Message output is controlled by this information.

Specify info to output errors and warnings and additional information
 warning to output errors and warnings
 error to output errors

during any SimEnv service. During running an experiment the values info and warning imply that the
model output is checked on undefined values. This may result in a noticeable increase of CPU time
consumption (see Section 11.3).

 For keyword general, sub-keywords nodata_value_byte, nodata_value_short
 nodata_value_int, nodata_value_float,
 nodata_value_double:

Check Section 11.8

Multi-Run Simulation Environment SimEnv User Guide for Version

 For keyword model, sub-keyword out_separation:
Specify here whether SimEnv model output data for the whole run ensemble is stored into one file
<model>.outall.[nc | ieee] or in single output files <model>.out<simenv_run_char>.[nc | ieee].

 For keyword model, sub-keyword slices:
If the model interface function simenv_slice_* are not applied set the value to no. If it is applied in
Fortran or C/C++ models set the values to f_c and for Python, Java or Matlab model to py_ja_m. If in
the overall model slices are used in Python, Java or Matlab and as well as in Fortran or C/C++ set
the value to py_ja_m. Running a model with slices = py_ja_m results in a significant increase of CPU
time consumption per call of simenv_slice_* and simenv_put_* since slice information is then stored
in external files rather than internally as for slices = f_c.

 For keyword model, sub-keyword auto_interface:
Check Section 5.10.

 For keyword model, sub-keyword structure:
Check Section 5.11.

 For keyword experiment, sub-keyword begin_run, end_run,
 include_runs, exclude_runs:

With the exception of experiment types UNC_MC with a stopping function, BAY_BC and OPT_SA
SimEnv enables to perform an experiment partially by performing only a subset of all defined single
simulation runs from the whole run ensemble (cf. Section 7.3.3 on page 104). To declare runs for in-
cluding into a SimEnv experiment use either sub-keywords begin_run and end_run or sub-keyword
include_runs. For begin_run and end_run assign appropriate run numbers. Make sure that begin
and end run values represent integer run number (including run number 0) and that begin run ≤ end
run. The value string “last” for end_run always represents the last simulation run of the whole run
ensemble. Alternatively, a list of non-negative integer run number values can be defined by using a
value list for the sub-keyword include_runs. The include set as defined by the sub-keywords be-
gin_run / end_run / include_runs can be reduced by specification of a list of non-negative integer run
number values defined by the sub-keyword exclude_runs using again a value list. Specification of
exclude_runs demands an explicit specification of either begin_run and end_run or of include_runs.
The runs the experiment will be performed for are defined as follows:

(i) get the intersection of the runs as specified by the experiment definition in <model>.edf and
the include set

(ii) form the relative complement of this set with respect to the exclude set.

 For keyword experiment, sub-keyword email:
After performing an experiment an email is sent to the email address specified in <string>. Specify
always a complete address.

 For keyword postproc, sub-keyword address_default:
During experiment post-processing portions of multi-dimensional model output variables can be ad-
dressed by coordinate (c= ...) or index (i= ...) reference. A default is established here.

 For keyword postproc, sub-keyword coord_check:
During experiment post-processing feasibility of application of an operator on its operands is
checked with respect to the coordinate description of the operands. Different levels of this check are
possible. A default is established here.

 For keyword postproc, sub-keyword factors_in_output:
Special model interface constellations may lead to a situation that all factor values are not stored in
SimEnv model output. This could happen when simenv_get_* was not used but another technique
for getting factor values within the model. If specifying factors_in_output as “no” adjusted factor val-
ues are derived from <model>.smp and <model>.edf.

 For keyword postproc, sub-keyword display_values:
Enables display of a number of result values per result during experiment post-processing. For mul-
tidimensional result output the first values according to the column-major order model (cf. Section
15.7 – Glossary) are shown. Set display_values to 0 to suppress this output.

 For keyword postproc, sub-keyword visualization:
Specifies whether to directly visualize an entered result during experiment post-processing. Works
only if the visualization system SimEnvVis is available according to the value of the entry
SimEnvVis_availability in Tab. 11.1.

-184- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

Keep in mind to ensure consistency of control settings in <model>.cfg across different SimEnv services. As
an example one has to run experimentation, experiment post-processing and dump with the same value for
out_separation in <model>.cfg.

Tab. 11.3 lists the default values in the general configuration file in the case of absence of the appropriate
sub-keyword.

Tab. 11.3 Default values for the general configuration file
 (*): in the case of absence of the appropriate sub-keyword

Keyword Sub-keyword

Default value
(*)

For more
information see

descr <nil> above

message_level info above

nodata_value_byte 127 Section 11.8

nodata_value_short 32767 Section 11.8

nodata_value_int 2147483647 Section 11.8

nodata_value_float 3.40E+38 Section 11.8

general

nodata_value_double 1.79D+308 Section 11.8

out_directory ./ above

out_format NetCDF Chapter 10

out_separation yes above

out_builtin_vars yes Tab. 11.9

slices no above

model

structure standard Section 5.11 and above

restart_ini no Section 7.4

begin_run 0 Chapter 7 and above

end_run last Chapter 7 and above

include_runs <nil> above

exclude_runs <nil> above

experiment

email <nil> Section 7.1

out_directory ./ above

out_format NetCDF Chapter 10

address_default coordinate Section 8.1.3 and above

coord_check strong Section 8.1.5 and above

opr_directory ./ Section 8.5

factors_in_output yes above

display_values 0 above

postproc

visualization yes above

3.1 (Ja 25, 2013) n -185- Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

general descr General configuration file for the
general descr examples in the SimEnv User Guide
general message_level info

model out_directory mod_out
model out_format netcdf
model out_separation yes
model auto_interface f
model structure standard

experiment begin_run 45
experiment end_run 300
experiment exclude_runs file runs2exclude.dat

postproc out_directory res_out
postproc out_format netcdf
postproc address_default index
postproc coord_check strong
postproc opr_directory ./
postproc visualization no

Example 11.1 User-defined general configuration file <model>.cfg

11.2 Main and Auxiliary Services

The following SimEnv service commands are available from the sub-directory bin of the SimEnv home direc-
tory $SE_HOME. Besides experiment performance, experiment post-processing and visualization there are
additional auxiliary SimEnv services to check input information consistency, to monitor the status of a run-
ning simulation experiment, to dump files of model and experiment post-processor output, to monitor general
SimEnv log files and to wrap up a SimEnv workspace.

Tab. 11.4 SimEnv services

SimEnv
service

Use to

Main Services

simenv.res
<model>
{ [new | append |
 replace] }
{<simenv_run_int>}

perform experiment result post-processing for run number <simenv_run_int> or for
the whole run ensemble (<simenv_run_int> = -1, default).
Before entering experiment post-processing those output files
<model>.res<simenv_res_char>.[nc | ieee | ascii] and
<model>.inf<simenv_res_char>.[ieee | ascii] with the highest two-digit number
<simenv_res_char> are identified and new result files for <res+1> are written / the
results are appended / or the result files are replaced by new ones.

simenv.rst
<model>

restart an experiment
(cf. Section 7.4)

simenv.run
<model>

prepare and run an experiment
(cf. Section 7.1)

simenv.vis
<model>
{ [latest |
<simenv_res_int>] }

perform visual post-processor output visualization with SimEnvVis for that NetCDF
post-processor output file with the highest two digit number <simenv_res_char>
(<simenv_res_char> = latest, default) or with the file number <simenv_res_char>.
At PIK SimEnvVis runs on the server viss.

-186- Multi-Run Simulation Environment SimEnv User Guide

3.1 (Ja 25, 2013) n -187-

SimEnv
Use to

service

Auxiliary Services

simenv.chk
<model>

check on model script files (<model>.run, <model>.rst, <model>.ini, <model>.end)
check <model>.cfg <model>.edf
 <model>.odf <model>.gdf
 <model>.mdf <model>.mac
 existing model and post-processor output files
generate pre-experiment output statistics

simenv.cln
<model>

clean up model and experiment post-processor output files
Deletes all model output files, post-processor output files, experiment log files, and
auxiliary files of a model according to the settings in <model>.cfg

simenv.cpl
<model>
{ <simenv_run_int> }
{ <file> }

complete sequence of SimEnv services
 simenv.chk, simenv.run, simenv.res, simenv.vis, simenv.dmp
simenv.res is performed with input file <file> (if available) and interactively, for both
optionally only for single run <simenv_run_int>.

simenv.cpy
<model>

copy all SimEnv example files <model>* from the example directory
$SE_HOME/exa to the current directory.
Additionally, example files of user-defined operators and for models world_[f | c |
cpp | py | ja | m | sh]* common user-defined files are copied. All files are only copied
if they do not already exist in the current workspace.

simenv.dmp
<model>
<dmp_modus>

dump SimEnv model output or experiment post-processor output files
Files to dump have to match the SimEnv file name convention for model and/or post-
processor output and are expected to be in the directories as stated in <model>.cfg.
Model output variables and post-processor results in IEEE and/or ASCII format with
a dimensionality greater than 1 are listed according to column-major order model for
multi-dimensional fields (cf. Section 15.7 – Glossary).

simenv.hlp
<topics>

acquire basic SimEnv help information for the specified topics

simenv.sta
<user_name>
{<begin_date>}
{<end_date>}
{<sort>}

generate general log file statistics
All SimEnv services are logged during their performance into log files. The log file
directory is specified in $SE_HOME/bin/simenv_settings.txt. simenv.sta evaluates
these log files statistically and generates a report w.r.t SimEnv accesses, experi-
ments, experiment post-processing and visualization.

simenv.sts
<model>
{ <repetition_time> }

get the current status of an active simulation experiment.
Start this service from the workspace the active simulation experiment was started
from. This is the only service that can be started from a workspace where another
service is active.

simenv.key
<user_name>

get access to the SimEnv visualization server. Only for systems where the
SimEnvVis visualization server is not hosted on the local machine –
check $SE_HOME/bin/simenv_settings.txt
Start this service only one time before the first access to simenv.vis and/or
simenv.res or if the access does not work properly. An email will be sent from
SimEnv when the access is enabled.

To Tab. 11.4 the following remarks and explanations apply:

 All but services simenv.cpy, simenv.hlp, simenv.key, and simenv.sta:
Start a service only from the current workspace.

 All but service simenv.sts:
A SimEnv service cannot be started from a workspace where an other SimEnv service is active.

Multi-Run Simulation Environment SimEnv User Guide for Version

11.3 Experiment Performance Tuning

SimEnv allows for a bunch of settings that influence in terms of CPU time the performance of the single
simulation runs and their communication with the simulation environment. In particular, these are

 The model output format
as specified in the general configuration file <model>.cfg by
 model out_format [netcdf | ieee]
Model output to compliant IEEE format is faster than to NetCDF format.
Nevertheless, NetCDF comes with all the advantages of a self-describing data format.

 A lumped experiment output into a common file or into an individual model output file for

each single run
as specified in the general configuration file <model>.cfg by
 model out_separation [yes | no]
Experiment output to individual model output files is faster than to a lumped file.
Nevertheless, for a moderate model output size per single run a compact output into a lumped file is
more convenient.

 Using slices

as specified in the general configuration file <model>.cfg by
 model slices [no | f_c | py_ja_m]
and in the interfaced model source code by
 the SimEnv interface function simenv_slice_*
Not applying slices is faster than applying them for Fortran or C/C++ models. Compared to Fortran
or C/C++ models applying slices for Python, Java or Matlab models increases model run time sig-
nificantly.
Nevertheless, for models that store a multi-dimensional model output field in a lower-dimensional ar-
ray this is the only approach to allow for addressing the field by one output variable in SimEnv post-
processing.

 Checking model output on undefined values

As specified in the general configuration file <model>.cfg by
 general message_level [info | warning | error]
Not checking model output on undefined values by setting the message level to error is faster than
checking it. In particular, checking NetCDF model output results in a noticeable CPU time consump-
tion.
Nevertheless, checking on undefined values can support model debugging.

11.4 Model Interface Scripts, Include Files, Link Scripts

Tab. 11.5 lists all these dot scripts and shell scripts that can / must be used in <model>.[ini | run | end].

Tab. 11.5 Shell scripts and dot scripts that can be used in <model>.[ini | run | end]
For built-in shell script variables in <model>.run see Tab. 11.10
(*): this is not a dot script but a normal shell script with two arguments

Dot script

Use status Used for
See

Section

<model>.ini

simenv_ini_gams mandatory experiment init for GAMS models 5.7

simenv_ini_ja mandatory experiment init for Java models 5.5

simenv_ini_m mandatory experiment init for Matlab models 5.5

simenv_ini_py mandatory experiment init for Python models 5.5

-188- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -189-

See

Dot script Use status Used for
Section

<model>.run

simenv_ini_sh mandatory init for any model 5.8

simenv_end_sh mandatory end for any model 5.8

simenv_get_sh optional get a factor value as script variable 5.8

simenv_get_as optional get all factor names and adj. values to an ASCII file 5.9

simenv_run_gams mandatory run a GAMS model 5.7

simenv_run_mathematica mandatory run a Mathematica model 5.6

simenv_put_as (*) optional put ASCII file to SimEnv model output 5.9

simenv_put_as_simple (*) optional put ASCII file to SimEnv model output (simple mode) 5.9

simenv_bay_bc_sh (*) optional control multiple setting case for a BAY_BC experim. 7.2

simenv_kill_process (*) optional kill a program / model after reaching a CPU time limit 6.7.2

<model>_[sh | as].inc optional semi-automated model interface at shell script /
ASCII level (cf. also Tab. 11.6)

5.10

<model>.end

simenv_end_gams mandatory experiment end for GAMS models 5.7

In Tab. 11.6 all that include files and link scripts are compiled that are provided by the simulation environ-
ment or generated by the user and/or automatically during performing a SimEnv service.

Tab. 11.6 SimEnv include files and link scripts

File /
location

Used in /
generated during

Explanation

link_simenv_mod_
[f | c | cpp].sh

$SE_HOME/lib

used in:
stand alone

shell script to compile and link an interfaced model
source code for experiment performance
If necessary copy it to $SE_WS and modify it

link_simenv_opr_
[f | c | cpp].sh

$SE_HOME/lib

used in:
stand alone

shell script to compile and link a user-defined op-
erator source code for experiment post-processing
If necessary copy it to $SE_WS and modify it

simenv_mod_
[f | c].inc

$SE_HOME/inc

used in:
interfaced Fortran/C/C++
models

ASCII include file for an interfaced model source
code to define SimEnv interface functions

simenv_mod_auto_
[f | c].inc

$SE_HOME/inc

used in:
interfaced Fortran/C/C++
models

ASCII include file for an interfaced model source
code to define SimEnv interface functions and to
declare auxiliary variables for the semi-automated
model interface

simenv_opr_
[f | c].inc

$SE_HOME/inc

used in:
user-defined Fortran/C/C++
operators

ASCII include file for a user-defined operator
source code to define SimEnv interface functions

<model>_
[f | c | py | sh | as].inc

$SE_WS

generated during:
experiment preparation
(only for service run,
not for service restart,
only for auto_interface ≠ no
in <model>.cfg)

ASCII include file for semi-automated model inter-
face
The files can be used directly in the interfaced
model source code (for Fortran, C/C++, and Py-
thon) or as a dot script in <model>.run (for the shell
script and ASCII interface)

Multi-Run Simulation Environment SimEnv User Guide for Version

11.5 User-Defined Files and Shell Scripts, Temporary Files

Tab. 11.7 lists the mandatory or optional shell scripts and files the user has to provide for running SimEnv
services.

Tab. 11.7 User files and shell scripts to perform any SimEnv service
(*): make sure by the Unix / Linux command chmod u+x <file>
 that the file <file> has execute permission

Shell script / file
(in the current

workspace
$SE_WS)

Explanation Exist status

For more
infor-

mation
see

Section

<model>.cfg ASCII user-defined general configuration file optional 11.1

<model>.mdf ASCII user-defined model (variables) description file mandatory 5.1

<model>.edf ASCII user-defined experiment description file mandatory 6.1

<model>.mac ASCII user-defined macro description file optional 8.6

<model>.odf ASCII user-defined operator description file optional 8.5.4

<model>.bdf ASCII user-defined Bayesian calibration description file BAY_BC:
mandatory

6.7.1

<model>.gdf ASCII user-defined GAMS model output description file GAMS models:
mandatory

5.7.2

<model>.ndf ASCII user-defined NetCDF attribute description file optional 10.1.3

<model>.run (*) model shell script to wrap the model executable mandatory 7.5

<model>.rst (*) model shell script to prepare single model run restart optional 7.5

<model>.ini (*) model shell script to prepare simulation experiment
additionally to standard SimEnv preparation

optional,
for Python,
Java, Matlab
and GAMS
models manda-
tory and stan-
dardized

7.5

<model>.end (*) model shell script to wrap up simulation experiment optional,
for GAMS
models manda-
tory and stan-
dardized

7.5

l<model>.lnk (*) model shell script to link an interfaced C/C++/Fortran
model. Used in the course of experiment preparation for
experiment run (not restart) if a semi-automated model
interface (auto_interface ≠ no) was declared in
<model>.cfg for the appropriate programming lan-
guages. Can also be used stand alone for non-semi-
automated model interface. Is normally based on
$SE_HOME/lib/link_simenv_mod_[f | c | cpp].sh

optional

5.10

<model>_
[dis | par | seq]_
[aix | linux].
[jcf | pbs]

user-specific job control file to perform a model under
Distributed Resource Manager control in distributed /
parallel / sequential mode (jfc for LoadL, pbs for
PBS/Torque)

optional

7.5

<model>_opt_sa_
options.txt

user-specific control and option file for experiment type
OPT_SA

optional
6.8.1

-190- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -191-

 For more

Shell script / file
infor-

(in the current
Explanation Exist status mation

workspace
see

$SE_WS)
Section

<model>.err
<simenv_
run_char>

touch / create this file in the model or in <model>.run as
an indicator to stop the complete experiment after
<model>.run has been finished for the single model run
<simenv_run_int>

optional

7.5

usr_opr_<opr> (*)
(in the
opr_directory
according to
<model>.cfg)

executable for user-defined operator <opr> optional

8.5

Tab. 11.8 lists the temporary or permanent files that are created during a SimEnv service.

Tab. 11.8 Files generated during performance of SimEnv services
 For the current workspace $SE_WS see Tab. 11.14.

