Model Equations MICA

Model of International Climate Agreements

Kai Lessmann*† Ulrike Kornek^{†*}

March 31, 2016

Model Equations

In the following listing, t refers to time, i refers to regions.

Preferences

Social welfare of region i

$$W_i = \int_0^\infty n_{it} U(c_{it}/n_{it}) e^{-\rho t} dt \qquad (0.1)$$

Instantaneous utility

$$U(c_{it}/n_{it}) = \begin{cases} \frac{(c_{it}/n_{it})^{1-\eta}}{1-\eta} & \text{if } \eta \neq 1\\ \log(c_{it}/n_{it}) & \text{if } \eta = 1. \end{cases}$$
(0.2)

Technology

Economic output net of abatement costs and climate change damages

$$y_{it} = (1 - \Lambda_{it} - \Omega_{it}) F(l_{it}, k_{it})$$

$$(0.3)$$

Production technology

$$F(l_{it}, k_{it}) = \alpha_{it} y_{i0} \left[(1 - \gamma) \left(\frac{\lambda_{it} l_{it}}{\lambda_{i0} l_{i0}} \right)^{\rho_F} + \gamma \left(\frac{k_{it}}{k_{i0}} \right)^{\rho_F} \right]^{(1/\rho_F)}$$

$$(0.4)$$

^{*}Potsdam-Institute for Climate Impact Research (PIK), PO Box 60 12 03, D-14412 Potsdam, Germany

[†]Mercator Research Institute on Global Commons and Climate Change (MCC), Torgauer Str. 12-15, 10829 Berlin, Germany

Accumulation of capital, initially k_{i0}

$$\frac{d}{dt}k_{it} = i_{it} - \delta_i k_{it} \tag{0.5}$$

Emissions and Emission Allowances

Emissions as a byproduct of production, reduced by emission intensity and abatement effort

$$e_{it} = y_{it} \, \sigma_{it} \left(1 - a_{it} \right) \tag{0.6}$$

Abatement costs

$$\Lambda_{it} = b_{it}^1 \cdot (a_{it})^{b_i^2} \tag{0.7}$$

All emissions are covered by allowances net of allowance exports.

$$e_{it} \leq q_{it} - z_{it} \tag{0.8}$$

Trade in allowances is balanced in every time period.

$$\sum_{i} z_{jt} = 0, \quad \forall t \tag{0.9}$$

Climate Dynamics

CO2 concentration changes with total allowances (same as total emissions), initially C_0 .

$$\frac{d}{dt}C_t = \zeta Q_t - \kappa(C_t - C_0) + \psi E_t \tag{0.10}$$

Definition of global total of emission allowances

$$Q_t = \sum_i q_{it} \tag{0.11}$$

Global emissions stock, initially E_0 , rises with per period total allowances.

$$\frac{d}{dt}E_t = Q_t \tag{0.12}$$

Temperature change, initially T_0 , is determined by CO2 concentration.

$$\frac{d}{dt}T_{t} = \mu \log(C_{t}/C_{0}) - \phi(T_{t} - T_{0})$$
 (0.13)

Climate change damages

$$\Omega_{it} = \theta_{2i}(T_t)^2 \tag{0.14}$$

Budget constraints

Budget constraint of the Ramsey household

$$y_{it} + m_{it} = c_{it} + i_{it} + x_{it}$$
 (0.15)

Intertemporal budget constraint for trade in goods and allowances

$$\int_{0}^{\infty} p_{t} m_{it} dt = \int_{0}^{\infty} p_{t} x_{it} + p_{t}^{z} z_{it} dt$$
 (0.16)

 l_{i0} = Initial labor supply

Paramters and Variables

Parameters $n_i t$ = Population number

 T_0 = Initial temperature change α_{it} = Total factor productivity

 q_i0 = Initial allowances

 γ = Share parameter δ_i = Rate of depreciation y_i0 = Initial economic output

= Emission to concentration conversion

 η = Elasticity of marginal utility

 a_{it} = Abatement θ_{i2} = Damage function exponent

 c_{it} = Consumption κ = Rate of ocean CO2 uptake C_t = Carbon concentration in the atmosphere

Variables

 λ_0 = Intial labor efficiency $e_{it} = CO2$ emissions λ_{it} = Labor efficiency

 E_t = Global total emissions μ = Radiative temperature driving factor

 i_{it} = Investment $v_{i1,i2}$ = Exogenous decarbonization parame-

 k_{it} = Capital ters $m_{it} = \text{Imports}$ ρ = Pure rate of time preference

 σ_{it} = Exogenous emission intensity improve p_t = Price of goods

 p_t^z = Price of allowances

 ρ^F = Elasticity parameter of production func q_{it} = Emission allowances Q_t = Cumulative total emission allowances

 ϕ = Temperature damping factor T_t = Global mean atmospheric temperature in-

 ψ = Atmospheric retention factor

 b_{it}^1 = Abatement cost coefficient W_i = Intertemporal welfare b_{it}^2 = Abatement cost exponent x_{it} = Exports of region i

 C_0 = Initial concentration y_{it} = Economic output

 E_0 = Initial cumulative emissions z_{it} = Export of emission allowances

 k_{i0} = Initial capital stock Λ_{it} = Abatement costs

 l_{it} = Exogenous labor supply Ω_{it} = Climate change damages