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Kapitel 1

Vectors and tensors

1.1 Notation and the range, summation and comma conven-

tions

1.1.1 Notation

Scalar variables are generally written in lower case letters, vectors in bold lower case, and matrixes
in upper case bold letters. Thus, a denotes a vector, this vector has the length a (scalar variable).
The components of the vector a with regard to some particular coordinate system are a1, a2,
and a3. The components of a matrix are generally written in lower case letters, for example the
components of the matrix A are aij .

To denote a typical component of the a we write ai where it is understood that i can stand
for either 1, 2 or 3. We will also use the notation [a]i to denote a typical component of a, that is
ai = [a]i. Conversely, [ai] is taken to be the vector a, that is a = [ai]. Correspondingly, if A is a
matrix with the matrix elements aij , we have [aij ] = A and [A]ij = aij .

We use ê1, ê2, ê3 to denote the three unit vectors de�ning a Cartesian coordinate system. Note
that the su�xes relate to the individual vectors and not to vector components. Sometimes the
ê1, ê2, and ê3 are referred to as the x, y, and the z basis vectors of the coordinate system, and
sometime we will refer to them as the �rst, second, and the third coordinate axis. This should
cause no confusion.

The so called Kronecker delta δij is a convenient quantity de�ned as

δij :=
{

1 for i = j
0 for i 6= j.

Written in matrix notation the Kronecker delta is

[δij ] =

 1 0 0
0 1 0
0 0 1


showing that [δij ] is the unit matrix, and δij the elements of the unit matrix. The symbol I stands
for the unit matrix, and we have [I]ij = δij , and also [δij ] = I. It also follows, using our notation,
that êi · êj = δij , and that [êi]j = δij .

The permutation symbol εijk is is de�ned as zero if two or more su�xes are equal. If not, it
has either the value +1 or −1 depending on if the ijk is an even or odd permutation of 123.

Using this rule it, for example, follows that ε123 = ε312 = ε231 = 1, but ε132 = ε213 = ε321 = −1.
To summarize, εijk is de�ned as:

εijk :=

 +1, if ijk is an even permutation of 123
−1, if ijk is an odd permutation of 123

0, if any two of ijk are the same

3
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The permutation symbol is also known as the Levi-Civita ε-Symbol. It is, like δij , often a very
useful quantity. Using the Levi-Civita symbol, the vector product of two vectors a and b can, for
example, be written as

a× b = εijkai bj êk.

Another commonly used name for the vector product is the cross product. Furthermore we �nd
that

a · (b× c) = εijkai bj ck

from which it follows that

εijk = êi · (êj × êk) .

Later it will become somewhat easier to understand why exactly these two quantities are so
useful. We will, for example, see that all isotropic tensors of second and third order can be written
as αδij and βεijk, respectively, where α and β are some constants.

A useful relationship between the Kronecker delta and the Levi-Civita symbol is the δ-ε rela-
tionship

εijkεkpq = δipδjq − δjpδiq. (1.1)

1.1.2 Range convection

All su�xes take only the values 1, 2, and 3. This simple convention is known as the range conven-
tion. So for example the index i in xi can only take the values 1, 2, and 3. Generally, xi stands for
the collection of the three quantities x1, x2, or x3.

1.1.3 Summation convention

If a su�x is repeated once in a term, summation is taken over that su�x. For example if we write
c = aibi it is to be understood that summation over the index i is implied, so that

c =
3∑

i=1

ai bi

Consider, for example, the system of equations

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a33x3 = b2

a31x1 + a32x2 + a33x3 = b3

Using the range and summation convention this system of equations can be written as

aij xj = bi

Here, because the index j appears twice in the same term, summation over j is implied (summation
convention). According to the range convention this sum is from 1 to 3. However, although the
index i also appears twice, no summation over i is required because i does not appear twice in the
same term.

Further examples are ai bi, which according to the summation convention is equal to
∑3

i=1 ai bi.
On the other hand ai + bi is not a sum according to the summation convention, because the index
i is not repeated once in a single term. If a su�x is repeated more than once, the corresponding
expressions is considered meaningless, and is not allowed under the summation convention. For
example aibici is not de�ned, and can not be used to represent the sum

∑3
i=1 ai bi ci.
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1.1.4 Comma convention

A partial derivative with respect to one of the spatial variables xi is commonly written as

∂

∂xi

So for example the partial derivative of a vector vi with respect to the spatial variable xj is

∂vi

∂xj

Under the range convention it is clear that the above expression stands for in total 3 × 3 = 9
quantities.

The comma convention states that a partial derivative of an arbitrary function with respect
to one of the spatial variables xj can be denoted through the index , j. Using this convention the
above expression can, accordingly, be written as vi,j , that is

∂vi

∂xj
= vi,j .

Using these conventions in combination often leads to considerable simpli�ed and more compact
notation. For example, the expression

3∑
i=1

∂vi

∂xi

can be written using the range, summation and the comma notation as

vi,i.

Exercise 1. If f(x) is a vector function of the vector x, show that

(I) (xk fk),i = fi + xkfk,i

(II) (xk fk),ij = fi,j + fj,i + xkfk,ij

Solution.

(I) (xkfk),i = xk,ifk + xkfk,i

= δkifk + xkfk,i

= fi + xkfk,i

(II) (xkfk),ij = (fi + xkfk,i),j

= fi,j + xk,jfk,i + xkfk,ij

= fi,j + fj,i + xkfk,ij .