File /
location

Generated in Explanation

Permanent files

<model>.smp

$SE_WS

experiment preparation
(all but OPT_SA, BAY_BC)

experiment performance
(OPT_SA, BAY_BC)

ASCII sample input file for the run ensemble de-
rived from <model>.edf
Record no. n+1 corresponds to single run no. n.
Column no. m of each record is the sampled value
for experiment factor no. m in the edf file

<model>_
[f | c | sh | as].inc and
<model>_py.py

$SE_WS

experiment preparation

(if auto_interface ≠ no
in <model>.cfg)

ASCII include files / dot scripts for semi-automated
model interface

<model>.out
<simenv_run_char>
.[nc | ieee]

model out_directory

experiment performance

(if out_separation = yes
in <model>.cfg)

model output of run number <simenv_run_int> of
the experiment
to be processed by the experiment post-processor

<model>.outall
.[nc | ieee]

model out_directory

experiment performance

(if out_separation = no
in <model>.cfg)

model output of all runs of the experiment
to be processed by the experiment post-processor

<model>.elog

$SE_WS

experiment performance ASCII minutes file of experiment performance
(simenv.run and all successive simenv.rst)

<model>.mlog

$SE_WS

experiment performance ASCII minutes file of model interface functions
performance
(simenv.run and all successive simenv.rst)
<model>.mlog is organized single run by single run

Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

File /
Generated in Explanation

location

<model>.nlog

$SE_WS

experiment performance ASCII minutes file of native
- model specific experim. prepar. by <model>.ini
- single runs model output by <model>.run
- single run restart preparation by <model>.rst
- model specific experim. wrap-up by <model>.end
performances, redirected from terminal
(simenv.run and all successive simenv.rst)
<model>.nlog is organized single run by single run

run<simenv_run_char>

$SE_WS

experiment performance

(only for GAMS models)

sub-directory for GAMS model performance that
are kept according to the sub-keyword keep_runs
in <model>.gdf

<model>.blog

$SE_WS

experiment performance

(only for experiment type
BAY_BC)

ASCII minutes file of Bayesian calibration

<model>.bmlog

$SE_WS

experiment performance

(only for experiment type
BAY_BC)

ASCII minutes file of Bayesian calibration for the
multiple setting case

<model>.olog

$SE_WS

experiment performance

(only for experiment type
OPT_SA)

ASCII minutes file of optimization experiment per-
formance

<model>.fct

$SE_WS

experiment performance

(only for experiment types
UNC_MC with stopping rule,
BAY_BC and OPT_SA)

ASCII file of function values.
Record no. n+1 corresponds to single run no. n.

<model>.
killed<simenv_run_char>

$SE_WS

experiment performance indicator file that in <model>.run a process was
killed by the shell script simenv_kill_process due to
CPU time exceeding

<model>.res
<simenv_res_char>
.[nc | ieee | ascii]

postproc out_directory

experiment post-processing output file of an experiment post-processing ses-
sion

<model>.inf
<simenv_res_char>
.[ieee | ascii]

postproc out_directory

experiment post-processing output structure description file of an experiment
post-processing session

-192- Multi-Run Simulation Environment SimEnv User Guide

File /
location

Generated in Explanation

Temporary files
(do not delete during performing the corresponding service)

<model>.
out<simenv_run_char>
.[nc | ieee]

model out_directory

experiment performance

(if out_separation = “no”
in <model>.cfg)

if the experiment is performed by the load leveler in
distributed or parallel mode

<model>.
as<simenv_run_char>

$SE_WS

experiment performance

(only for simenv_get_as)

ASCII file with all factor names and their adjusted
values

asa_opt
asa_out
asa_usr_out

$SE_WS

experiment performance

(only for experiment type
OPT_SA)

auxiliary files for experiment type OPT_SA

run<simenv_run_char>

sub-direct. of $SE_WS

experiment performance

(only for Mathematica and
GAMS models)

sub-directory for Mathematica and GAMS model
performance

<model>_
[pre | main | post].inc

$SE_WS

experiment performance

(only for GAMS models)

auxiliary files
<model> = GAMS main and all interfaced sub-
models

<model>.res00.nc

$SE_WS

experiment post-processing NetCDF representation of the current result for
visualization during experiment post-processing
(only for value “yes” of sub-keyword visualization in
<model>.cfg)

simenv_get_experiment
.exc

$SE_WS

experiment post-processing auxiliary file for operator get_experiment

simenv_*.tmp

$SE_WS

all services auxiliary files

3.1 (Ja 25, 2013) n -193- Multi-Run Simulation Environment SimEnv User Guide for Version

Fig. 11.1 sketches usage of main SimEnv user shell scripts and files in the course of model interfacing, ex-
periment preparation and performance, experiment post-processing, and visual evaluation of post-processed
results.

Fig. 11.1 SimEnv user shell scripts and files

-194- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

11.6 Built-In Names

SimEnv has a number of built-in model output variable, shell script variable and coordinate names that can-
not be used for corresponding user-defined names.

Tab. 11.9 lists the built-in (pre-defined) model variables that are output during experiment performance to
SimEnv model output structures and are available in experiment post-processing without defining them in
the model output description file <model>.mdf and without using the corresponding model interface coupling
functions simenv_put_* in the model.

Tab. 11.9 Built-in model output variables

Built-in
model output
variable name

Dimen-
sionality

Extents Data type Meaning

sim_time 0 float elapsed user time in seconds when perform-
ing /usr/bin/time –p <model>.run

Tab. 11.10 lists the built-in (pre-defined) shell script variables that are defined / used by the model coupling
interface dot scripts $SE_HOME/bin/simenv_*_sh and simenv_run_[mathematica | gams] and that are fi-
nally available in <model>.run.

Tab. 11.10 Built-in shell script variables in <model>.run

Built-in
shell script

variable name

Meaning

simenv_run_int current run number as integer

simenv_run_char current run number as 6-character string with
leading zeros

factor_name factor name for simenv_get_sh

factor_def_val default (nominal) factor value for simenv_get_sh

simenv_hlp_* auxiliary variables

Tab. 11.11 lists the built-in (pre-defined) coordinates that are used in experiment post-processing when addi-
tional dimensions are generated by an operator.

3.1 (Ja 25, 2013) n -195- Multi-Run Simulation Environment SimEnv User Guide for Version

Tab. 11.11 Built-in coordinates for experiment post-processing

Built-in
coordinate name

Generated by operator Meaning
Definition

(cf. Tab. 12.5)

bin_mid hgr
hgr_e
hgr_l

bin mid values equidist_end <xx>(<yy>)
 999999
with <xx> = first bin mid
 <yy> = bin width

bin_no hgr
hgr_e
hgr_l

bin numbers equidist_end 1(1)999999

incr lin_abs
lin_rel
sens_abs
sens_rel
sym_abs
sym_rel

increment values dependent on experiment
description and operator
arguments

index maxprop
maxprop_l
minprop
minprop_l

index number equidist_end 1(1)999999

run ens run numbers equidist_end 1(1)999999

sign sens_abs
sens_rel

signs of incremental change:
- 1: -ε
+1: +ε

equidist_end -1(2)1

stat_measure stat_full
stat_red

basic statistical measures:
1: deterministic case
2: minimum
3: maximum
4: mean
5: variance
 positive distance from

mean of confidence meas-
ure …

6: …. 1
7: …. 2
8: median
9: quantile of quantile value 1

10: quantile of quantile value 2

equidist_end 1(1)10

factor_sequ morris
lin_abs
lin_rel
sens_abs
sens_rel
sym_abs
sym_rel

sequence of factors:
1: 1st factor in edf file
2: 2nd factor in edf file
...

equidist_end 1(1)999999

<factor_name> dfd factor values dependent on experiment
description and operator
arguments

-196- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

11.7 Case Sensitivity

As stated in Tab. 11.12 all names used in SimEnv are case insensitive. Internally, they are mapped on a
lowercase representation and this lowercase representation is used also for model and/or experiment post-
processor output files in NetCDF, IEEE and/or ASCII format.

Tab. 11.12 Case sensitivity of SimEnv entities

Where? Entity

Case
sen-
sitiv-

ity

Example

overall  model name yes simenv.chk World_f

 keyword
 name
 sub-keyword

no experiment END_RUN last user-defined files
(cf. Section 12.1)

 information <value> no experiment end_run LAST
general descr This is ...

model interface  variable and factor name no iok=simenv_put_f(‘ATMO’,
 atmo,atmo)
factor_name=‘P1’
factor_value=1.
. $SE_HOME/bin/simenv_get_sh

 optional result description
and unit

yes Energy [kW] = my_opr(atmo)

 character arguments
of user-defined operators

yes char_test(‘arg11’ , ‘Arg21’ ,atmo)

 variable and factor name
 operator name
 number
 macro name
 macro identifier _m

no 3e-6*exp(atmo) + 3E-6*EXP(ATMO)

 character arguments
of built-in operators
with pre-defined values
(cf. Tab. 15.10)

no count(‘ALL’ , atmo)

experiment
post-processing

 character arguments
of built-in operators
without pre-defined values

check
Tab.
15.10

get_table_fct(‘MyFile.dat’ , atmo)
get_experiment(‘../’ , ‘Model_f’ ,
 ‘ ’ , atmo)

Exceptions

information
<value> in
user-defined files

 <directory> and
<file_name>
- for <sub-keyword> =
 <string>_directory
- and in <val_list>

 <value> for
<sub-keyword> =
 [descr | unit])

yes model out_directory MyDir
factor p1 sample file MyF
factor p1 unit kWh

3.1 (Ja 25, 2013) n -197- Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

Case
sen-

Where? Entity Example
sitiv-

ity

<model>.edf
(for Mathematica
models)

 <factor_name> yes
as in
the
model

factor p1 sample list 1,2,3
factor P1 sample list 3,4,5

<model>.gdf
(for GAMS
models)

 GAMS model file name yes model sub_m1 type sub
model sub_M1 type sub

<model>.ndf

 <attrib_name> yes glob_attr delete attrib1
glob_attr delete Attrib1

11.8 Numerical Nodata Representation

For model output with the SimEnv model coupling interface functions and for experiment post-processor
output default or user-defined data type specific nodata values are used to represent undefined (unwritten)
model output and undefined post-processor output. For the latter check Section 8.8. Default nodata value
representations are listed in Tab. 11.13. User-defined nodata values are specified in <model>.cfg as de-
scribed in Section 11.1.

Tab. 11.13 Data type related default nodata values

SimEnv data type
(cf. also Tab. 5.4)

Default nodata value

byte int*1 127

short int*2 32767

int int*4 2147483647

float real*4 3.40E+38

double real*8 1.79D+308

All post-processor output is of type float / real*4. Model output in terms of model variables can be of any of
the above types in Tab. 5.4 as defined in the file <model>.mdf, model output in terms of experiment factors
is of type float / real*4.
An integer (byte / int*1, short / int*2, int / int*4) value is identified as nodata if the value exactly matches with
the corresponding nodata value representation. In contrast, a real (float / real*4, double / real*8) value is
identified as nodata if the value is in the neighbourhood of the corresponding nodata value representation.
This neighbourhood is defined by its bounds bound1/2 as follows:

For a float / real*4 data value <val_float>: For a double / real*8 data value <val_double>:

 if abs(<val_float>) ≥ 1.e-34 then if abs(<val_double>) ≥ 2.d-307 then
 bound1/2 = (1. ± 1.e-4) * <nodata_val_float> bound1/2 = (1. ± 1.d-10) * <nodata_val_double>
 else else
 bound1/2 = ±1.e-4 bound1/2 = ±1.d-10
 endif endif

-198- Multi-Run Simulation Environment SimEnv User Guide

3.1 (Ja 25, 2013) n -199-

Example:

For
 <nodata_value*float> = -99999.
it is
 bound1 = -100009. and
 bound2 = -99989.

Within SimEnv post-processing all model and intermediate post-processor output values <val_float> with
bound1 ≤ <val_float> ≤ bound2 are identified as nodata values. That’s why make sure that values of real
model output variables are always outside the neighbourhood as defined above.

Important note:

The visualization system SimEnvVis (see Chapter 9) that is coupled to SimEnv expects that the nodata val-
ue assigned to the variable data type is outside the value range of this variable. The value range is bounded
by the minimum and the maximum value of the variable. Normally, type dependent default nodata values are
outside the value range. This may be violated for user-defined nodata values. For NetCDF model output
each model output variable and for post-processor output each result comes with an attribute data_range
that describes the value range by its boundaries (see explanations to Tab. 10.3). In particular, pay attention
to a user-defined float / real*4 nodata type when post-processor output is stored in NetCDF format as post-
processor NetCDF output files are visualized by SimEnvVis and all post-processor output is of type float /
real*4.

Multi-Run Simulation Environment SimEnv User Guide for Version

11.9 Operating System Environment Variables

The following operating system environment variables are used by SimEnv.

Tab. 11.14 Environment variables

for Ver ion 3.1 (Jan 25, 2013) s

Environment
variable

Meaning

Definition
Status

Explanation

SimEnv access settings
Set by the user

Used within all SimEnv services

SE_HOME SimEnv home
directory

mandatory Value = has to be defined by the user
For values check Tab. 3.3 and Tab. 15.1.
Optionally, include $SE_HOME/bin into the PATH
environment variable to access to a SimEnv ser-
vice without prefixing it by $SE_HOME/bin/

optional Value = machine dependent DISPLAY machine / screen
that the X11-system
uses for displaying
windows

has to be defined at PIK by the user only for visu-
alization matters in SimEnv services simenv.res
and simenv.vis.

Internal settings
Set automatically by SimEnv

Set within all SimEnv services

SE_BAY_BC_
SETTING

setting number of
the multiple setting
case

-- provided by $SE_HOME/bin/simenv_bay_bc_sh
within <model>.run (for experiment type BAY_BC)
Value = <val_int> > 0

SE_GUI identifier for GUI /
non-GUI version

-- for all SimEnv services
Value = [yes | <nil>]

SE_HN generic hostname -- for all SimEnv services
Value = hostname without domain

SE_MOD model name -- for all SimEnv services
Value = <model>

SE_OS operating system
specification

-- for all SimEnv services
Value = [AIX | LINUX]

SE_WS current SimEnv
workspace

-- for all SimEnv services
Value = <directory>

SE_RUN run number
of a single run

-- for <model>.[run | rst]
Value = <simenv_run_int>

SE_RUN1 first single run
of an experiment

-- for <model>.[run | rst]
Value = [yes | no]

Additionally, make sure that in the shell the noclobber option is not set.
To perform SimEnv, make sure that paths to the directories of the programs as specified in Tab. 11.15 below
are included in the environment variable PATH:

-200- Multi-Run Simulation Environment SimEnv User Guide

Tab. 11.15 Programs to include in the environment variable PATH

Program

Usage

Include in PATH

python python interpreter mandatory

ncdump dump NetCDF files mandatory

gams GAMS modelling system optional, only for running
GAMS models

java Java optional, only for running
Java models

matlab Matlab interpreter optional, only for running
Matlab models

MathKernel Mathematica interpreter optional, only for running
Mathematica models

Additionally, PATH is prefixed by $SE_WS (see Tab. 11.14 above) internally by all SimEnv services. Keep in
mind to specify a PYTHONPATH environment variable dependent on interfaced Python models. PY-
THONPATH is prefixed by $SE_WS and $SE_HOME/bin is appended to PYTHONPATH internally by all
SimEnv services.
For linking and running Fortran and C/C++ models and operators the environment variables PATH and
LIBRARY_PATH have to be defined accordingly.

3.1 (Ja 25, 2013) n -201- Multi-Run Simulation Environment SimEnv User Guide for Version

-202- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

12 Structure of User-Defined Files,
Coordinate Transformation Files, Value Lists

Basic information to describe general control settings of SimEnv, model output variables, the ex-

periment itself, macros and user-defined operators as well as GAMS model specific information is stored in
user-defined files. They are ASCII files and have a common structure that is described in this chapter. Addi-
tionally, coordinate transformation files are described and value lists are defined in general.

12.1 General Structure of User-Defined Files

All user-defined files listed in Tab. 12.1 have the same structure. They are ASCII files with the following re-
cord structure:

{ <sep> } <keyword> <sep> { <name> <sep> } <sub-keyword> <sep> <value> { <sep> }

with

 <name> is the name of a

 model output variable
 GAMS model source file
 experiment factor
 coordinate
 user-defined operator or
 macro

Declaration of <name> depends on the related keyword <keyword>

 <keyword> is a string
 Normally, more than one lines with differing sub-keywords belong
 to one “keyword-block”.

 <sub-keyword> is a string
 Sub-keywords are defined only in relation to the user file and the keyword
 under consideration.

 <value> = <substring> { <sep> <substring> ... }
 is a string with user file, keyword and sub-keyword related information.

 <sep> is a sequence of white spaces

Sequence of keyword and sub-keyword lines can be arbitrary. For reasons of readability it is recommended
to use a block structure like in the Example 12.2 below. Sequence of names in the separated name spaces
(name spaces of coordinates, model output variables, experiment factors, user-defined operators, macros)
during processing is determined by the sequence the name occur the first time in the appropriate user file.
Lines consisting only from separator characters as well as lines starting with a # as the first non-separator
character are handled as comment lines. For case sensitivity of the contents of user-defined files check Tab.
11.12 on page 197.

3.1 (Ja 25, 2013) n -203- Multi-Run Simulation Environment SimEnv User Guide for Version

Tab. 12.1 User-defined files with general structure

See description
File Contents

in Section

on page

<model>.cfg general configuration file 11.1 181

<model>.mdf model output description file 5.1 37

<model>.edf experiment description file 6.1 69

<model>.odf operator description file 8.5.4 162

<model>.mac macro description file 8.6 163

<model>.gdf GAMS description file 5.7.2 54

arbitrary file name coordinate transformation file 12.2 205

The following restrictions hold for user-defined files:

Tab. 12.2 Constraints in user-defined files
 (*): with the exception for GAMS model source code file names

Element

Constraints

line length max. 360 characters

max. 64 characters

(*) first character has to be a letter

(*) must not end on _m

<name>

(*) must not contain elemental operators and characters . and :
(cf. Tab. 8.3 on page 120)

for sub-keyword = descr without <name>: max. 512 characters
(total sum over all lines)

for sub-keyword = descr with <name>: max. 128 characters

for sub-keyword = <string>_directory: max. 116 characters
(for the resulting resolved directory string,

directory can contain operating system environment variables)

<value>

for sub-keyword = unit: max. 32 characters

Tab. 12.3 lists the reserved (forbidden) names and file names that cannot be declared in user-defined files.

Tab. 12.3 Reserved names and file names in user-defined files

Element

Reserved (forbidden) names

built-in model output variables
according to Tab. 11.9

built-in coordinates
according to Tab. 11.11

<name>

(with the exception of GAMS
model source code file names)

special keywords in <model>.edf for DFD:
[default | file]

<file_name> see Section 12.3

-204- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -205-

mac descr This is a macro description file
mac descr for the SimEnv User Guide

macro np_atmo descr atmo outside polar reg., final time, level 1
macro np_atmo unit atmo_unit
macro np_atmo define atmo(c=84:-56,*,c=1,c=20)

macro m1 define avg(atmo_g(c=11:20))
...

Example 12.1 Structure of a user-defined file

12.2 Coordinate Transformation File

Some post-processing operators (currently, get_data and get_experiment) enable access to external data.
They derive from an operator argument a multi-dimensional result that has to be equipped – as usual in
SimEnv experiment post-processing – with a coordinate assignment. By applying these operators it can be
necessary to define or transform a coordinate description for the operator result that fits the result to the
current model and/or experiment under consideration. The same is true for the operator regrid which is used
to assign new coordinates to a result. The following cases can be distinguished:

 A dimension of the result does not have a coordinate assignment. A coordinate has to be assigned
to this dimension.

 A coordinate description of the result has to be modified in a way that it matches with a defined co-
ordinate of the model / experiment under consideration.

 A coordinate description of the result has to be incorporated with and/or without modifications into
the coordinate set of the model / experiment under consideration.

Coordinate transformations for results in the course of the operator’s performance are supported in SimEnv
by a coordinate transformation file that is assigned to the operator result as an argument of the operator.
Coordinate transformation files follow the same syntax rules as all other user-defined files (cf. Section 11.1).

