Model Equations MICA
Model of International Climate Agreements
Kai Lessmann∗† Ulrike Kornek†‡
March 31, 2016

Model Equations

In the following listing, \(t \) refers to time, \(i \) refers to regions.

Preferences

Social welfare of region \(i \)

\[
W_i = \int_0^\infty n_i t U(c_{it}/n_{it}) e^{-\rho t} dt \quad (0.1)
\]

Instantaneous utility

\[
U(c_{it}/n_{it}) = \begin{cases}
\frac{(c_{it}/n_{it})^{1-\eta}}{1-\eta} & \text{if } \eta \neq 1 \\
\log(c_{it}/n_{it}) & \text{if } \eta = 1.
\end{cases} \quad (0.2)
\]

Technology

Economic output net of abatement costs and climate change damages

\[
y_{it} = (1 - \Lambda_{it} - \Omega_{it}) F(l_{it}, k_{it}) \quad (0.3)
\]

Production technology

\[
F(l_{it}, k_{it}) = \alpha_0 y_{i0} \left[(1 - \gamma) \left(\frac{\lambda_{it} l_{it}}{\lambda_{i0} l_{i0}} \right)^{\rho_F} + \gamma \left(\frac{k_{it}}{k_{i0}} \right)^{\rho_F (1/\rho_F)} \right] \quad (0.4)
\]

∗Potsdam-Institute for Climate Impact Research (PIK), PO Box 60 12 03, D-14412 Potsdam, Germany
†Mercator Research Institute on Global Commons and Climate Change (MCC), Torgauer Str. 12-15, 10829 Berlin, Germany
Accumulation of capital, initially k_{i0}

$$\frac{d}{dt} k_{it} = i_{it} - \delta_{i} k_{it}$$ \hspace{1cm} (0.5)

Emissions and Emission Allowances

Emissions as a byproduct of production, reduced by emission intensity and abatement effort

$$e_{it} = y_{it} \sigma_{it} (1 - a_{it})$$ \hspace{1cm} (0.6)

Abatement costs

$$\Lambda_{it} = b_{1}^{1} \cdot (a_{it})^{b_{2}}$$ \hspace{1cm} (0.7)

All emissions are covered by allowances net of allowance exports.

$$e_{it} \leq q_{it} - z_{it}$$ \hspace{1cm} (0.8)

Trade in allowances is balanced in every time period.

$$\sum_{j} z_{jt} = 0, \hspace{1cm} \forall t$$ \hspace{1cm} (0.9)

Climate Dynamics

CO2 concentration changes with total allowances (same as total emissions), initially C_{0}.

$$\frac{d}{dt} C_{t} = \zeta Q_{t} - \kappa (C_{t} - C_{0}) + \psi E_{t}$$ \hspace{1cm} (0.10)

Definition of global total of emission allowances

$$Q_{t} = \sum_{i} q_{it}$$ \hspace{1cm} (0.11)

Global emissions stock, initially E_{0}, rises with per period total allowances.

$$\frac{d}{dt} E_{t} = Q_{t}$$ \hspace{1cm} (0.12)

Temperature change, initially T_{0}, is determined by CO2 concentration.

$$\frac{d}{dt} T_{t} = \mu \log(C_{t}/C_{0}) - \phi (T_{t} - T_{0})$$ \hspace{1cm} (0.13)

Climate change damages

$$\Omega_{it} = \theta_{2i}(T_{t})^{2}$$ \hspace{1cm} (0.14)
Budget constraints

Budget constraint of the Ramsey household

\[y_{it} + m_{it} = c_{it} + i_{it} + x_{it} \] \hspace{1cm} (0.15)

Intertemporal budget constraint for trade in goods and allowances

\[\int_0^\infty p_t m_{it} \, dt = \int_0^\infty p_t x_{it} + p_t^z z_{it} \, dt \] \hspace{1cm} (0.16)

Parameters and Variables

Parameters

- \(\alpha_{it} \) = Total factor productivity
- \(\gamma \) = Share parameter
- \(\delta_i \) = Rate of depreciation
- \(\zeta \) = Emission to concentration conversion factor
- \(\eta \) = Elasticity of marginal utility
- \(\theta_{i1,i2} \) = Damage function exponent
- \(\kappa \) = Rate of ocean CO2 uptake
- \(\lambda_{it} \) = Labor efficiency
- \(\mu \) = Radiative temperature driving factor
- \(\nu_{i1,i2} \) = Exogenous decarbonization parameters
- \(\rho \) = Pure rate of time preference
- \(\sigma_{it} \) = Exogenous emission intensity improvement
- \(\rho^F \) = Elasticity parameter of production function
- \(\phi \) = Temperature damping factor
- \(\psi \) = Atmospheric retention factor
- \(b_{it}^1 \) = Abatement cost coefficient
- \(b_{it}^2 \) = Abatement cost exponent
- \(C_0 \) = Initial concentration
- \(E_0 \) = Initial cumulative emissions
- \(k_{i0} \) = Initial capital stock
- \(l_{it} \) = Exogenous labor supply

Variables

- \(n_{it} \) = Population number
- \(l_{i0} \) = Initial labor supply
- \(T_0 \) = Initial temperature change
- \(q_{i0} \) = Initial allowances
- \(y_{i0} \) = Initial economic output
- \(a_{it} \) = Abatement
- \(c_{it} \) = Consumption
- \(C_t \) = Carbon concentration in the atmosphere
- \(e_{it} \) = CO2 emissions
- \(E_t \) = Global total emissions
- \(i_{it} \) = Investment
- \(k_{it} \) = Capital
- \(m_{it} \) = Imports
- \(p_t \) = Price of goods
- \(p_t^i \) = Price of allowances
- \(q_{it} \) = Emission allowances
- \(Q_t \) = Cumulative total emission allowances
- \(T_t \) = Global mean atmospheric temperature increase
- \(W_t \) = Intertemporal welfare
- \(x_{it} \) = Exports of region \(i \)
- \(y_{it} \) = Economic output
- \(z_{it} \) = Export of emission allowances
- \(\Lambda_{it} \) = Abatement costs
- \(\Omega_{it} \) = Climate change damages

3