Tab. 12.4 Elements of a coordinate transformation file
 (line type: o = optional)

Keyword Name
Sub-

keyword
Line
type

Max.
line

nmb.

Value Explanation

general <nil> descr o any <string> general transformation de-
scription

rename o 1 <new_name> renames original coordinate

position_shift o 1 <val_float> shifts all values of the original
coordinate by the specified
value <position_shift_val>

values_shift o 1 <val_int> shifts the result values on the
original coordinate by the
specified positions
<values_shift_val>

modify <original_
coordinate_
name>

values_add o 1 <val_list> defines <values_shift_val>
values to add to the coordi-
nate values
(for syntax see Tab. 12.5)

Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

Max.
Sub- Line

Keyword Name
keyword type

line Value Explanation
nmb.

coord o 1 <co_name> assign to the dimension with
coordinate number <coordi-
nate_nmb> (only for operator
get_data(‘ascii’,…) and/or
<original_coordinate_name>
(else) an already defined co-
ordinate or a coordinate de-
fined by the keyword coordi-
nate

assign [<original_
coordinate_
name> |
<coordinate_
nmb>]

coord_extent o 1 <co_val1>:
<co_val2>

assigns start and end coordi-
nate value to the dimension of
the result under consideration

descr o 1 <string> coordinate axis description

unit o 1 <string> coordinate axis unit

coordinate <new_
coordinate_
name>

values o 1 <val_list> strictly monotonic sequence of
coordinate values
(for syntax see Tab. 12.5)

To Tab. 12.4 the following additional rules and explanations apply:

 With the sub-keyword values_shift result values can be shifted on the corresponding coordinate by
<values_shift_val> coordinate values. Consequently, <values_shift_val> coordinate values have to
be appended at the end of the coordinate for a positive value of <values_shift_val> and/or have to
be inserted at the begin of the coordinate for a negative value of <values_shift_val>. Coordinate val-
ues that are obsolete because of this shift are removed from the coordinate definition.
For a coordinate that is defined with equidistant coordinate values the extent of the coordinate is
specified automatically by simply applying the equidistant rule for this coordinate.
For a coordinate with non-equidistant coordinate values the coordinate values necessary for the co-
ordinate extension are defined by the sub-keyword values_add.
If both position_shift and values_shift are specified for one coordinate, firstly position shift is ap-
plied to the coordinate and then the additional coordinate values from values_shift are added the the
coordinate without applying the position_shift value.

 Coordinate numbers <coordinate_nmb> are integers counting from 1.

 For the sub-keyword coord_extent the same rules apply as for the sub-keyword coord_extents from
the model output description file <model>.mdf.

 For the keyword coordinate the same rules apply as for the keyword coordinate from the model out-
put description file <model>.mdf.

 Coordinates are incorporated additionally into the original coordinate set only for the current result.

Unlike all other user-defined files coordinate transformation files cannot be checked by the SimEnv service
simenv.chk or when starting the service simenv.res.

-206- Multi-Run Simulation Environment SimEnv User Guide

3.1 (Ja 25, 2013) n -207-

Having a model output variable definition as in Example 5.1 on page 44 and
assuming address_default = coordinate in <model>.cfg
Assume the experiment layout in Fig. 4.6 (c) on page 26 and
the corresponding experiment description file from Example 6.5 DFD_c on page 82.

Additionally, assume another experiment with a model named model and its
model output variables modvar1 and modvar2 that are defined for the following coordinates:

dimension coordinate name coordinate definition .
1 dim1 list 1,10,100,1000
2 dim2 equidist_end 2(2)20
3 dim3 equidist_end 3(3)30
4 dim4 equidist_end 4(1)43
5 dim5 equidist_end 5(1)50

Further, assume the coordinate transformation file model.ctf as

general descr example of a coordinate
general descr transformation file

modify dim1 rename new1
modify dim1 position_shift 3.
modify dim1 values_shift +2
modify dim1 values_add list 1006,1009

modify dim3 values_shift -3

assign dim4 coord lat
assign dim4 coord_extent 88.:-68.

assign dim5 coord new2
assign dim5 coord_extent 50.:5.

coordinate new2 descr new coordinate
coordinate new2 values equidist_end 50(-1)5

In experiment post-processing the result of the expression

get_experiment(‘mydir’,‘model’,‘model.ctf’,modvar1+modvar2)

is a 5-dimensional data structure with

dimension coordinate coordinate coordinate
 name definition use .
1 new1 list 103,1003,1006,1009 = coordinate definition
2 dim2 equidist_end 2(2)20 = coordinate definition
3 dim3 equidist_end -6(3)21 = coordinate definition
4 lat equidist_end 88(-4)-88 equidist_end 88(-4)-68
5 new2 equidist_end 5(1)50 = coordinate definition

Example 12.2 Coordinate transformations by a transformation file

Multi-Run Simulation Environment SimEnv User Guide for Version

12.3 ASCII Data Files and Value Lists

ASCII data files {<directory>/}<file_name> are used in SimEnv as an element for the specification of value
lists (see below), optionally in experiment description files to get sampling information, and in post-
processing operators.

The following rules and restrictions are valid for {<directory>/}<file_name>:

 The <directory> path can contain operating system environment variables ($...)

 If <directory> is specified in a relative manner (./…) it relates to the current workspace

 <file_name> must not be one of the SimEnv file names according to Tab. 11.7 and Tab. 11.8

 For the file:

 Has to be an ASCII file
 Can be a multi-record file
 Max. record length is 1000 characters
 Values in a record are separated from each other by white spaces or comma
 A series of connected (running) separators is treated as a single separator
 Record end is handled as a separator
 Records formed only from white spaces or records starting with the first non-white space

character # are handled as comments

For variables, coordinates and experiment factors value lists are supplied by the value-item in user-defined
files. Value lists describe a sequence of values together with an order. The number of described values has
to be greater than 1. Value lists may be restricted to strictly monotonic sequences. They follow the syntax
rules in Tab. 12.5.

Tab. 12.5 Syntax rules for value lists

Value-list type

Syntax Explanation

explicit list <real_val1> ,..., <real_valn> explicit list of values
same syntax rules as for one
record of a file with a value list
(see above)

by reference file {<directory>/}<file_name> file {<directory>/}<file_name>
contains the explicit value list

implicit
with
begin element
increment
end element

equidist_end <real_val1> (<real_val2>) <real_val3> description of an equidistant list
of values with
begin value <real_val1>
increment <real_val2>
end value <real_val3>
<real_val1> ≠ <real_val3>
<real_val2> ≠ 0.
Number of resulting values have
to be > 1

implicit
with
begin element
increment
number of values

equidist_nmb <real_val1> (<real_val2>) <val_int> description of an equidistant list
of values with
begin value <real_val1>
increment <real_val2>
number of values <val_int>
<real_val2> ≠ 0.
<val_int> > 1

-208- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -209-

Value-list type Syntax Explanation

implicit
with
begin element
number of values
end element

equidist_ivl <real_val1> (<val_int>) <real_val2> description of an equidistant list
of values with
begin value <real_val1>
number of values <val_int>
end value <real_val2>
<val_int> > 1
<val_int> - 2 values are placed
within the interval
[begin_value : end_value]

1 list 3, 5, 7, 9, 11 describes the five values 3, 5, 7, 9, and 11
2 equidist_end 3 (2) 11 is equivalent to 1
3 equidist_end 3 (2) 11.9 is equivalent to 1
4 equidist_nmb 3 (2) 5 is equivalent to 1
5 equidist_ivl 3 (5) 11 is equivalent to 1
6 file my_values.dat is equivalent to 1 with my_values.dat = 3, , 5,
 7
 9,

 11
7 equidist_end 11 (-2) 3 differs from 1 – 6:
 values are identical, ordering sequence differs

Example 12.3 Examples of value lists

Multi-Run Simulation Environment SimEnv User Guide for Version

-210- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

13 SimEnv Prospects

SimEnv development and improvement is user-driven. Here one can find a list of the main develop-
ment pathways in future.

General

 Graphical user interface

 Portability to Windows-based systems

 Unique number representations for binary IEEE output of distributed models
(big endians vs. small endians)

Model interface

 for R models

Experiment preparation

 Experiment type stochastic analysis

 UNC_MC: sampling of correlated factors

Experiment performance

 Experiment performance for distributed models across networks

 Multi file model output storage

Experiment post-processing

 Additional advanced operators (coarse, sort, categorical operators)

 Advanced uncertainty operators

 Flexible assignment of data types to operator results (currently: only float)

 Shared memory access for user-defined operators to avoid data exchange by external files

Visual experiment evaluation

 Advanced techniques for graphical representation of experiment post-processor output,
especially for multi-run operators

3.1 (Ja 25, 2013) n -211- Multi-Run Simulation Environment SimEnv User Guide for Version

-212- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

14 References and Further Readings

Campolongo, F., Cariboni, J., Saltelli, A., Schoutens, W. (2005): Enhancing the Morris Method. In: Hanson,

K.M., Hemez, F.M. (eds.): Sensitivity Analysis of Model Output. Proceedings of the 4th International
Conference on Sensitivity Analysis of Model Output (SAMO 2004). Los Alamos National Laboratory, Los
Alamos, U.S.A., 369-379
http://library.lanl.gov/cgi-bin/getdoc?event=SAMO2004&document=samo04-52.pdf

European Commission, Joint Research Centre – IPSC (2006): SimLab 3 Website
http://simlab.jrc.ec.europa.eu/

Flechsig, M. (1998): SPRINT-S: A Parallelization Tool for Experiments with Simulation Models. PIK-Report
No. 47, Potsdam Institute for Climate Impact Research, Potsdam
http://www.pik-potsdam.de/research/publications/pikreports/.files/pr47.pdf

Flechsig, M., Böhm, U., Nocke, T., Rachimow, C. (2005): Techniques for Quality Assurance of Models in a
Multi-Run Simulation Environment. In: Hanson, K.M., Hemez, F.M. (eds.): Sensitivity Analysis of Model
Output. Proceedings of the 4th International Conference on Sensitivity Analysis of Model Output (SAMO
2004). Los Alamos National Laboratory, Los Alamos, U.S.A., 297-306
http://library.lanl.gov/cgi-bin/getdoc?event=SAMO2004&document=samo04-22.pdf

Gray, P., Hart, W., Painton, L., Phillips, C., Trahan, M., Wagner, J. (1997): A Survey of Global Optimization
Methods. Sandia National Laboratories, Albuquerque, U.S.A.
http://www.cs.sandia.gov/opt/survey

Helton, J.C., Davis, F.J. (2000): Sampling-Based Methods.
In: Saltelli et.al (2000)

Iman, R.L., Helton, J.C. (1998): An Investigation of Uncertainty and Sensitivity Analysis Techniques for Com-
puter Models. Risk Anal. 8(1), 71-90

Ingber, L. (1989): Very fast simulated re-annealing. Math. Comput. Modelling, 12(8), 967-973
http://www.ingber.com/asa89_vfsr.pdf

Ingber, L. (1996): Adaptive simulated annealing (ASA): Lessons learned. Control and Cybernetics, 25(1), 33-
54
http://www.ingber.com/asa96_lessons.pdf

Ingber, L. (2004): ASA-Readme.
http://www.ingber.com/ASA-README.pdf

McKay, M.D., Conover, W.J., Beckman, R.J. (1979): A Comparison of Three Methods for Selecting values of
Input Variables in the Analysis of Output from a Computer Code. Technometrics, 221, 239-245

Morris, M.D. (1991): Factorial plans for preliminary computational experiments. Technometrics, 33(2), 161-
174

LLNL (2012): NetCDF Climate and Forecast (CF) Metadata Convention. Lawrence Livermore National Labora-
tory,
http://cf-pcmdi.llnl.gov/

NCO (2012): NetCDF operator Homepage
http://nco.sourceforge.net/

Pettitt, A.N. (1979): A non-parametric Approach to the Change-point Problem. Applied Statistics, 28, 126-135
Rabitz, H., Alis, Ö.F. (1999): General foundations of high-dimensional model representations. Journal of

Mathematical Chemistry 95, 197-233
Saltelli, A., Chan, K., Scott, E.M. (eds.) (2000): Sensitivity Analysis. J. Wiley & Sons, Chichester
Saltelli, A. (2002): Making best use of model valuations to compute sensitivity indices. Computer Physics

Communications 145, 280-297
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S. (2008):

Global Sensitivity Analysis. The Primer. J. Wiley & Sons, Chichester
Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M. (2004): Sensitivity Analysis in Practice: A Guide to As-

sessing Scientific Models. J. Wiley & Sons, Chichester
SAS/STAT(R) 9.2 User's Guide.

http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introbayes_s
ect008.htm
Accessed Feb 14, 2012.

3.1 (Ja 25, 2013) n -213- Multi-Run Simulation Environment SimEnv User Guide for Version

http://library.lanl.gov/cgi-bin/getdoc?event=SAMO2004&document=samo04-52.pdf
http://simlab.jrc.ec.europa.eu/
http://www.pik-potsdam.de/research/publications/pikreports/.files/pr47.pdf
http://library.lanl.gov/cgi-bin/getdoc?event=SAMO2004&document=samo04-22.pdf
http://www.cs.sandia.gov/opt/survey
http://www.ingber.com/asa89_vfsr.pdf
http://www.ingber.com/asa96_lessons.pdf
http://www.ingber.com/ASA-README.pdf
http://cf-pcmdi.llnl.gov/
http://nco.sourceforge.net/
http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introbayes_sect008.htm
http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introbayes_sect008.htm

Schulzweida, U. , Kornblueh, L., Quast, R. (2009): CDO - Climate Data Operators Version 1.4.1. Max-
Planck-Institute for Meteorology,
http://www.mpimet.mpg.de/fileadmin/software/cdo/

Sin, G., Gernaey, K.V. (2009): Improving the Morris method for sensitivity analysis by scaling the elementary
effects. In: Jezowski, J., Thullie, J. (eds.) 19th European Symposium on Computer Aided Process Engi-
neering – ESCAPE19. June 14-17, 2009, Cracow, Poland. Elsevier

Sobol’ ,I.M. (1967): Distribution of points in a cube and approximate evaluation of integrals. U.S.S.R Comput.
Maths. Math. Phys. 7, 86–112

Sobol’, I.M. (1976): Uniformly distributed sequences with an additional uniform property. U.S.S.R Comput.
Maths. Math. Phys. 16, 236–242

Sobol’, I.M. (1993): Sensitivity analysis for non-linear mathematical models. Mathematical Modelling and
Computational Experiment 1, 407-414

van Oijen, M: (2008) Bayesian calibration (BC) and Bayesian model comparison (BMC) of process-based
models: Theory, implementation and guidelines. NERC, Centre for Ecology and Hydrology
http://nora.nerc.ac.uk/6087/1/BC%26BMC_Guidance_2008-12-18_Final.pdf

Wenzel, V., Kücken, M., Flechsig, M. (1995): MOSES – Modellierung und Simulation ökologischer Systeme.
PIK-Report No. 13, Potsdam Institute for Climate Impact Research, Potsdam
http://www.pik-potsdam.de/research/publications/pikreports/summary-report-no-13

Wenzel, V., Matthäus, E., Flechsig, M. (1990): One Decade of SONCHES. Syst. Anal. Mod. & Sim. 7, 411-
428

Wierzbicki, A.P. (1984): Models and Sensitivity of Control Systems. Studies in Automation and Control. Vol.
5. Elsevier, Amsterdam

-214- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

http://www.mpimet.mpg.de/fileadmin/software/cdo/
http://nora.nerc.ac.uk/6087/1/BC%26BMC_Guidance_2008-12-18_Final.pdf
http://www.pik-potsdam.de/research/publications/pikreports/summary-report-no-13

15 Appendices

The appendices summarize the current version implementation, list the examples for model inter-
faces, user-defined operators and result import interfaces, and they compile all experiment post-processor
built-in operators. Finally, a glossary of the main terms as used in this User Guide is supplied.

3.1 (Ja 25, 2013) n -215- Multi-Run Simulation Environment SimEnv User Guide for Version

-216- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

15.1 Version Implementation

Currently, SimEnv is running under Unix and Linux. For all installations, only the latest version is supported
and bug fixes are installed on demand. Tab. 15.1 lists the directory structure of SimEnv. For SimEnv home
directories at PIK check Tab. 3.3.

Tab. 15.1 SimEnv installation directory structure

Sub-directory of
$SE_HOME

Contents

Latest version of SimEnv

bin SimEnv scripts, binaries and auxiliary files

lib SimEnv libraries and scripts to link models and operators

inc SimEnv include files for models and operators

exa SimEnv examples as used in the User Guide

Version repository of SimEnv at PIK

version_archive SimEnv version archive. Version <x.yz> is located in a sub-
folder <x.yz> and structured in this sub-folder in the same
manner as the latest version.

15.1.1 System Requirements

Tab. 15.2 System requirements for running SimEnv

Specification

Component
 Unix

Linux

hardware IBM RS6000 and compatibles Intel-based systems and compati-
bles with regular 32-bit or 64-bit
processors (i386)

operating system AIX Version 4.3
http://www-03.ibm.com/servers/aix/

any distribution with the Linux
kernel

shell Bourne shell sh

Python Version 2.3
http://www.python.org

NetCDF Version 3.6.0
http://www.unidata.ucar.edu/packages/netcdf

Fortran compiler xlf Version 8.0
IBM Fortran compiler
http://www-306.ibm.com/
software/awdtools/fortran/xlfortran/

Intel ifort Version 10.0
http://www.intel.com/cd/software/pr
oducts/asmo-na/eng/282048.htm
or gfortran Version 4.2
GNU Fortran 95 compiler
http://gcc.gnu.org/

3.1 (Ja 25, 2013) n -217- Multi-Run Simulation Environment SimEnv User Guide for Version

http://www-306.ibm.com/
http://www.intel.com/cd/software/products/asmo-na/eng/282048.htm
http://www.intel.com/cd/software/products/asmo-na/eng/282048.htm
http://gcc.gnu.org/

for Ver ion 3.1 (Jan 25, 2013) s

Specification

Component
Unix Linux

C/C++ compiler xlc Version 7.0
IBM C/C++ compiler
http://www-306.ibm.com/
software/awdtools/xlcpp/
For the compiler the symbolic link
“cc” is used.

gcc Version 3.3
GNU C/C++ compiler
http://gcc.gnu.org/

MPI
(only for performing experi-
ments in compute cluster
mode – see Section 7.3)

Version 1.0
http://www.mpi-forum.org

For running the corresponding interfaced models

GAMS Distribution 20
http://www.gams.com

Java Version 1.4
http://www.java.com

Matlab Version 7.7
http://www.mathworks.com

Mathematica Version 4.1
http://wwwwolfram.com

For the visualization framework SimEnvVis

OpenDX Version 4.4.4
http://www.opendx.org

Qt Version 3.3.5
http://www.trolltech.com/products/qt

Ferret Version 4.4
http://ferret.wrc.noaa.gov/Ferret/

OpenGL Version 1.4
http://www.opengl.org/

The version number of the software products in the above Tab. 15.2 represent those version, SimEnv was
developed with. Higher versions should also be applicable.

For setting up SimEnv, gunzip, tar, configure, make, a Fortran compiler, and the C/C++ compiler have to be
installed. After installing SimEnv, the file $SE_HOME/bin/simenv_settings.txt has to be adapted to the local
settings (check Tab. 11.1).

-218- Multi-Run Simulation Environment SimEnv User Guide

http://www-306.ibm.com/
http://www.mpi-forum.org/

15.1.2 Technical Limitations

Tab. 15.3 Current SimEnv technical limitations
 (*): Sampled factor values defined with equidist_[end | nmb | ivl] (see Tab. 12.5) allocate

only 6 storage places.

Entity

Maximum
entity value

Directory strings ($SE_HOME/bin, current workspace; in user-defined files and operators)

resolved length (relative to absolute paths, environ. variables resolved) [characters] 256

User-defined files entities (cf. also Section 12.1)

length of a record in a user-defined file [characters] 360

length of all general descriptions descr [characters] 512

length of a local description descr [characters] 128

length of a unit [characters] 32

length of a name [characters] 64

values in a value list [number] 5 000

length of a record of a referred ASCII data file [characters] 1 024

<model>.odf: user-defined and composed operators [number] 27

<model>.ndf: total length of a global attribute string [characters] 256

length of all define strings for a macro or a composed operator [characters] 512

Model interface and experiment preparation entities

single model runs in an experiment [number] 999 999

experiment factors in <n´model>.edf [number] 100

model output variables in <model>.mdf [number] 100

all but Java models: dimensionality of a model output variable 9

Java models: dimensionality of a model output variable 4

Coordinates in <model>.mdf [number] 100

coordinate values and sampled factor values (*) [number] 200 000

active slices during performance of a model [number] 30

GAMS models: storage size of a (float / real*4) model output variable [Mbytes] 64

Experiment post-processing entities

length of the optional result description string [characters] 128

length of the optional result unit string [characters] 32

arguments of an operator [number] 9

dimensionality of a result 9

length of a complete result string (with optional description and unit) [characters] 1 024

all operands and operators of a result [number] 200

length of a character argument of an operator [characters] 124

length of a string for a constant [characters] 20

constants of a result [number] 30

user-defined and composed operators [number] 35

3.1 (Ja 25, 2013) n -219- Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

 Maximum

Entity
entity value

allocatable main memory segments for computing a result [number] 10

total allocatable main memory [MBytes] 2 048

results res_<digit><digit> in a NetCDF post-processor output file [number] 99

post-processor output files <model>.res_<digit><digit>.[nc | ieee | ascii] [number] 99

15.1.3 Linking User Models and User-Defined Operators

User models implemented in C/C++ or Fortran have to be linked with the following libraries to interface them
to the simulation environment

 $SE_HOME/lib/libsimenv.a

 libnetcdf.a from /usr/local/lib or /usr/lib

User-defined operators to be used in experiment post-processing have to be linked with the following library
to interface them to the simulation environment

 $SE_HOME/lib/libsimenv.a

For running interfaced models outside SimEnv check Section 5.12.

15.1.4 Example Models and User Files

For the following models corresponding files of Tab. 11.7 of can be copied from the corresponding exam-
ples-directory $SE_HOME/exa to the user’s current workspace by running the SimEnv service command
simenv.cpy <model> from this workspace:

Tab. 15.4 Implemented example models for the current version
 For the generic model “world” check Example 1.1

model

Language /
source code

Explanation

world_f Fortran
world_f.f

world_c C
world_c.c

world_cpp C++
world_cpp.cpp

world_py Python
world_py.py

world_ja Java
world_ja.java

world_m Matlab
world_m.m

world_sh Shell script level
world_sh.f
world_shput.f

world_as ASCII interface
world_as.f

global atmosphere – biosphere model
at resolution of (lat x lon x level x time) = (45 x 90 x 4 x 20)

-220- Multi-Run Simulation Environment SimEnv User Guide

3.1 (Ja 25, 2013) n -221-

 Language /

model Explanation
source code

world_f_auto
(semi-automated
model interface)

Fortran
world_f_auto.f

world_sh_auto
(semi-automated
model interface)

Shell script level
world_sh.f
world_shput.f

world_f_1x1 Fortran
world_f_1x1.f

global atmosphere – biosphere model
at a resolution of (lat x lon x level x time) = (180 x 360 x 16 x 20)

world_f_05x05 Fortran
world_f_05x05.f

global atmosphere – biosphere model
at a resolution of (lat x lon x level x time) = (360 x 720 x 16 x 20)

gridcell_f Fortran
gridcell_f.f

atmosphere – biosphere model for one lat-lon grid cell
at a resolution of (level x time) = (4 x 20)

gams_model GAMS
gams_model.gms

GAMS example model

Additionally, the following files are available from the example directory $SE_HOME/exa:

Tab. 15.5 Implemented model and operator related user files for the current version
 For <opr> see Tab. 15.6 below

File

Explanation

<model>.[f | c | cpp | py | ja | m
| gms]

model source code (cf. also example files in Section 15.2)

<model> model executable compiled and linked from <model>.[f | c | cpp]

world.edf_[GSA_EE |
 GSA_VB |
 DFD_[a | b | c | d] |
 LSA |
 UNC_MC |
 BAY_BC |
 OPT_SA]

experiment description files corresponding to the individual experiment
types to be copied to world_[f | c | cpp | py | ja | m | sh].edf and/or
world_f_1x1.edf and world_f_05x05.edf

world.post_[GSA_EE |
 GSA_VB |
 DFD_c |
 LSA |
 UNC_MC |
 BAY_BC |
 OPT_SA]

Experiment specific post-processor input file (complete experiment)
for the corresponding description files world.edf_<exp_type>:
simenv.res world_[f | c | cpp | py | ja | m | sh]
 [new | append | replace]
 < world.post_<exp_type>

world.post_[bas | adv]

Experiment-type unspecific post-processor input file for single run post-
processing of a selected single run <simenv_run_int>:
simenv.res world_[f | c | cpp | py | ja | m | sh]
 [new | append | replace]
 <simenv_run_int>
 < world.post_[bas | adv]

world.dat_[DFD_d |
 UNC_MC |
 adv]

data files used in world.edf_[DFD_d | UNC_MC] and/or
world.post_adv

Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

File Explanation

usr_opr_<opr>.[f | c] source code for user-defined operator <opr>

usr_opr_<opr> executable for user-defined operator <opr>

land_sea_mask[<nil> | .f] executable and source code to derive a coarsed land-sea-mask from the
file land_sea_mask.05x05

land_sea_mask.05x05 global ASCII land-sea-mask file with a resolution of 0.5° lat x 0.5° lon

read_result_file[<nil> | .f] executable and source code for the result file import interface of ASCII
and IEEE compliant result output

15.1.5 Example User-Defined Operators

The following user-defined operators are available from the example directory $SE_HOME/exa as source
code and executables usr_opr_<opr>. All but operator matmul_c (source file usr_opr_<opr>.c) are imple-
mented in Fortran and available as source files usr_opr_<opr>.f.

Tab. 15.6 Available user-defined operators

Operator name
<opr>

Operator arguments Explanation Example

char_test char_arg1,
char_arg2,
arg

character test
check usr_opr_char_test.f

char_test(‘arg11’,
‘arg22’,bios)

corr_coeff arg1,
arg2

correlation coefficient R corr_coeff(bios,
-bios) = -1.

div arg1,
arg2

division as an example how the
corresponding built in basic opera-
tor works

div(-2,-4) = 0.5

matmul_[f | c] arg1,
arg2

matrix multiplication of 2-
dimensional operands

matmul_[f | c]
(mat1,mat2)

simple_div arg1,
arg2

division without consideration of
overflow, underflow, and division
by 0.

simple_div(-2,-4) =
0.5

-222- Multi-Run Simulation Environment SimEnv User Guide

15.2 Examples for Model Interfaces

15.2.1 Example Implementation of the Generic Model world

According to Example 1.1 on page 7 dynamics of the model world depend on four model parameters p1, p2,
p3, and p4:

Tab. 15.7 Factors of the generic model world
Mapping between model factors and internal model parameters is performed by the
model coupling interface functions simenv_get_*

Model
factor

Factor
default

(nominal)
value

Internal model
parameter name

Factor
unit

Factor meaning

p1 1. phi_lat π/12 latitudinal phase shift

p2 2. omega_lat 2*π latitudinal frequency

p3 3. phi_lon π/12 longitudinal phase shift

p4 4. omega_lon 2*π longitudinal frequency

For reasons of simplification these factors (parameters) influence state variables atmo and bios by the prod-
uct of two trigonometric terms value_lat and value_lon in the following manner:

value_lat(lat) = sin(2*π*omega_lat * f(lat) + phi_lat*π/12)
value_lon(lon) = sin(2*π*omega_lon * f(lon) + phi_lon*π/12)

The function f(.) norms value_lat and value_lon by lat and/or lon in a way, that it holds

value_[lat|lon](1) = sin(+π*omega_[lat|lon] + phi_[lat|lon]*π/12)
value_[lat|lon](last/2) = sin(±0*omega_[lat|lon] + phi_[lat|lon]*π/12)
value_[lat|lon](last) = sin(-π*omega_[lat|lon] + phi_[lat|lon]*π/12)

Finally,

atmo(lat,lon,level,time) = value_lat(lat) * value_lon(lon) * (100*time+level-1)
bios(lat,lon,time) = value_lat(lat) * value_lon(lon) * 100*time

and – notated in the syntax of the SimEnv post-processor –

atmo_g(time) = avg_l(‘001’,abs(atmo(lat,lon,1,time)))
bios_g = avg(abs(bios(lat,lon,time)))

Means avg and avg_l are calculated in a box with the extent Δlat x Δlon = 10° x 10° and (lat,lon) = (0°,0°) in
the mid of the box.

3.1 (Ja 25, 2013) n -223- Multi-Run Simulation Environment SimEnv User Guide for Version

15.2.2 Fortran Model

With respect to Example 5.1 the following Fortran code world_f.f could be used to describe the model inter-
faced to SimEnv. SimEnv modifications are marked in bold.

program world_f
c declare SimEnv interface functions (compile with –I$SE_HOME/inc)
 include ‘simenv_mod_f.inc’
 integer*4 simenv_sts,simenv_run_int
 character*6 simenv_run_char
c declare atmo without dimensions level and time and bios without time
c because they are computed in place and simenv_slice_f is used
 real*4 atmo(0:44,0:89)
 real*4 bios(0:35,0:89)
 integer*4 atmo_g(0:19)
 integer*4 bios_g

 p1 = 1.
 p2 = 2.
 p3 = 3.
 p4 = 4.

 simenv_sts = simenv_ini_f()
c check return code for the model interface functions at least here
 if(simenv_sts.ne.0) stop 1
c simenv_get_run_f only if necessary:
 simenv_sts = simenv_get_run_f(simenv_run_int,simenv_run_char)
 simenv_sts = simenv_get_f(‘p1’,p1,p1)
 simenv_sts = simenv_get_f(‘p2’,p2,p2)
 simenv_sts = simenv_get_f(‘p3’,p3,p3)
 simenv_sts = simenv_get_f(‘p4’,p4,p4)

c compute dynamics of atmo and bios over space and time,
c of atmo_g over time, all dependent on p1,p2,p3,p4
 do idecade = 0,19
 ...
 do level= 0,3
 simenv_sts = simenv_slice_f(‘atmo’,3,level+1,level+1)

simenv_sts = simenv_slice_f(‘atmo’,4,idecade+1,idecade+1)
 simenv_sts = simenv_put_f(‘atmo’,atmo)
 enddo
 simenv_sts = simenv_slice_f(‘bios’,3,idecade+1,idecade+1)
 simenv_sts = simenv_put_f(‘bios’,bios)
 enddo
 ...
 simenv_sts = simenv_put_f(‘atmo_g’,atmo_g)
c compute dynamics of bios_g
 ...
 simenv_sts = simenv_put_f(‘bios_g’,bios_g)

 simenv_sts = simenv_end_f()
 end

Example file: world_f.f

Example 15.1 Model interface for Fortran models – model world_f.f

-224- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

15.2.3 Fortran Model with Semi-Automated Model Interface

With respect to Example 5.1 the following Fortran code world_f_auto.f could be used to describe the semi-
automated model interface to SimEnv. SimEnv modifications are marked in bold.

program world_f_auto
c declare SimEnv interface functions (compile with –I$SE_HOME/inc)
c simenv_sts, simenv_run_int and simenv_run_char are also declared
 include ‘simenv_mod_auto_f.inc’
c declare atmo without dimensions level and time and bios without time
c because they are computed in place and simenv_slice_f is used
 real*4 atmo(0:44,0:89)
 real*4 bios(0:35,0:89)
 integer*4 atmo_g(0:19)
 integer*4 bios_g

 p1 = 1.
 p2 = 2.
 p3 = 3.
 p4 = 4.

c include source code sequence for the semi-automated model interface
 include ‘world_f_auto_f.inc’

c compute dynamics of atmo and bios over space and time,
c of atmo_g over time, all dependent on p1,p2,p3,p4
 do idecade = 0,19
 ...
 do level= 0,3
 simenv_sts = simenv_slice_f(‘atmo’,3,level+1,level+1)
 simenv_sts = simenv_slice_f(‘atmo’,4,idecade+1,idecade+1)
 simenv_sts = simenv_put_f(‘atmo’,atmo)
 enddo
 simenv_sts = simenv_slice_f(‘bios’,3,idecade+1,idecade+1)
 simenv_sts = simenv_put_f(‘bios’,bios)
 enddo
 ...
 simenv_sts = simenv_put_f(‘atmo_g’,atmo_g)
c compute dynamics of bios_g
 ...
 simenv_sts = simenv_put_f(‘bios_g’,bios_g)

 simenv_sts = simenv_end_f()
 end

Example file: world_f_auto.f

Example 15.2 Semi-automated model interface for Fortran models – model world_f_auto.f

3.1 (Ja 25, 2013) n -225- Multi-Run Simulation Environment SimEnv User Guide for Version

15.2.4 C Model

With respect to Example 5.1 the following C code world_c.c could be used to describe the model interfaced
to SimEnv. SimEnv modifications are marked in bold.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* declare SimEnv interface functions (compile with –I$SE_HOME/inc)
#include “simenv_mod_c.inc”

/* declare atmo without dimensions level and time and bios without time*/
/* because they are computed in place and simenv_slice_c is used */
static float atmo[45][90];
static float bios[36][90];
static int atmo_g[20];
static int bios_g;

main(void)
{

 float p1,p2,p3,p4;
 int level,idecade,simenv_sts,simenv_run_int,level1,idecade1,idim;
 char simenv_run_char[6];
 p1 = 1.;
 p2 = 2.;
 p3 = 3.;
 p4 = 4.;

 simenv_sts = simenv_ini_c();
/* check return code of model interface functions at least here */
 if(simenv_sts != 0) return 1;
/* simenv_get_run_c only if necessary: */
 simenv_sts = simenv_get_run_c(&simenv_run_int,simenv_run_char);
 simenv_sts = simenv_get_c(“p1”,&p1,&p1);
 simenv_sts = simenv_get_c(“p2”,&p2,&p2);
 simenv_sts = simenv_get_c(“p3”,&p3,&p3);
 simenv_sts = simenv_get_c(“p4”,&p4,&p4);
/* compute dynamics of atmo and bios over space and time, */
/* of atmo_g over time, all dependent on p1,p2,p3,p4 */
 for (idecade=0; idecade<=19; idecade++)
 {...
 for (level=0; level<=3; level++)
 { ...
 idim=3;
 level1=level+1;
 simenv_sts = simenv_slice_c(“atmo”,&idim,&level1,&level1);
 idim=4;
 idecade1=idecade+1;
 simenv_sts = simenv_slice_c(“atmo”,&idim,&idecade1,&idecade1);
 simenv_sts = simenv_put_c(“atmo”,(char *) &atmo);
 }
 idim=3;
 idecade1=idecade+1;
 simenv_sts = simenv_slice_c(“bios”,&idim,&idecade1,&idecade1);
 simenv_sts = simenv_put_c(“bios”,(char *) &bios);
 }

-226- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -227-

 simenv_sts = simenv_put_c(“atmo_g”,(char *) &atmo_g);

/* compute dynamics of bios_g */
 ...
 simenv_sts = simenv_put_c(“bios_g”, ,(char *) &bios_g);
 simenv_sts = simenv_end_c();
 return 0;
}

Example file: world_c.c

Example 15.3 Model interface for C models – model world_c.c

Multi-Run Simulation Environment SimEnv User Guide for Version

15.2.5 C++ Model

With respect to Example 5.1 the following C++ code world_cpp.cpp could be used to describe the model
interfaced to SimEnv. SimEnv modifications are marked in bold.

#include <stdio.h>
#include <stdlib.h>
/* declare SimEnv interface functions (compile with –I$SE_HOME/inc)
#include “simenv_mod_c.inc”

class World
{
/* declare atmo without dimensions level and time and bios without time*/
/* because they are computed in place and simenv_slice_c is used */
 public: float atmo[45][90];
 public: float bios[36][90];
 public: int atmo_g[20];
 public: int bios_g;
 private: int level,idecade,simenv_sts,level1,idecade1,idim;

 public: void computeAtmo(float p1 ,float p2, float p3, float p4)
/* compute dynamics of atmo over space and time, */
/* and of atmo_g over time, all dependent on p1,p2,p3,p4 */
 {
 for (idecade=0; idecade<=19; idecade++)
 {...
 for (level=0; level<=3; level++)
 {...
 idim=3;
 level1=level1+1;
 simenv_sts = simenv_slice_c(“atmo”,&idim,&level,&level);
 idim=4;
 idecade1=idecade1+1;
 simenv_sts = simenv_slice_c(“atmo”,&idim,&idecade,&idecade);
 simenv_sts = simenv_put_c(“atmo”,(char *) &atmo);
 }
 }
 }

public: void computeBios(float p1, float p2, float p3, float p4)
/* compute dynamics of bios over space and time, */
/* and of bios_g all dependent on p1,p2,p3,p4 */
 {
 int simenv_sts;
 for (idecade=0; idecade<=19; idecade++)
 {...
 idim=3;
 idecade1=idecade1+1;
 simenv_sts = simenv_slice_c(“bios”,&idim,&idecade1,&idecade1);
 simenv_sts = simenv_put_c(“bios”,(char *) &bios);
 }
/* compute dynamics of bios_g */
 ...
 }
}

-228- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -229-

main(void)
{
 int simenv_sts,simenv_run_int;
 char simenv_run_char[6];
 float p1 = 1.;
 float p2 = 2.;
 float p3 = 3.;
 float p4 = 4.;

 simenv_sts = simenv_ini_c();
/* check return code of model interface functions at least here */
 if(simenv_sts != 0) return 1;
/* simenv_get_run_c only if necessary: */
 simenv_sts = simenv_get_run_c(&simenv_run_int,simenv_run_char);

 simenv_sts = simenv_get_c(“p1”,&p1,&p1);
 simenv_sts = simenv_get_c(“p2”,&p2,&p2);
 simenv_sts = simenv_get_c(“p3”,&p3,&p3);
 simenv_sts = simenv_get_c(“p4”,&p4,&p4);

 World world;
 world.computeAtmo(p1,p2,p3,p4);
 simenv_sts = simenv_put_c(“atmo_g”,(char *) &(world.atmo_g));
 world.computeBios(p1,p2,p3,p4);
 simenv_sts = simenv_put_c(“bios_g”,(char *) &(world.bios_g));

 simenv_sts = simenv_end_c();
 return 0;
}

Example file: world_cpp.cpp

Example 15.4 Model interface for C++ models – model world_cpp.cpp

Multi-Run Simulation Environment SimEnv User Guide for Version

15.2.6 Python Model

With respect to Example 5.1 the following Python code world_py.py could be used to describe the model
interfaced to SimEnv. SimEnv modifications are marked in bold.

#!/usr/local/bin/python
import string
import os
from simenv import *
this model needs the math and the Numeric package
set the PYTHONPATH environment variable accordingly
from math import *
from Numeric import *

atmo=zeros([45,90,4,20], Float)
bios=zeros([36,90,20], Float)
atmo_g=zeros([20], Float)
p1=1.
p2=2.
p3=3.
p4=4.

simenv_ini_py()
simenv_get_run_py only if necessary:
simenv_run_int = int(simenv_get_run_py())

p1 = float(simenv_get_py(‘p1’,p1))
p2 = float(simenv_get_py(‘p2’,p2))
p3 = float(simenv_get_py(‘p3’,p3))
p4 = float(simenv_get_py(‘p4’,p4))

compute dynamics of atmo and bios over space and time,
of atmo_g over time, all dependent on p1,p2,p3,p4
for idecade in range(20):
 ...
 for level in range(4):
 ...
atmo=reshape(atmo,45*90*4*20,))
simenv_put_py(‘atmo’,atmo)
bios=reshape(atmo,45*90*20,))
simenv_put_py(‘bios’,bios)
simenv_put_py(‘atmo_g’,atmo_g)
compute dynamics of bios_g
...
simenv_put_py(‘bios_g’,bios_g)
simenv_end_py()

Example file: world_py.py

Example 15.5 Model interface for Python models – model world_py.py

-230- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

15.2.7 Java Model

With respect to Example 5.1 the following Java code world_ja.java could be used to describe the model
interfaced to SimEnv. SimEnv modifications are marked in bold.

import java.io.*;

public class world_ja {
 static float[][][][] atmo = new float[45][90][4][20];
 static float[][][] bios = new float[36][90][20];
 static int[] atmo_g = new int[20];
 static int bios_g;

 public static void main(String[] args) {
 int simenv_sts, simenv_run_int;
 int idecade, level;

 float phi_lat=1.F;
 float omega_lat=2.F;
 float phi_lon=3.F;
 float omega_lon=4.F;

 simenv_sts = Simenv.simenv_ini_ja();
// simenv_get_run_ja only if necessary:
 simenv_run_int = Integer.parseInt(Simenv.simenv_get_run_ja());

 phi_lat = Simenv.simenv_get_ja("p1", phi_lat);
 omega_lat = Simenv.simenv_get_ja("p2", omega_lat);
 phi_lon = Simenv.simenv_get_ja("p3", phi_lon);
 omega_lon = Simenv.simenv_get_ja("p4", omega_lon);

// compute dynamics of atmo and bios over space and time,
// of atmo_g over time, all dependent on p1,p2,p3,p4
 for (idecade=0; idecade<20; idecade++)
 ...
 for (level=0; level<4; level++)
 ...
 simenv_sts = Simenv.simenv_put_ja("atmo", atmo);
 simenv_sts = Simenv.simenv_put_ja("bios", bios);
 simenv_sts = Simenv.simenv_put_ja("atmo_g", atmo_g);
 simenv_sts = Simenv.simenv_put_ja("bios_g", bios_g);
 ...
 simenv_sts=Simenv.simenv_end_ja();

 System.exit(0);

 }
 }

Example file: world_ja.java

Example 15.6 Model interface for Java models – model world_ja.java

3.1 (Ja 25, 2013) n -231- Multi-Run Simulation Environment SimEnv User Guide for Version

15.2.8 Matlab Model

With respect to Example 5.1 the following Matlab code world_m.m could be used to describe the model
interfaced to SimEnv. SimEnv modifications are marked in bold.

atmo = zeros(45,90,4,20);
bios = zeros(36,90,20);
atmo_g = zeros(20);

phi_lat=1.;
omega_lat=2.;
phi_lon=3.;
omega_lon=4.;

simenv_sts = simenv_ini_m();
% simenv_get_run_m only if necessary:
simenv_run_int = str2num(simenv_get_run_m());

phi_lat = simenv_get_m(‘p1’, phi_lat);
omega_lat = simenv_get_m(‘p2’, omega_lat);
phi_lon = simenv_get_m(‘p3’, phi_lon);
omega_lon = simenv_get_m(‘p4’, omega_lon);

% compute dynamics of atmo and bios over space and time,
% of atmo_g over time, all dependent on p1,p2,p3,p4
for idecade = 0:19
 ...
 for level = 0:3
 ...
 end
end
simenv_sts = simenv_put_m(‘atmo’, single(atmo));
simenv_sts = simenv_put_m(‘bios’, single(bios));
simenv_sts = simenv_put_m(‘atmo_g’, int32(atmo_g));
simenv_sts = simenv_put_m(‘bios_g’, int32(bios_g));
 ...
simenv_end_m();

Example file: world_m.m

Example 15.7 Model interface for Matlab models – model world_m.m

-232- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

15.2.9 Mathematica Model

Example 15.8 describes the model interface for a Mathematica model. The model itself is not provided.

#! /bin/sh

perform always and as the first $SE_HOME/bin/simenv_*_sh dot script

get current run number <simenv_run_char> and <simenv_run_int>
. $SE_HOME/bin/simenv_get_run_sh

get factor names and adjusted values and
run the Mathematica model <model>.m
. $SE_HOME/bin/simenv_run_mathematica

transfer ASCII model output files to SimEnv model output
(cf. Example 15.10 and Example 15.11)
...

remove temporary sub-directory run$simenv_run_char
rmdir run$simenv_run_char

perform always and as the last $SE_HOME/bin/simenv_*_sh dot script
. $SE_HOME/bin/simenv_end_sh

Example 15.8 Model interface for Mathematica – model shell script <model>.run

3.1 (Ja 25, 2013) n -233- Multi-Run Simulation Environment SimEnv User Guide for Version

15.2.10 GAMS Model

SimEnv comes with an interfaced GAMS model gams_model.gms and all associated files that fully corre-
spond to the GAMS example model at http://www.gams.com/docs/gams/Tutorial.pdf. Modifications for
SimEnv are marked in bold.

SETS
 I canning plants / SEATTLE, SAN-DIEGO /
 J markets / NEW-YORK, CHICAGO, TOPEKA / ;

PARAMETERS
 A(I) capacity of plant i in cases
 / SEATTLE 350
 SAN-DIEGO 600 /
 B(J) demand at market j in cases
 / NEW-YORK 325
 CHICAGO 300
 TOPEKA 275 / ;

* - Before using parameters (here dem_ny and dem_ch) as SimEnv experiment
* factors they have to be declared as GAMS model parameters
* with default values from above.
* - Then insert $include <model>_simenv_get.inc
* simenv_get.inc is generated automatically based on <model>.edf
* - And assign adjusted factors to model variables
 PARAMETERS
 dem_ny /325.0/;
 dem_ch /300.0/;
 $include gams_model_simenv_get.inc
 A("SEATTLE") = dem_ny;
 A("SAN-DIEGO") = dem_ch;

TABLE D(I,J) distance in thousands of miles
 NEW-YORK CHICAGO TOPEKA
 SEATTLE 2.5 1.7 1.8
 SAN-DIEGO 2.5 1.8 1.4 ;
SCALAR F freight in dollars per case per thousand miles /90/

* get the model status as a model output
 modstat is set to transport.modelstat ;

PARAMETER C(I,J) transport cost in thousands of dollars per case ;
 C(I,J) = F * D(I,J) / 1000 ;
VARIABLES
 X(I,J) shipment quantities in cases
 Z total transportation costs in thousands of dollars ;
POSITIVE VARIABLE X ;
EQUATIONS
 COST define objective function
 SUPPLY(I) observe supply limit at plant i
 DEMAND(J) satisfy demand at market j ;
COST .. Z =E= SUM((I,J), C(I,J)*X(I,J)) ;
SUPPLY(I) .. SUM(J, X(I,J)) =L= A(I) ;
DEMAND(J) .. SUM(I, X(I,J)) =G= B(J) ;
MODEL TRANSPORT /ALL/ ;
SOLVE TRANSPORT USING LP MINIMIZING Z ;

-234- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -235-

* After solving the equations $include simenv_put.inc
* has to be inserted.
* simenv_put.inc is generated automatically by SimEnv
* based on <model>.edf and <model>.gdf
* Additional GAMS statements are possible after the $include statement
 modstat = transport.modelstat
 $include gams_model_simenv_put.inc

* Only if sub-models sub_m1 and sub_m2 are coupled (cf. Example 5.3):
* $call “gams ../sub_m1.gms ll= lo=2 lf=sub_m1.nlog dp=0 Optdir=../”;
* $call “gams ../sub_m2.gms ll= lo=2 lf=sub_m2.nlog dp=0 Optdir=../”;

Example file: gams_model.gms

Example 15.9 Model interface for GAMS models – model gams_model.gms

Multi-Run Simulation Environment SimEnv User Guide for Version

15.2.11 Model Interface at Shell Script Level

Assume any experiment. Assume model executable world_sh to take factor values p1 to p4 as arguments
from the command line.
The shell script world_sh.run with an interface at shell script level to run the model world_sh and to trans-
form model output to SimEnv could look like:

#! /bin/sh

p1=1.
p2=2.
p3=3.
p4=4.

perform always and as the first $SE_HOME/bin/simenv_*_sh dot script
altern. perform . $SE_WS/<model>_sh.inc for semi-autom. model interface
. $SE_HOME/bin/simenv_ini_sh

get current run number <simenv_run_char> and <simenv_run_int>
. $SE_HOME/bin/simenv_get_run_sh

get adjusted values for factors p1 ... p4
factor_name=‘p1’
factor_def_val=$p1
. $SE_HOME/bin/simenv_get_sh
factor_name=‘p2’
factor_def_val=$p2
. $SE_HOME/bin/simenv_get_sh
factor_name=‘p3’
factor_def_val=$p3
. $SE_HOME/bin/simenv_get_sh
factor_name=‘p4’
factor_def_val=$p4
. $SE_HOME/bin/simenv_get_sh

create temporary directory run<simenv_run_char> to perform the model
and model output transformation from native to SimEnv structure there
mkdir run$simenv_run_char
cd run$simenv_run_char

run the model
cp ../land_sea_mask.coarsed .
../world_sh $p1 $p2 $p3 $p4

read model results and output them to SimEnv
../world_shput

clear and remove directory
cd ..
rm -fR run$simenv_run_char

perform always and as the last $SE_HOME/bin/simenv_*_sh dot script
. $SE_HOME/bin/simenv_end_sh

Example file: world_sh.run

Example 15.10 Model interface at shell script level – model shell script world_sh.run

-236- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

15.2.12 Model Interface for ASCII Files

Assume any experiment. Assume model executable world_as (example file world_as.f)

 to take factor names and resulting adjusted values p1 to p4 from the file generated by
simenv_get_as

 to output model variables to ASCII files

 atmo_bios.ascii<simenv_run_char>
 atmo_g.ascii<simenv_run_char>
 bios_g.ascii<simenv_run_char>

with the same file structure as in Example 5.6. The current run number in 6-character notation is ap-
pended to the file names to distinguish files for parallel experiment performance.

The shell script world_as.run with an ASCII interface to run the model world_as and to transfer model out-
put to SimEnv could look like:

#! /bin/sh

perform always and as the first $SE_HOME/bin/simenv_*_sh dot script
altern. perform . $SE_WS/<model>_sh.inc for semi-autom. model interface
. $SE_HOME/bin/simenv_ini_sh

get current run number <simenv_run_char> and <simenv_run_int>
. $SE_HOME/bin/simenv_get_run_sh

get factor names and adjusted values
to ASCII file world_as.as<simenv_run_char>
. $SE_HOME/bin/simenv_get_as

run the model:
read world_as.as$simenv_run_char
store model output to ASCII files
./world_as

transfer ASCII model output files to SimEnv model output
use simenv_put_as_simple since the ASCII file has 9000 columns:
$SE_HOME/bin/simenv_put_as_simple atmo_bios.ascii$simenv_run_char lat
use simenv_put_as since the ASCII files have 1 column:
$SE_HOME/bin/simenv_put_as atmo_g.ascii$simenv_run_char time
$SE_HOME/bin/simenv_put_as bios_g.ascii$simenv_run_char

remove ASCII files
rm -f world_as.as$simenv_run_char
rm -f atmo_bios.ascii$simenv_run_char
rm -f atmo_g.ascii$simenv_run_char
rm -f bios_g.ascii$simenv_run_char

perform always and as the last $SE_HOME/bin/simenv_*_sh dot script
. $SE_HOME/bin/simenv_end_sh

Example file: world_as.run

Example 15.11 Model interface for ASCII files – model shell script world_as.run

3.1 (Ja 25, 2013) n -237- Multi-Run Simulation Environment SimEnv User Guide for Version

15.2.13 Semi-Automated Model Interface at Shell Script Level

Assume any experiment. Assume model executable world_sh to take factor values p1 to p4 as arguments
from the command line.
The shell script world_sh_auto.run with a semi-automated interface at shell script level to run the model
world_sh and to transform model output to SimEnv could look like:

#! /bin/sh

p1=1.
p2=2.
p3=3.
p4=4.

perform dot script world_sh_auto_sh.inc
for semi-automated model interface at shell script level
alternatively perform dot script $SE_HOME/bin/simenv_ini_sh
. $SE_WS/world_sh_auto_sh.inc

create temporary directory run<simenv_run_char> to perform the model
and model output transformation from native to SimEnv structure there
mkdir run$simenv_run_char
cd run$simenv_run_char

run the model
cp ../land_sea_mask.coarsed .
../world_sh $p1 $p2 $p3 $p4

read model results and output them to SimEnv
../world_shput

clear and remove directory
cd ..
rm -fR run$simenv_run_char

perform always and as the last $SE_HOME/bin/simenv_*_sh dot script
. $SE_HOME/bin/simenv_end_sh

Example file: world_sh_auto.run

Example 15.12 Semi-automated model interface at shell script level –
 model shell script world_sh_auto.run

-238- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

15.3 Example Implementation for the Experiment Post-Processor User-
Defined Operator matmul_[f | c]

15.3.1 Fortran Implementation

Implementation of the user-defined operator matmul_f in the file usr_opr_matmul_f.f:

 integer*4 function simenv_check_user_def_operator()
c declare SimEnv interface functions (compile with –I$SE_HOME/inc)
 include ‘simenv_opr_f.inc’
c declare fields to hold extents and coordinates
 dimension iext1(9),iext2(9)
 dimension ico_nr1(9),ico_nr2(9)
 dimension ico_beg_pos1(9),ico_beg_pos2(9)
 character*64 co_name1(9),co_name2(9)

c get dimensionality idimens, extents iext,
c formal coordinate number ico_nr and
c formal coordinate begin position ico_beg_pos
 idimens1=simenv_get_dim_arg_f(1,iext1)
 idimens2=simenv_get_dim_arg_f(2,iext2)
 iok=simenv_get_co_arg_f(1,ico_nr1,ico_beg_pos1,co_name1)
 iok=simenv_get_co_arg_f(2,ico_nr2,ico_beg_pos2,co_name2)
c get check modus for coordinates
 ichk_modus=simenv_get_co_chk_modus_f()

 if(idimens1.ne.2.or.idimens2.ne.2) then
c wrong dimensionalities
 ierror=1
 else
 if(iext1(2).ne.iext2(1)) then
c wrong extents
 ierror=2
 else
 if(ico_nr1(2).eq.ico_nr2(1)) then
c coordinates identical
 if(ico_beg_pos1(2).eq.ico_beg_pos2(1)) then
 iret=31
 else
 iret=33
 endif
 else
c differing coordinates
 iret=32
 if(ichk_modus.eq.1) then
c check only for weak coordinate
 do j=0,iext1(2)-1
c get coordinate values
 iretv1=simenv_get_co_val_f(
 # ico_nr1(2),ico_beg_pos1(2)+j,value1)
 iretv2=simenv_get_co_val_f(
 # ico_nr2(1),ico_beg_pos2(1)+j,value2)

3.1 (Ja 25, 2013) n -239- Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

c iret=33: differing coordinate values
 if(value1.ne.value2) iret=33
 enddo
 endif
 endif

 ierror=0
 if(ichk_modus.eq.2) then
 if(iret.gt.31) ierror=3
 elseif(ichk_modus.eq.1) then
 if(iret.gt.32) ierror=3
 endif

 endif
 endif

if(ierror.eq.0) then
 iext1(2)=iext2(2)
 ico_nr1(2)=ico_nr2(2)
 ico_beg_pos1(2)=ico_beg_pos2(2)
 iok=simenv_put_struct_res_f(0,idimens1,iext1,ico_nr1,ico_beg_pos1)
 endif

c return error code
 simenv_check_user_def_operator=ierror
 return
 end

 integer*4 function simenv_compute_user_def_operator(res,len_res)
c SimEnv operator results are always of type real*4
 real*4 res(len_res)
 integer len_res
c declare SimEnv interface functions (compile with –I$SE_HOME/inc)
 include ‘simenv_opr_f.inc’
c auxiliary variables
 integer*4 iext1(9),iext2(9)
 real*8 value8,r8fac1,r8fac2

c get dimensionality idimens and extents iext for both arguments
 idimens=simenv_get_dim_arg_f(1,iext1)
 idimens=simenv_get_dim_arg_f(2,iext2)

c perform matrix multiplication
 m=0
 do k=1,iext2(2)
 iarg2_offs=(k-1)*iext2(1)
 do i=1,iext1(1)
 iarg1_offs=i
c res(i,k) = sum(arg1(i,l) * arg2(l,k))
 value8=0.
 indi_defined=0
 do l=1,iext1(2)
 ia1=iarg1_offs+(l-1)*iext1(1)
 ia2=iarg2_offs+l
 fac1=simenv_get_arg_f(1,ia1)
 fac2=simenv_get_arg_f(2,ia2)

-240- Multi-Run Simulation Environment SimEnv User Guide

3.1 (Ja 25, 2013) n -241-

 if(simenv_chk_undef_f(fac1)+simenv_chk_undef_f(fac2).eq.0)
 # then
 indi_defined=1
 r8fac1=fac1
 r8fac2=fac2
 value8=value8+r8fac1*r8fac2
 endif
 enddo
 m=m+1
 if(indi_defined.eq.0) then
 res(m)=simenv_put_undef_f()
 else
 res(m)=simenv_clip_undef_f(value8)
 endif
 enddo
 enddo

c return error code
 simenv_compute_user_def_operator=0
 return
 end

Example file: usr_opr_matmul_f.f

Example 15.13 Experiment post-processor user-defined operator module – operator matmul_f

Multi-Run Simulation Environment SimEnv User Guide for Version

15.3.2 C Implementation

Implementation of the user-defined operator matmul_c in the file usr_opr_matmul_c.c:

#include <strings.h>
#include <stdio.h>
#include “simenv_opr_c.inc” /* compile with -I$SE_HOME/inc */

int simenv_check_user_def_operator()
{
 int iext1[9],iext2[9];
 int ico_nr1[9],ico_nr2[9],ico_beg_pos1[9],ico_beg_pos2[9];
/* 576 = 9 dimensions * 64 characters */
 char co_name1[576],co_name2[576];
 int idimens1, idimens2;
 int ichk_modus;
 int iret,iretv1,iretv2,j,iok,ierror=0;
 float value1, value2;

/* get dimensionality idimens, extents iext,
 formal coordinate number ico_nr and
 formal coordinate begin position ico_beg_pos
*/
 idimens1=simenv_get_dim_arg_c(1,iext1);
 idimens2=simenv_get_dim_arg_c(2,iext2);
 iok=simenv_get_co_arg_c(1,ico_nr1,ico_beg_pos1,co_name1);
 iok=simenv_get_co_arg_c(2,ico_nr2,ico_beg_pos2,co_name2);

 ichk_modus=simenv_get_co_chk_modus_c();

 if(idimens1!=2 || idimens2!=2)
 ierror=1; /* wrong dimensionalities */
 else
 if(iext1[1]!=iext2[0])
 ierror=2; /* wrong dimensions */
 else
 { if(ico_nr1[1]==ico_nr2[0])
 if(ico_beg_pos1[1]==ico_beg_pos2[0])
 iret=31;
 else
 iret=33; /* coordinates identical*/
 else
 { iret=32; /* differing coordinates */
 if(ichk_modus==1)
 for (j=0;j<iext1[1];j++) /* only for weak c. check */
 { /* get coordinate values */
 iretv1=simenv_get_co_val_c
 (ico_nr1[1],ico_beg_pos1[1]+j,&value1);
 iretv2=simenv_get_co_val_c
 (ico_nr2[0],ico_beg_pos2[0]+j,&value2);
/* iret=33: differing coordinate values */
 if(value1 != value2)
 iret=33;
 }
 }

-242- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

3.1 (Ja 25, 2013) n -243-

 ierror=0;
 if(ichk_modus==2)
 if(iret>31) ierror=3;
 else
 if(ichk_modus==1)
 if(iret>32) ierror=3;
 }

if(ierror==0)
 { iext1[1]=iext2[1];
 ico_nr1[1]=ico_nr2[1];
 ico_beg_pos1[1]=ico_beg_pos2[1];
iok=simenv_put_struct_res_c(0,idimens1,iext1,ico_nr1,
 ico_beg_pos1);
 }
 return ierror; /* return error code */
 }

/* SimEnv operator results are always of type real*4 */
int simenv_compute_user_def_operator(float *res, int *len_res)
{
 int iext1[9],iext2[9];
 double value8,r8fac1,r8fac2;
 int idimens;
 int i,k,l,m,ia1,ia2;
 int iarg1_offs,iarg2_offs,indi_defined;
 float fac1,fac2;

/* get dimensionality idimens and dimensions idim for both arguments */
 idimens=simenv_get_dim_arg_c(1,iext1);
 idimens=simenv_get_dim_arg_c(2,iext2);

/* perform matrix multiplication */
 m=0;
 for (k=1;k<=iext2[1];k++)
 { iarg2_offs=(k-1)*iext2[0];
 for (i=1;i<=iext1[0];i++)
 { iarg1_offs=i;
/* res(i,k) = sum(arg1(i,l) * arg2(l,k)) */
 value8=0.;
 indi_defined=0;
 for (l=1;l<=iext1[1];l++)
 { ia1=iarg1_offs+(l-1)*iext1[0];
 ia2=iarg2_offs+l;
 fac1=simenv_get_arg_c(1,ia1);
 fac2=simenv_get_arg_c(2,ia2);
 if(simenv_chk_undef_c(fac1) +
 simenv_chk_undef_c(fac2)==0)
 { indi_defined=1;
 r8fac1=fac1;
 r8fac2=fac2;
 value8=value8+r8fac1*r8fac2;
 }
 }

Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

 m=m+1;
 if(indi_defined==0)
 res[m-1]=simenv_put_undef_c();
 else
 res[m-1]=simenv_clip_undef_c(value8);
 }
 }
 return 0;
}

Example file: usr_opr_matmul_c.c

Example 15.14 Experiment post-processor user-defined operator module – operator matmul_c

-244- Multi-Run Simulation Environment SimEnv User Guide

15.4 Example for an Experiment Post-Processor Result Import
Interface

In Example 15.15 an implementation of an interface to import ASCII post-processor output from SimEnv can
be found. A corresponding interface to import IEEE compliant post-processor output is documented.

 subroutine read_result_file_ascii(model_name,res_nmb)
 character model_name*64,res_nmb*2
 parameter (NR_DIM_MAX=9)
 real*4, pointer, dimension(:) :: coord_values
 real*4, pointer, dimension(:) :: result_values
 integer*4 idim, iext(NR_DIM_MAX)
 character result_expr*1024, coord_name*64, prefix*32, header*400
 character result_name*192, result_desc*128, result_unit*32
 open(unit=1,file=trim(model_name)//‘inf’//res_nmb//‘.ascii’,
 # form=‘formatted’,status=‘old’)
 open(unit=2,file=trim(model_name)//‘res’//res_nmb//‘.ascii’,
 # form=‘formatted’,status=‘old’)
 do irec=1,3
 read(1,’(a33,a400)’, iostat=iostat) prefix,header
 enddo
 iostat=0
 do while (iostat.eq.0)
 read(1,‘(a33,a192)’, iostat=iostat) prefix,result_name
 if(iostat.ne.0) exit
 read(1,‘(a33,a128)’, iostat=iostat1) prefix,result_desc
 read(1,‘(a33,a1024)’,iostat=iostat1) prefix,result_expr
 read(1,‘(a33,a32)’, iostat=iostat1) prefix,result_unit
 read(1,‘(a33,9i8)’, iostat=iostat1) prefix,(iext(i),i=1,NR_DIM_MAX)
 length_result=1
 do i=1,NR_DIM_MAX
 if(iext(i).eq.0) exit
 length_result=length_result*iext(i)
 read(1,‘(a33,a64)’,iostat=iostat1) prefix,coord_name
 allocate(coord_values(iext(i)))
 ibeg=1
 do while (ibeg.le.iext(i))
 iend=min0(ibeg+9,iext(i))
 read(1,‘(10g15.7)’,iostat=iostat1) (coord_values(j),
 ibeg=iend+1 j=ibeg,iend)
 enddo
c further processing of coordinate values ...
 ...
 deallocate (coord_values)
 enddo
 allocate(result_values(length_result))
 ibeg=1
 do while (ibeg.le.length_result)
 iend=min0(ibeg+9,length_result)
 read(2,‘(10g15.7)’,iostat=iostat) (result_values(j),
 ibeg=iend+1 j=ibeg,iend)
 enddo
c further processing of result values ...
 ...
 deallocate(result_values)
 enddo

3.1 (Ja 25, 2013) n -245- Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

 close(unit=1)
 close(unit=2)
 return
 end Example file: read_result_file.f (together with subroutine read_result_file_ieee)

Example 15.15 ASCII compliant experiment post-processor result import interface

-246- Multi-Run Simulation Environment SimEnv User Guide

15.5 Experiment Post-Processor Built-In Operators

15.5.1 Experiment Post-Processor Built-In Operators (in Thematic Order)

arg general numerical argument
int_arg integer constant argument ≥ 0
real_arg real (float) constant argument
char_arg character argument

Tab. 15.8 Experiment post-processor built-in operators (in thematic order)

Name

 Meaning See

 Elemental operators Tab. 8.3 on page 120

arg1 + arg2 addition

arg1 - arg2 subtraction

arg1 * arg2 multiplication

arg1 / arg2 division

arg1 ** arg2 exponentiation

+ arg1 identity

- arg1 negation

(arg1) parentheses

 Basic operators Tab. 8.4 on page 121

abs(arg1) absolute value

dim(arg1,arg2) positive difference

exp(arg1) exponential function

int(arg1) integer truncation value

log(arg1) natural logarithm

log10(arg1) decade logarithm

mod(arg1,arg2) remainder

nint(arg1) nearest integer value

sign(arg1) sign of value

round(int_arg1,int_arg2) round value arg2 to int_arg1 decimal places

sqrt(arg1) square root

 Trigonometric operators Tab. 8.4 on page 121

sin(arg1) sine

cos(arg1) cosine

tan(arg1) tangent

cot(arg1) cotangent

asin(arg1) arc sine

acos(arg1) arc cosine

atan(arg1) arc tangent

3.1 (Ja 25, 2013) n -247- Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

Name Meaning See

acot(arg1) arc cotangent

sinh(arg1) hyperbolic sine

cosh(arg1) hyperbolic cosine

tanh(arg1) hyperbolic tangent

coth(arg1) hyperbolic cotangent

 Advanced operators Tab. 8.8 on page 126

classify(int_arg1,
 real_arg2,real_arg3,arg4)

classification of arg4 into int_arg1 classes

clip(char_arg1,arg2) clip arg2 according to char_arg1

cumul(char_arg1,arg2) cumulates arg2 according to char_arg1

distr_par(char_arg1,int_arg2) get distribution parameter int_arg2 of factor char_arg1

flip(char_arg1,arg2) flip arg2 according to char_arg1

get_data(char_arg1,
 char_arg2,char_arg3,arg4)

get data from an external file

get_experiment(char_arg1,
 char_arg2,char_arg3,arg4)

include an other experiment

get_table_fct(char_arg1,arg2) table function with linear interpolation of table char_arg1 for position arg2

if(char_arg1,arg2,arg3,arg4) general purpose conditional if-construct

mask(char_arg1,arg2,arg3) mask elements of argument arg2 (set them undefined)

{un}mask_file(char_arg1,arg2) mask elements of arg2 (set them undefined) according to information from
file char_arg1

matmul(arg1,arg2) matrix multiplication

move_avg(char_arg1,
 char_arg2,int_arg3,arg4)

moving average of running length int_arg3 for arg4

rank(char_arg1,arg2) rank of arg2 according to char_arg1

regrid(char_arg1,arg2) assign new coordinates to arg2

run(char_arg1,arg2) values of arg2 for a single run selected by char_arg1

run_info(char_arg1) current run number and/or number of single runs of the current experiment

transpose(char_arg1,arg2) transpose arg2 according to char_arg1

undef() undefined element

usage(char_arg1) get usage of post-proc. operator char_arg1

 Aggregation and moment operators for arguments Tab. 8.5 on page 123

avg(arg1) argument arithmetic mean of values

avgg(arg1) argument geometric mean of values

avgh(arg1) argument harmonic mean of values

avgw(arg1,arg2) argument weighted mean of values

count(char_arg1,arg2) count number of values according to char_arg1

hgr(char_arg1,int_arg2,
 real_arg3,real_arg4,
 arg5)

argument histogram of values

max(arg1) argument maximum of values

maxprop(arg1) index of the element where the maximum is reached the first time

min(arg1) argument minimum of values

-248- Multi-Run Simulation Environment SimEnv User Guide

3.1 (Ja 25, 2013) n -249-

Name Meaning See

minprop(arg1) index of the element where the minimum is reached the first time

sum(arg1) argument sum of values

var(arg1) argument variance of values

 Multiple aggregation and moment operators for arguments Tab. 8.6 on page 124

max_n(arg1 ,..., argn) maximum per element

maxprop_n(arg1 ,..., argn) argument position (1 ,..., n) where the maximum is reached the first time

min_n(arg1 ,..., argn) minimum per element

minprop_n(arg1 ,..., argn) argument position (1 ,..., n) where the minimum is reached the first time

 Dimension related aggregation and moment operators for arguments Tab. 8.7 on page 124

avg_l(char_arg1,arg2) dimension related argument arithmetic means of values of arg2

avgg_l(char_arg1,arg2) dimension related argument geometric means of values of arg2

avgh_l(char_arg1,arg2) dimension related argument harmonic means of values of arg2

avgw_l(char_arg1,arg2,arg3) dimension related argument weighted means of values of arg2

count_l(char_arg1,char_arg2,
 arg3)

dimension related count numbers of values of arg3

hgr_l(char_arg1,char_arg2,
 int_arg3,real_arg4,
 real_arg5,arg6)

dimension related argument histograms of values of arg6

max_l(char_arg1,arg2) dimension related argument maxima of values of arg2

maxprop_l(char_arg1,arg2) dimension related argument position (1 ,..., n) where the maximum of arg2
is reached the first time

min_l(char_arg1,arg2) dimension related argument minima of values of arg2

minprop_l(char_arg1,arg2) dimension related argument position (1 ,..., n) where the minimum of arg2
is reached the first time

sum_l(char_arg1,arg2) dimension related argument sums of values of arg2

var_l(char_arg1,arg2) dimension related argument variances of values of arg2

 Multi-run operators (GSA_EE) Tab. 8.9 on page 138

morris(arg1) get global sensitivity measures for arg1

 Multi-run operators (GSA_VB) Tab. 8.10 on page 139

effects_1st(arg1) linear effects of all factors for arg1

effects_tot(arg1) total effects of all factors for arg1

gsa_vb_run_mask(char_arg1) select sub-sample to apply to subsequent UNC_MC operators

 Multi-run operators (DFD) Tab. 8.11 on page 142

dfd(char_arg1,arg2) general purpose operator for navigating and aggregating arg2 in the factor
space

 Multi-run operators (LSA) Tab. 8.14 on page 149

lin_abs(char_arg1,arg2) absolute linearity measure

lin_rel(char_arg1,arg2) relative linearity measure

sens_abs(char_arg1,arg2) absolute sensitivity measure

sens_rel(char_arg1,arg2) relative sensitivity measure

Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

Name Meaning See

sym_abs(char_arg1,arg2) absolute symmetry measure

sym_rel(char_arg1,arg2) relative symmetry measure

 Multi-run operators (UNC_MC) Tab. 8.13 on page 145
 also applicable for all other experiment types

avg_e(arg1) run ensemble mean

avgg_e(arg1) run ensemble geometric mean

avgh_e(arg1) run ensemble harmonic mean

avgw_e(arg1,arg2) run ensemble weighted mean

cnf_e(real_arg1,arg2) positive distance of confidence line from run ensemble mean avg_e(arg2)

cor_e (arg1,arg2) run ensemble correlation coefficient between arg1 and arg2

count_e(char_arg1,arg2) run ensemble count number of values

cov_e (arg1,arg2) run ensemble covariance between arg1 and arg2

ens(arg1) whole run ensemble

hgr_e(char_arg1,int_arg2,
 real_arg3,real_arg4,arg5)

heuristic probability density function

krt_e (arg1) run ensemble kurtosis (4th moment)

max_e(arg1) run ensemble maximum

maxprop_e(arg1) run number where the maximum is reached the first time

med_e (arg1) run ensemble median

min_e(arg1) run ensemble minimum

minprop_e(arg1) run number where the minimum is reached the first time

qnt_e (real_arg1,arg2) run ensemble quantile of arg2

reg_e (arg1,arg2) run ensemble linear regression coefficient to forecast arg2 from arg1

rng_e (arg1) run ensemble range = max_e(arg1) - min_e(arg1)

skw_e (arg1) run ensemble skewness (3rd moment)

stat_full(real_arg1,real_arg2,
 real_arg3,real_arg4,arg5)

run ensemble full basic statistical measures

stat_red(real_arg1,real_arg2,
 arg3)

run ensemble reduced basic statistical measures

sum_e(arg1) run ensemble sum

var_e(arg1) run ensemble variance

-250- Multi-Run Simulation Environment SimEnv User Guide

15.5.2 Experiment Post-Processor Built-In Operators (in Alphabetic Order)

arg general numerical argument
int_arg integer constant argument ≥ 0
real_arg real (float) constant argument
char_arg character argument

Tab. 15.9 Experiment post-processor built-in operators (in alphabetical order)
 UNC_MC operators are also applicable for all other experiment types

Name

Meaning Type See

On
page

arg1 + arg2 addition elemental Tab. 8.3 120

arg1 - arg2 subtraction elemental Tab. 8.3 120

arg1 * arg2 multiplication elemental Tab. 8.3 120

arg1 / arg2 division elemental Tab. 8.3 120

arg1 ** arg2 exponentiation elemental Tab. 8.3 120

+ arg1 identity elemental Tab. 8.3 120

- arg1 negation elemental Tab. 8.3 120

(arg1) parentheses elemental Tab. 8.3 120

abs(arg1) absolute value basic Tab. 8.4 121

acos(arg1) arc cosine trigonom. Tab. 8.4 121

acot(arg1) arc cotangent trigonom. Tab. 8.4 121

asin(arg1) arc sine trigonom. Tab. 8.4 121

atan(arg1) arc tangent trigonom. Tab. 8.4 121

avg(arg1) argument arithmetic mean of values aggr./mom. Tab. 8.5 123

avg_e(arg1) run ensemble mean UNC_MC Tab. 8.13 145

avg_l(char_arg1,arg2) dimension related argument arithmetic means
of values of arg2

aggr./mom. Tab. 8.7 124

avgg(arg1) argument geometric mean of values aggr./mom. Tab. 8.5 123

avgg_e(arg1) run ensemble geometric mean UNC_MC Tab. 8.13 145

avgg_l(char_arg1,arg2) dimension related argument geometric means
of values of arg2

aggr./mom. Tab. 8.7 124

avgh(arg1) argument harmonic mean of values aggr./mom. Tab. 8.5 123

avgh_e(arg1) run ensemble harmonic mean UNC_MC

avgh_l(char_arg1,arg2) dimension related argument harmonic means
of values of arg2

aggr./mom. Tab. 8.7 124

avgw(arg1,arg2) argument weighted mean of values aggr./mom. Tab. 8.5 123

avgw_e(arg1,arg2) run ensemble weighted mean UNC_MC Tab. 8.13 145

avgw_l(char_arg1,arg2,
 arg3)

dimension related argument weighted means
of values of arg3

aggr./mom. Tab. 8.7 124

classify(int_arg1,real_arg2,
 real_arg3,arg4)

classification of arg4 into int_arg1 classes advanced Tab. 8.8 126

clip(char_arg1,arg2) clip arg2 according to char_arg1 advanced Tab. 8.8 126

cnf_e(real_arg1,arg2) positive distance of confidence line from run
ensemble mean avg_e(arg2)

UNC_MC Tab. 8.13

3.1 (Ja 25, 2013) n -251- Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

 On

Name Meaning Type See
page

cor_e (arg1,arg2) run ensemble correlation coefficient between
arg1 and arg2

UNC_MC Tab. 8.13 145

cos(arg1) cosine trigonom. Tab. 8.4 121

cosh(arg1) hyperbolic cosine trigonom. Tab. 8.4 121

cot(arg1) cotangent trigonom. Tab. 8.4 121

coth(arg1) hyperbolic cotangent trigonom. Tab. 8.4 121

count(char_arg1,arg2) count number of values aggr./mom. Tab. 8.5 123

count_e(char_arg1,arg2) run ensemble count UNC_MC Tab. 8.13 145

count_l(char_arg1,
 char_arg2,arg3)

dimension related count numbers of values of
arg3

aggr./mom. Tab. 8.7 124

cov_e (arg1,arg2) run ensemble covariance between arg1 and
arg2

UNC_MC Tab. 8.13 145

cumul(char_arg1,arg2) cumulates arg2 according to char_arg1 advanced Tab. 8.8 126

dfd(char_arg1,arg2) general purpose operator for navigating and
aggregating of arg2 in the factor space

DFD Tab. 8.11 142

dim(arg1,arg2) positive difference basic Tab. 8.4 121

distr(char_arg1,int_arg2) get distribution parameter int_arg2 of factor
char_arg1

basic Tab. 8.4 121

effects_1st(arg1) linear effects of all factors for arg1 Tab. 8.10 139

effects_tot(arg1) total effects of all factors for arg1 Tab. 8.10 139

ens(arg1) whole run ensemble UNC_MC Tab. 8.13 145

exp(arg1) exponential function basic Tab. 8.4 121

flip(char_arg1,arg2) flip arg2 according to char_arg1 advanced Tab. 8.8 126

get_data(char_arg1,
 char_arg2,char_arg3,arg4)

get data from an external file advanced Tab. 8.8 126

get_experiment(char_arg1,
 char_arg2,char_arg3,arg4)

include an other experiment advanced Tab. 8.8 126

get_table_fct(char_arg1,
 arg2)

table function with linear interpolation of table
char_arg1 for position arg2

advanced Tab. 8.8 126

gsa_vb_run_mask(
 char_arg1)

select sub-sample to apply to subsequent
UNC_MC operators

GSA_VB Tab. 8.10 139

hgr(char_arg1,int_arg2,
 real_arg3,real_arg4,arg5)

argument histogram of values aggr./mom. Tab. 8.5 123

hgr_e(char_arg1,int_arg2,
 real_arg3,real_arg4,arg5)

run ensemble heuristic probability density
function

UNC_MC Tab. 8.13 145

hgr_l(char_arg1,char_arg2,
 int_arg3,real_arg4,
 real_arg5,arg6)

dimension related argument histograms of
values of arg6

aggr./mom. Tab. 8.7 124

if(char_arg1,arg2,arg3,arg4) general purpose conditional if-construct advanced Tab. 8.8 126

int(arg1) integer truncation value basic Tab. 8.4 121

krt_e (arg1) run ensemble kurtosis (4th moment) UNC_MC Tab. 8.13 145

lin_abs(char_arg1,arg2) absolute linearity measure loc. sens. Tab. 8.14 149

lin_rel(char_arg1,arg2) relative linearity measure loc. sens. Tab. 8.14 149

log(arg1) natural logarithm basic Tab. 8.4 121

log10(arg1) decade logarithm basic Tab. 8.4 121

-252- Multi-Run Simulation Environment SimEnv User Guide

3.1 (Ja 25, 2013) n -253-

 On

Name Meaning Type See
page

mask(char_arg1,arg2,arg3) mask elements of argument arg2 (set them
undefined)

advanced Tab. 8.8 126

{un}mask_file(char_arg1,
 arg2)

mask elements of argument arg2 (set them
undefined) according to information in file
char_arg1

advanced Tab. 8.8 126

matmul(arg1,arg2) matrix multiplication advanced Tab. 8.8 126

max(arg1) argument maximum of values aggr./mom. Tab. 8.5 123

max_e(arg1) run ensemble maximum UNC_MC

max_l(char_arg1,arg2) dimension related argument maxima of values
of arg2

aggr./mom. Tab. 8.7 124

max_n(arg1 ,..., argn) maximum per element aggr./mom. Tab. 8.5 124

maxprop(arg1) index of the element where the maximum is
reached the first time

aggr./mom. Tab. 8.5 123

maxprop_e(arg1) run number where the maximum is reached
the first time

UNC_MC Tab. 8.13 145

maxprop_l(char_arg1,arg2) dimension related argument position (1 ,..., n)
where the maximum is reached the first time
of arg2

aggr./mom. Tab. 8.7 124

maxprop_n(arg1 ,..., argn) argument position (1 ,..., n) where the maxi-
mum is reached the first time

aggr./mom. Tab. 8.5 124

med_e (arg1) run ensemble median UNC_MC Tab. 8.13 145

min(arg1) argument minimum of values aggr./mom. Tab. 8.5 123

min_e(arg1) run ensemble minimum UNC_MC

min_l(char_arg1,arg2) dimension related argument minima of values
of arg2

aggr./mom. Tab. 8.7 124

min_n(arg1 ,..., argn) minimum per element aggr./mom. Tab. 8.5 124

minprop(arg1) index of the element where the minimum is
reached the first time

aggr./mom. Tab. 8.5 123

minprop_e(arg1) run number where the minimum is reached
the first time

UNC_MC Tab. 8.13 145

minprop_l(char_arg1,arg2) dimension related argument position (1 ,..., n)
where the minimum is reached the first time of
arg2

aggr./mom. Tab. 8.7 124

minprop_n(arg1 ,..., argn) argument position (1 ,..., n) where the mini-
mum is reached the first time

aggr./mom. Tab. 8.5 124

mod(arg1,arg2) remainder basic Tab. 8.4 121

morris(arg1) get global sensitivity measures for arg1 glob. sens. Tab. 8.9 138

move_avg(char_arg1,
 char_arg2,int_arg3,arg4)

moving average of running length int_arg3 for
arg4

advanced Tab. 8.8 126

nint(arg1) nearest integer value basic Tab. 8.4 121

qnt_e (real_arg1,arg2) run ensemble quantile of arg2 UNC_MC Tab. 8.13 145

rank(char_arg1,arg2) rank of arg2 according to char_arg1 advanced Tab. 8.8 126

reg_e (arg1,arg2) run ensemble linear regression coefficient to
forecast arg2 from arg1

UNC_MC Tab. 8.13 145

regrid(char_arg1,arg2) assign new coordinates to arg2 advanced Tab. 8.8 126

rng_e (arg1) run ensemble range =
max_e(arg1) - min_e(arg1)

UNC_MC Tab. 8.13 145

Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

 On

Name Meaning Type See
page

round(int_arg1,arg2) round value arg2 to int_arg1 decimal places basic Tab. 8.4 121

run(char_arg1,arg2) values of arg2 for a single run selected by
char_arg1

advanced Tab. 8.8 126

run_info(char_arg1) current run number and/or number of single
runs of the current experiment

advanced Tab. 8.8 126

sens_abs(char_arg1,arg2) absolute sensitivity measure loc. sens. Tab. 8.14 149

sens_rel(char_arg1,arg2) relative sensitivity measure loc. sens. Tab. 8.14 149

sign(arg1) sign of value basic Tab. 8.4 121

sin(arg1) sine basic Tab. 8.4 121

sinh(arg1) hyperbolic sine trigonom. Tab. 8.4 121

skw_e (arg1) run ensemble skewness (3rd moment) UNC_MC Tab. 8.13 145

sqrt(arg1) square root trigonom. Tab. 8.4 121

stat_full(real_arg1,
 real_arg2,real_arg3,
 real_arg4,arg5)

full basic statistical measures UNC_MC Tab. 8.13 145

stat_red(real_arg1,
 real_arg2,arg3)

reduced basic statistical measures UNC_MC Tab. 8.13 145

sum(arg1) argument sum of values aggr./mom. Tab. 8.5 123

sum_e(arg1) run ensemble sum UNC_MC

sum_l(char_arg1,arg2) dimension related argument sums of values of
arg2

aggr./mom. Tab. 8.7 124

sym_abs(char_arg1,arg2) absolute symmetry measure loc. sens. Tab. 8.14 149

sym_rel(char_arg1,arg2) relative symmetry measure loc. sens. Tab. 8.14 149

tan(arg1) tangent trigonom. Tab. 8.4 121

tanh(arg1) hyperbolic tangent trigonom. Tab. 8.4 121

transpose(char_arg1,arg2) transpose arg2 according to char_arg1 advanced Tab. 8.8 126

undef() undefined element advanced Tab. 8.8 126

usage(char_arg1) get usage of post-proc. operator char_arg1 advanced Tab. 8.8 126

var(arg1) argument variance of values aggr./mom. Tab. 8.5 123

var_e(arg1) run ensemble variance UNC_MC Tab. 8.13 145

var_l(char_arg1,arg2) dimension related argument variances of val-
ues of arg2

aggr./mom. Tab. 8.7 124

-254- Multi-Run Simulation Environment SimEnv User Guide

15.5.3 Character Arguments of Experiment Post-Processor Built-In Operators

Tab. 15.10 summarises for built-in operators character argument values. User-defined operators cannot
have pre-defined character argument values.

Tab. 15.10 Character arguments of experiment post-processor built-in operators
 (*) Character argument can be empty
 (**) The length of the character argument from a sequence of digits corresponds to the
 dimensionality of the non-character and non-constant argument under investigation.

Operator
Argu-
ment

number

Argument value
(pre-defined values

are case-insensitive)

Remark

avg_l 1 sequence of digits 0 and 1 (**)

avgg_l 1 sequence of digits 0 and 1 (**)

avgh_l 1 sequence of digits 0 and 1 (**)

avgw_l 1 sequence of digits 0 and 1 (**)

clip 1 (not pre-defined, case insensitive)

count 1 [‘all’ | ‘def’ | ‘undef’]

count_e 1 [‘all’ | ‘def’ | ‘undef’]

count_l 1 sequence of digits 0 and 1 (**)

count_l 2 [‘all’ | ‘def’ | ‘undef’]

cumul 1 sequence of digits 0 and 1 (**)

dfd 1 (not pre-defined, case insensitive) (*)

distr_par 2 factor name, case-insensitive

flip 1 sequence of digits 0 and 1 (**)

get_data 1 [‘ascii’ | ‘netcdf’]

get_data 2 {<directory>/}<file_name>

get_data 3 {<directory>/}<file_name> (*)

get_experiment 1 <directory>

get_experiment 2 <model>

get_experiment 3 {<directory>/}<file_name> (*)

get_table_fct 1 {<directory>/}<file_name>

hgr 1 [‘bin_no’ | ‘bin_mid’]

hgr_e 1 [‘bin_no’ | ‘bin_mid’]

hgr_l 1 sequence of digits 0 and 1 (**)

hgr_l 2 [‘bin_no’ | ‘bin_mid’]

if 1 [‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘==’ | ‘!=’ | ‘def’ | ‘undef’]

lin_abs 1 (not pre-defined, case insensitive) (*)

lin_rel 1 (not pre-defined, case insensitive) (*)

mask 1 [‘<’ | ‘<=’ | ‘>’ | ‘>=’ | ‘==’ | ‘!=’]

{un}mask_file 1 {<directory>/}<file_name>

max_l 1 sequence of digits 0 and 1 (**)

maxprop_l 1 sequence of digits 0 and 1 (**)

min_l 1 sequence of digits 0 and 1 (**)

minprop_l 1 sequence of digits 0 and 1 (**)

3.1 (Ja 25, 2013) n -255- Multi-Run Simulation Environment SimEnv User Guide for Version

for Ver ion 3.1 (Jan 25, 2013) s

Argu- Argument value
Operator ment

number
(pre-defined values Remark

are case-insensitive)

move_avg 1 sequence of digits 0 to 9 (**)

move_avg 2 [‘lin’ | ‘exp’]

rank 1 [‚tie_plain’ | ‚tie_min’ | ‘tie_avg’]

regrid 1 {<directory>/}<file_name>

run 1 (not pre-defined, case insensitive)

run_info 1 [‘run_nr’ | ‘nr_of_runs’]

sens_abs 1 (not pre-defined, case insensitive) (*)

sens_rel 1 (not pre-defined, case insensitive) (*)

sum_l 1 sequence of digits 0 and 1 (**)

sym_abs 1 (not pre-defined, case insensitive) (*)

sym_rel 1 (not pre-defined, case insensitive) (*)

transpose 1 sequence of digits 1 to 9 (**)

var_l 1 sequence of digits 0 and 1 (**)

-256- Multi-Run Simulation Environment SimEnv User Guide

15.5.4 Constant Arguments of Experiment Post-Processor Built-In Operators

Tab. 15.11 summarises for built-in operators constant argument values.

Tab. 15.11 Constant arguments of experiment post-processor built-in operators

Operator

Argument
number

Argument
type

Argument value
restriction

classify 1 int_arg [0 | ≥ 2]

classify 2 real_arg

classify 3 real_arg

[arg2 = arg3 = 0. |
 arg2 < arg3]

cnf 1 real_arg [0.001 | 0.01 | 0.05 | 0.1]

distr_par 2 int_arg ≥ 2

hgr 2 int_arg [0 | ≥ 4]

hgr 3 real_arg

hgr 4 real_arg

[arg3 = arg4 = 0. |
 arg3 < arg4]

hgr_e 2 int_arg [0 | ≥ 4]

hgr_e 3 real_arg

hgr_e 4 real_arg

[arg3 = arg4 = 0. |
 arg3 < arg4]

hgr_l 3 int_arg [0 | ≥ 4]

hgr_l 4 real_arg

hgr_l 5 real_arg

[arg4 = arg5 = 0. |
 arg4 < arg5]

move_avg 3 int_arg [0 | ≥ 3]

qnt 1 real_arg 0. ≤ arg1 ≤ 100.

round 1 int_arg 1 ≤ arg1 ≤ 5

stat_full 1 real_arg

stat_full 2 real_arg

[0.001 | 0.01 | 0.05 | 0.1]
arg1 < arg2

stat_full 3 real_arg

stat_full 4 real_arg

0. ≤ arg3 < arg 4 ≤ 100.

stat_red 1 real_arg

stat_red 2 real_arg

[0.001 | 0.01 | 0.05 | 0.1]
arg1 < arg2

3.1 (Ja 25, 2013) n -257- Multi-Run Simulation Environment SimEnv User Guide for Version

15.5.5 Experiment Post-Processor Built-In Unit Invariant Operators

Tab. 15.12 lists those built-in experiment post-processor operators that have only one non-constant / non-
character argument and are invariant with respect to the unit of the operand. For more information check
Section 8.1.1.

Tab. 15.12 Experiment post-processor unit invariant built-in operators
(operators marked by (*) have more than one non-constant / non-character argument)

Operator

Operator

monadic - lin_abs

abs log

acos log10

acot mask_file

asin max

atan max_e

avg max_l

avg_e max_n (*)

avg_l med_e

avgg_e min

avgh_e min_e

avgw (*) min_l

avgw_e (*) min_n (*)

avgw_l (*) nint

bay_bc_run_mask qnt_e

clip rng_e

cnf_e round

cos sens_abs

cosh sin

cot sinh

coth sqrt

cumul sum

dfd sum_e

distr_par sum_l

exp sym_abs

flip tan

gsa_vb_run_mask tanh

int unmask_file

-258- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

15.6 Additionally Used Symbols for the Model and Operator Interface

Tab. 15.13 lists these symbols (subroutine, function and common block names) that are linked in addition to
the SimEnv model interface functions in Tab. 5.5 from the object libraries $SE_HOME/lib/libsimenv.a and
/usr/local/lib/libnetcdf.a to a Fortran and C/C++ user model when interfacing it to SimEnv. Additionally, the
logical unit numbers (luns) 997, 998 and 999 are used.

Tab. 15.13 Additionally used symbols for the model interface

Used symbols

csimenv_<string>

isimenv_<string>

jsimenv_<string>

<string>_nc_<string>

nc<string>

nf_<string>

f2c_<string>

c2f_dimids

cdf_routine_name

read_numrecs

write_numrecs

Tab. 15.14 lists those symbols (subroutine, function and common block names) that are linked in addition to
the SimEnv operator interface functions in Tab. 8.19 and Tab. 8.20 from the object library
$SE_HOME/lib/libsimenv.a to a user-defined experiment post-processing operator.

Tab. 15.14 Additionally used symbols for the operator interface

Used symbols

csimenv_<string>

isimenv_<string>

jsimenv_<string>

3.1 (Ja 25, 2013) n -259- Multi-Run Simulation Environment SimEnv User Guide for Version

-260- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

15.7 Glossary

The glossary defines and/or explains terms in that sense they are used in this User Guide.
An arrow  refers to another term in the glossary.

Adjustment: Numerical modification of a  factor by one of its  sampled values and its  default value

during an  experiment. The resulting adjusted value is used instead of the default value of the
factor when running the model.

ASCII: The American Standard Code for Information and Interchange developed by the American Na-
tional Standards Institute (http://www.ansi.org) is used in SimEnv to store information in  user-
defined files and on request in post-processing output files.

BAY_BC (Bayesian calibration):  Experiment type to reduce uncertainty about  factor values by deriv-
ing a representative  sample from factor prior distributions while having measurement values
from the system available for  model – measurement comparison.

Column-major order model: A rule how to store the elements of a multi-dimensional data array to a 1-
dimensional linear vector representation and vice versa. A multi-dimensional data array
array(1:ext1 , 1:ext2 ,..., 1:extdim-1 , 1:extdim) of  dimensionality dim and  extents ext1, ext2, ...,
extdim-1, extdim is mapped on a 1-dimensional vector vector(1:ext1 * ext2 * ... * extdim-1 * extdim) of ex-
tent ext1 * ext2 * ... * extdim-1 * extdim in the following way:

 ipointer = 0
 do idim = 1 , extdim
 do idim-1 = 1 , extdim-1
 ...
 do i2 = 1 , ext2

 do i1 = 1 , ext1
 ipointer = ipointer + 1

 vector(ipointer) = array(i1 , i2 ,..., idim-1 , idim)
 enddo
 enddo
 ...
 enddo
 enddo

For a two-dimensional matrix this storage model corresponds to a column by column storage of the
matrix to the vector, starting with the first column and for each column starting with the first row.
The column-major order model is used in Fortran and  Matlab. The opposite model where rows
of a matrix are listed in sequence is called row-major order model and is used in C/C++.

Coordinate coord: Each  dimension of a  variable and each  operand of an  operator in a  result
with a  dimensionality greater than 0 a coordinate is assigned to. A coordinate has a unique
name and strictly monotonic ordered coordinate values. The number of coordinate values corre-
sponds to the  extent for this dimension. Consequently, each model output variable with a di-
mensionality greater than 0 resides at an assigned (multi-dimensional)  grid. Assignments for
variables is done in the model output description  user-defined file.

Coupling:  model interface

Cron daemon: The cron daemon runs  shell commands at specified dates and times.

Crontab: The  Unix /  Linux crontab command submits, edits, lists, or removes jobs for the  cron dae-
mon.

Data type: The type of a  variable as declared in the  model and the corresponding model output de-
scription  user-defined file. SimEnv data types are byte, short, int, float, and double.

3.1 (Ja 25, 2013) n -261- Multi-Run Simulation Environment SimEnv User Guide for Version

http://www.ansi.org/

Default value: The nominal (standard) numerical value of an  experiment  factor. The default value is
specified in the experiment description  user-defined file and for  the model interface at the
language level also in the model code.

DFD (Deterministic Factorial Design):  Experiment type to inspect behaviour of a  model in a space,
spanned up by  factors. The factor space is scanned in a deterministic manner, applying deter-
ministically  sampled values of the factors with a flexible scanning strategy for factor sub-spaces.

Dimension:  dimensionality

Dimensionality dim: The number of dimensions of a model  variable or of an  operator result in  ex-
periment post-processing. In the model output description  user-defined file each variable a di-
mensionality is assigned to that corresponds to the dimensionality of the related model output field
in the model source code. Dimensionality 0 corresponds to a scalar, dimensionality 1 to a vector,
dimensionality 2 to a matrix.

Dot script: A sequence of  Unix /  Linux operating system commands stored in an  ASCII file. The
sequence of operating system commands is directly interpreted and executed by the  shell. Con-
trary to  shell scripts a child shell is not spawned. A dot script is preceded by a dot and a space
when calling it. All SimEnv scripts but those marked with (*) in Tab. 11.5 at page 188 that can be
used in SimEnv within <model>.[ini | run | end] are dot scripts.

Environment variable: At  Unix /  Linux operating system level the so called environment is set up as
an array of operating-system and user-defined environment variables that have the form
Name=Value. The Value of a Name can be addressed by $Name. In SimEnv use of environment
variables in directory strings <direct> is allowed.

Experiment: Performing simulation runs with a  model in a co-ordinated manner by applying  experi-
ment types and running the model in a run ensemble, i.e., a series of single simulation runs.

Experiment post-processing: The work step of processing model output data from the whole run ensemble
after performing a simulation  experiment. SimEnv post-processing enables navigation in the 
factor space that is  sampled by an experiment as well as construction of additional output func-
tions by declaration and computation of  results.

Experiment post-processing operator:  operator

Experiment factor:  factor

Experiment type: Pre-defined multi-run simulation experiment. In the process of experiment preparation
(defining an experiment by describing it in the experiment description  user-defined file)  fac-
tors are assigned to an experiment type and are  sampled in an experiment-specific manner.
Currently available experiment types are  GSA_EE,  DFD,  UNC_MC,  LSA, and 
OPT_SA.

Expression:  result expression

Extent ext: The number of values for a dimension (from the  dimensionality) of a model  variable or of
an  operator result in  experiment post-processing. Extents are always greater than 1. Model
output variables and operator results of dimensionality 0 do not have an extent.

Factor: Element of the input set of a  model. Factors are manipulated numerically during an  experi-
ment by sampling them. Factors can be addressed in  experiment post-processing and they
have there a  dimensionality of 0.

Factor adjustment:  adjustment

GAMS: The General Algebraic Modeling System (http://www.gams.com) is a high-level modeling system
for mathematical programming problems. It consists of a language compiler and a number of inte-
grated high-performance solvers. GAMS is tailored for complex, large scale modeling applications,
and allows to build large maintainable models that can be adapted quickly to new situations.

Grid: Regular topological structure for a model  variable or an  operator result in  experiment post-
processing, spanned up as the Cartesian product of the assigned  coordinates to the variable or
the operator result.

-262- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

GSA_EE (Global sensitivity analysis – elementary effects method):  Experiment type to determine
qualitatively a ranking of the  factors during  experiment post-processing with respect to the
factors’ sensitivity to a model output. Sensitivity is assessed globally, i.e., for the complete feasibil-
ity range of each factor based on a statistics from local effects on randomly selected trajectories in
the factor space.

GSA_VB (Global sensitivity analysis – variance based):  Experiment type to determine how the vari-
ance of model output depends on the variability of the model  factors and how the output vari-
ance can be apportioned accordingly.

IEEE: SimEnv can use on demand for storage of model and post-processor output the Institute of Electri-
cal and Electronics Engineers (http://www.ieee.org) standard number 754 for binary storage of
numbers in floating point representation.

Linux: Linux is a free  Unix-type operating system (http://www.linux.org) originally created by Linus Tor-
valds with the assistance of developers around the world. SimEnv runs under any Linux implemen-
tation for Intel-based hardware and compatibles.

Load Leveler: The load leveler is a network job management system from IBM that handles compute re-
sources. It schedules jobs, and provides functions for building, submitting, and processing them.
See also  PBS / Torque.

LSA (Local sensitivity analysis):  Experiment type with an incremental  sample of  factors in the
neighbourhood of the  default values of the factors. A local sensitivity analysis in SimEnv is al-
ways performed independently for all factors involved. During  experiment post-processing sensi-
tivity, linearity, and symmetry measures can be determined.

Macro: An abbreviation for a unique  result expression to apply during  experiment post-processing.
Macros can be embedded into result expressions and are plugged into the expression during its
evaluation and computation. Macros are described in the macro description  user-defined file.

Mathematica: Mathematica (http://www.wolfram.com/products/mathematica/introduction.html) seamlessly
integrates a numeric and symbolic computational engine, graphics system, programming lan-
guage, documentation system, and advanced connectivity to other applications.

Matlab: MATLAB (http://www.mathworks.de/products/matlab) is a high-level language for computations
and interactive environment for developing algorithms, analysis and visualization of data. It allows
to perform computationally intensive tasks faster than with traditional programming languages.

Model: A model is a deterministic or stochastic algorithm, implemented in one or a number of computer
programs that transforms a sequence of input values ( factors) into a sequence of output values
( variables). Normally, inputs are parameters, initial values or driving forces to the model, outputs
are state variables of the model. For many cases, the model will be state deterministic, time and
space dependent. For SimEnv, the model, its factors and variables are coupled the SimEnv in the
process of  interfacing the model to SimEnv.

Model coupling:  model interface

Model interface: Interfacing a  model to SimEnv means coupling it to SimEnv and enabling finally experi-
menting with the model within SimEnv. There are coupling interfaces at programming language
level for C/C++, Fortran,  Python, Java,  GAMS,  Matlab, and  Mathematica. Additionally,
models can be interfaced at the  shell script level by using shell script syntax elements. For all in-
terface techniques the interfaced model itself has to be wrapped into a shell script.

Model output variable:  variable

NetCDF: Network Common Data Form is an interface for array-oriented data access and a library that pro-
vides an implementation of the interface. The NetCDF library also defines a machine-independent
format for representing scientific data. Together, the interface, library, and format support the crea-
tion, access, and sharing of scientific data. The NetCDF software was developed at the Unidata
Program Center in Boulder, Colorado. NetCDF is freely available. SimEnv follows for model and 
experiment post-processing output storage the NetCDF Climate and Forecast (CF) metadata con-
vention 1.0 (http://www.cgd.ucar.edu/cms/eaton/cf-metadata/index.html) and extends it. To dump
NetCDF files, ncdump is used by SimEnv.

3.1 (Ja 25, 2013) n -263- Multi-Run Simulation Environment SimEnv User Guide for Version

OpenDX: The Open Data Explorer OpenDX (http://www.opendx.org) is a uniquely full-featured open source
project and software package for the visualization of scientific, engineering and analytical data: Its
open system design is built on a standard interface environment. The data model provides users
with great flexibility in creating visualizations. OpenDX is based on IBM’s Visualization Data Ex-
plorer.

Operand: Argument of an  operator in SimEnv  experiment post-processing. An operand can be a
model  variable, an experiment  factor, a constant, a character string,  a macro and an op-
erator.

Operator: Computational algorithm how to transform the values of a sequence of  operands into the val-
ues of the operator result during  experiment post-processing. An operator transforms  dimen-
sionality,  extents, and  coordinates from the operands into the corresponding information for
the operator result. There are built-in elemental, basic, and advanced operators as well as built-in
operators related to specific  experiment types. Additionally, SimEnv offers specification of user-
defined operators according to an operator interface. User-defined operators are announced to the
system in the operator description  user-defined file.

OPT_SA (Optimization – Simulated Annealing):  Experiment type to minimize a cost function (objective
function) over a bounded  factor space. In SimEnv a simulated annealing strategy (cf. Section
4.7 for explanation) is used to optimize the cost function that is formed from model  variables. Of-
ten the cost function represents a distance between model output and reference data to find an op-
timal point in the factor space that fits best the model behaviour with respect to the reference data.

Parallel Operating Environment:  POE

PBS / Torque: Portable Batch System (or simply PBS) is the name of computer software that performs job
scheduling, and provides functions for building, submitting, and processing them. Torque is a fork
of OpenPBS, the open source version of PBS. See also  Load Leveler.

POE: The Parallel Operating Environment POE from IBM supplies services to allocate nodes, assign
jobs to nodes and launch jobs on a compute cluster.

Probability density function pdf: A probability density function serves to represent a probability distribution
in terms of integrals. A probability distribution assigns to every interval of real numbers a probabil-
ity.

Python: Python (http://www.python.org) is a portable, interpreted, interactive, object-oriented programming
language. It incorporates modules, exceptions, dynamic typing, very high level dynamic data types,
and classes.

Result: In SimEnv  experiment post-processing a result (synonym: output function) is derived from model
output of the  experiment and from reference data. A result is specified by a result expression,
optionally prefixed by a result description and a result unit string.

Result expression: A chain of  operators from built-in or user-defined operators applied to model output
 variables and/or reference data. A result expression is a part of an  experiment post-
processing  result.

Row-major order model: A rule how to store the elements of a multi-dimensional data array to a 1-
dimensional linear vector representation and vice versa.  column-major order model

Sample: A set of numerical  factor values created during experiment preparation or performance.

Shell: A shell is the command interpreter for the operating systems  Unix and  Linux.

Shell script: A sequence of  Unix /  Linux operating system commands stored in an  ASCII file. A
shell script is interpreted and executed by a  shell. Contrary to  dot scripts a child shell is
spawned when calling a shell script that inherits the  environment variables of the father (calling)
shell. After returning to the father shell it does not transfer the environment variables and other
variables of the child shell to the father shell. SimEnv demands the Bourne shell sh.

SimEnvVis: The visualization framework of SimEnv. It does not belong to the standard distribution of
SimEnv. Contact the SimEnv developers to get SimEnvVis.

Simulation: Performing an  experiment with a  model

-264- Multi-Run Simulation Environment SimEnv User Guide for Ver ion 3.1 (Jan 25, 2013) s

UNC_MC (Uncertainty analysis – Monte Carlo method):  Experiment type with pre-single run perturba-
tions of experiment  factors. For each perturbed factor a  probability density function pdf with
function parameters is assigned to. During the  experiment  adjustments of the factors are re-
alizations from the pdf’s using random number techniques. In  experiment post-processing statis-
tical measures can be derived from experiment output of the run ensemble. A prominent statistical
measure is the heuristic pdf (histogram) of a model  variable and its relation to the pdf’s of the
factors.

Unix: A computer operating system (http://www.unix.org), originally developed at AT&T/USL. SimEnv
runs under the AIX Unix implementation for RS6000 hardware and compatibles from IBM.

User-defined files: A set of  ASCII files to describe  model,  experiment,  operator, and  macro
specific information and to determine general SimEnv settings. All user-defined files follow the
same syntax rules.

Variable: Element of the output set of a  model that is stored during a SimEnv experiment in SimEnv
model output. Variables are defined in the model output description  user file. Each variable has
a unique  data type, a  dimensionality,  extents and an assigned  grid. Normally, a variable
consists of a series of values, forming an array.

White spaces:  (also known as blanks) ASCII characters space and horizontal tabulator used in  user-
defined files or within  result expressions in  experiment post-processing.

Workspace: The directory, a SimEnv service is started from and the SimEnv user-defined files such as
<model>.mdf, <model>.edf, <model>.run, <model>.cfg are located in.

3.1 (Ja 25, 2013) n -265- Multi-Run Simulation Environment SimEnv User Guide for Version

-266- Multi-Run Simulation Environment SimEnv User Guide s for Ver ion 3.1 (Jan 25, 2013)

	1 About this Document
	1.1 Document Conventions
	1.2 Example Layout

	2 Getting Started
	3 Version 3.1
	3.1 What is New?
	3.2 Limitations / Problems and Their Workarounds
	3.3 Known Bugs and Their Workarounds

	4 Experiment Types
	4.1 General Approach
	4.2 Global Sensitivity Analysis – Elementary Effects Method GSA_EE
	4.3 Global Sensitivity Analysis – Variance-Based Method GSA_VB
	4.4 Deterministic Factorial Design DFD
	4.5 Uncertainty Analysis – Monte Carlo Method UNC_MC
	4.6 Local Sensitivity Analysis LSA
	4.7 Bayesian Technique – Bayesian Calibration BAY_BC
	4.8 Optimization – Simulated Annealing OPT_SA

	5 Model Interface
	5.1 General Approach
	5.2 Coordinate and Grid Assignments to Variables
	5.3 Model Output Description File <model>.mdf
	5.4 Model Interface for Fortran and C/C++ Models
	5.5 Model Interface for Python, Java and Matlab Models
	5.5.1 Standard Dot Scripts for Python, Java and Matlab Models

	5.6 Model Interface for Mathematica Models
	5.7 Model Interface for GAMS Models
	5.7.1 Standard Dot Scripts for GAMS Models
	5.7.2 GAMS Description File <model>.gdf, <model>.edf, <model>.mdf
	5.7.3 Files Created during GAMS Model Performance

	5.8 Model Interface at Shell Script Level
	5.9 Model Interface for ASCII Files
	5.10 Semi-Automated Model Interface
	5.11 Supported Model Structures
	5.12 Using Interfaced Models outside SimEnv

	6 Experiment Preparation
	6.1 General Approach – Experiment Description File <model>.edf
	6.1.1 Elements of <model>.edf for Experiment Types with Probabilistic Sampling

	6.2 Global Sensitivity Analysis – Elementary Effects Method GSA_EE
	6.2.1 Special Features in GSA_EE, Run Sequence
	6.2.2 Example

	6.3 Global Sensitivity Analysis – Variance-Based Method GSA_VB
	6.3.1 Run Sequence
	6.3.2 Example

	6.4 Deterministic Factorial Design DFD
	6.4.1 Formalisation of the Inspection Strategy, Run Sequence
	6.4.2 Example

	6.5 Uncertainty Analysis – Monte Carlo Method UNC_MC
	6.5.1 Stopping Rule
	6.5.2 Example

	6.6 Local Sensitivity Analysis LSA
	6.6.1 Sensitivity Functions, Run Sequence
	6.6.2 Example

	6.7 Bayesian Technique – Bayesian Calibration BAY_BC
	6.7.1 Bayesian Calibration Description File <model>.bdf
	6.7.2 Multiple Setting Likelihood Function Case
	6.7.3 Bayesian Calibration Log Files <model>.blog and <model>.bmlog
	6.7.4 Examples

	6.8 Optimization – Simulated Annealing OPT_SA
	6.8.1 Special Features in OPT_SA
	6.8.2 Example

	7 Experiment Performance
	7.1 General Approach
	7.2 Model Wrap Shell Script <model>.run,Experiment-Specific Preparation and Wrap-Up Shell Scripts
	7.3 Experiment Performance, Parallelization
	7.3.1 Local Experiment Performance on the Login Node
	7.3.2 Experiment Performance controlled by the Distributed Resource Manager
	7.3.3 Experiment Partial Performance
	7.3.4 Peculiarities of Multi-Run Experiment Performance
	7.3.5 Inter-Node Communication for Parallel Sub-Mode at Compute Clusters

	7.4 Experiment Restart
	7.5 Experiment Related User Shell Scripts and Files
	7.6 Saving Experiments

	8 Experiment Post-Processing
	8.1 General Approach
	8.1.1 Post-Processor Results
	8.1.2 Operands
	8.1.3 Model Output Variables
	8.1.4 Operators
	8.1.5 Operator Classification, Flexible Coordinate Checking

	8.2 Built-In Generic Standard Aggregation / Moment Operators
	8.3 Built-In Elemental, Basic, and Advanced Operators
	8.3.1 Elemental Operators
	8.3.2 Basic and Trigonometric Operators
	8.3.3 Standard Aggregation / Moment Operators
	8.3.4 Advanced Operators
	8.3.5 Examples

	8.4 Built-In Experiment Specific Operators
	8.4.1 Multi-Run Operators
	8.4.2 Global Sensitivity Analysis – Elementary Effects Method GSA_EE
	8.4.3 Global Sensitivity Analysis – Variance-Based Method GSA_VB
	8.4.4 Deterministic Factorial Design DFD
	8.4.5 Uncertainty Analysis – Monte Carlo Method UNC_MC
	8.4.6 Local Sensitivity Analysis LSA
	8.4.7 Bayesian Technique – Bayesian Calibration BAY_BC
	8.4.8 Optimization – Simulated Annealing OPT_SA

	8.5 User-Defined and Composed Operators / Operator Interface
	8.5.1 Declaration of User-Defined Operator Dynamics
	8.5.2 Undefined Results in User-Defined Operators
	8.5.3 Composed Operators
	8.5.4 Operator Description File <model>.odf

	8.6 Macros and Macro Definition File <model>.mac
	8.7 Wildcard Operands &v& and &f&
	8.8 Undefined Results
	8.9 Saving Results

	9 Visual Experiment Evaluation
	10 Model and Experiment Post-Processor Output Data Structures
	10.1 NetCDF Model and Experiment Post-Processor Output
	10.1.1 Global Attributes
	10.1.2 Variable Labeling and Variable Attributes
	10.1.3 NetCDF Attribute Description File <model>.ndf

	10.2 IEEE Compliant Binary Model Output
	10.3 IEEE Compliant Binary and ASCII Experiment Post-Processor Output

	11 General Control, Services, User Files, and Settings
	11.1 General Configuration Files simenv_settings.txt and <model>.cfg
	11.2 Main and Auxiliary Services
	11.3 Experiment Performance Tuning
	11.4 Model Interface Scripts, Include Files, Link Scripts
	11.5 User-Defined Files and Shell Scripts, Temporary Files
	11.6 Built-In Names
	11.7 Case Sensitivity
	11.8 Numerical Nodata Representation
	11.9 Operating System Environment Variables

	12 Structure of User-Defined Files,Coordinate Transformation Files, Value Lists
	12.1 General Structure of User-Defined Files
	12.2 Coordinate Transformation File
	12.3 ASCII Data Files and Value Lists

	13 SimEnv Prospects
	14 References and Further Readings
	15 Appendices
	15.1 Version Implementation
	15.1.1 System Requirements
	15.1.2 Technical Limitations
	15.1.3 Linking User Models and User-Defined Operators
	15.1.4 Example Models and User Files
	15.1.5 Example User-Defined Operators

	15.2 Examples for Model Interfaces
	15.2.1 Example Implementation of the Generic Model world
	15.2.2 Fortran Model
	15.2.3 Fortran Model with Semi-Automated Model Interface
	15.2.4 C Model
	15.2.5 C++ Model
	15.2.6 Python Model
	15.2.7 Java Model
	15.2.8 Matlab Model
	15.2.9 Mathematica Model
	15.2.10 GAMS Model
	15.2.11 Model Interface at Shell Script Level
	15.2.12 Model Interface for ASCII Files
	15.2.13 Semi-Automated Model Interface at Shell Script Level

	15.3 Example Implementation for the Experiment Post-Processor User-Defined Operator matmul_[f | c]
	15.3.1 Fortran Implementation
	15.3.2 C Implementation

	15.4 Example for an Experiment Post-Processor Result ImportInterface
	15.5 Experiment Post-Processor Built-In Operators
	15.5.1 Experiment Post-Processor Built-In Operators (in Thematic Order)
	15.5.2 Experiment Post-Processor Built-In Operators (in Alphabetic Order)
	15.5.3 Character Arguments of Experiment Post-Processor Built-In Operators
	15.5.4 Constant Arguments of Experiment Post-Processor Built-In Operators
	15.5.5 Experiment Post-Processor Built-In Unit Invariant Operators

	15.6 Additionally Used Symbols for the Model and Operator Interface
	15.7 Glossary