1.2 Vectors

A vector is a directed line element in space. A vector, thus, has a length and an orientation. If we
have two vectors u and v the dot product of u and v is denoted by u · v and de�ned as

u · v = uv cos θ (1.2)

where u and v are the lengths of the vectors u and v, respectively, and θ is the angle between the
vectors.

A vector is called a unit vector if its length is equal to unity. Two vectors are orthogonal if
the angle between them is π/2. It follows that the dot product between two orthogonal vectors
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Abbildung 1.1: A Cartesian right-handed coordinate system

is equal to zero. A Cartesian coordinate system is de�ned through three unit basis vectors ê1, ê2,
and ê3 which are mutually orthogonal, that is êi · êj = 0 for any i 6= j, and êi · êj = 1 for i = j. We
adopt a right-handed Cartesian coordinate system as standard. The coordinates of a vector a in
the coordinate system de�ned by the three unit vectors êi for i = 1, 2, 3 are denoted by ai where

a = a1ê1 + a2ê2 + a2ê3.

If follows that the coordinates of the unit vector ê1, for example, are

ê1 = 1ê1 + 0ê2 + 0ê3,

or simply ê1 = (1, 0, 0)
The components of any vector a in a coordinate system de�ned through the three orthonormal

basis vectors êi for i = 1, 2, 3 can also be found by projecting a along the ê1, ê2, and ê3. So for
example

ai = a · êi. (1.3)

Using the above given de�nition of the Kronecker delta δij we can write

êi · êj = δij . (1.4)

Exercise 2. Show that in a coordinate system de�ned through the orthonormal basis vectors ê1,
ê2, and ê1 we have

[êi]p = δip.

Solution. The expression [êi]p stands for the p component of the unit vector êi. Using Eqs. (1.3)
and (1.4) we have

[êi]p = êi · êp = δip.

Any vector x can be written in terms of the basis vectors as

x = x1ê1 + x2ê2 + x3ê3 (1.5)

= xpêp,

where xi for i = 1, 2, 3 are the components of the vector x.
If we use a di�erent set of basis vectors the components of a given vector with respect to that

set of basis vector will, generally, be di�erent. We can for example write

x = x′1ê
′
1 + x′2ê

′
2 + x3ê′3

= x′pê
′
p (1.6)
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where we also have but the set x′i is di�erent from xi. Note that although the components of the
vector x are di�erent, that is xi 6= x′i, the vector, as an abstract quantity, has not changed so that

x = xiêi = x′iê
′
i (1.7)

If follows that
x · êj = xiêi · êj = xiδij = xj .

If we have two vectors x and y, the dot product of these two vectors is

x · y = xiêi · yj êj = xi yj êi · êj = xi yj δij = xi yi.

proving the well known fact that
x · y = xy cos θ = xi yi

It follows that
x · x = x2 = xi xi

or that x =
√

xi xi.

1.2.1 Coordinate transformations

We will now consider the relationships between the components of the same vector x in two
di�erent right-handed Cartesian coordinate systems. We refer to these two coordinates systems as
system K and system K ′. Two sets of orthonormal vectors: êi, ê′i de�ne K and K ′, respectively
Both coordinate system share the same origin.

As a �rst step we introduce the concept of direction cosines αij de�ned as

αij := ê′i · êj = cos(e′i, ej)︸ ︷︷ ︸
Direction cosines

(1.8)

The nine quantities αij are, thus, de�ned as the dot products between the individual unit vectors
of the two coordinate systems. Since these are unit vectors, it follows that αij is the cosine of the
angel between the positive ê′i axis and the positive êj axis.

Using the summation convention we have

x = xpêp. (1.9)

Taking the scalar product with ê′i on both sides leads to

x · êi = xpêp · êi

= xpδpi

= xi (1.10)

or

xi = x · êi

= x′pê
′
p · êi (Siehe Gl. (1.6))

= x′pαpi. (1.11)

Therefore
xi = αpi x′p, (1.12)

giving us the relationship we were looking for between the coordinates of the vector in the two
coordinate systems. It can furthermore be shown (exercise) that

x′i = αip xp. (1.13)
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We now write

x′i = xpαip (Equation (1.13))

= αjpx
′
jαip (Equation (1.12))

= αjpαipx
′
j .

and obtain x′i = δijx
′
j , so that

δijx
′
j = αjpαipx

′
j ,

or
αipαjp = δij . (1.14)

It can also be shown (exercise) that
αpiαpj = δij . (1.15)

If we write

[αij ] =

 α11 α12 α13

α21 α22 α23

α31 α32 α33


expression (1.14) can be written as

αipαjp = δij oder [αij ][αij ]T = 1,

αpiαpj = δij oder [αij ]T [αij ] = 1,

and Eq. (1.12) as
x = [αij ]T x′ (1.16)

showing that the matrix [αij ] is a orthogonal matrix. The matrix [αij ] is referred to as the rotation
matrix.

Exercise 3. Show using xi = αjix
′
j and x′i = αijxj, that

αij =
∂xj

∂x′i
(1.17)

and

αij =
∂x′i
∂xj

. (1.18)

Exercise 4. The coordinate system K ′ is obtained by rotating the coordinate system K about the
ê3 axis by the angle θ (See Fig. 1.2). Determine the components of the rotation matrix

Solution. The components of the rotation matrix are found by forming the appropriate dot pro-
ducts between the individual orthonormal unit vectors de�ning the two coordinate systems. These
dot products can be written in a table of direction cosines as follows:

· ê1 ê2 ê3

ê′1 cos θ sin θ 0
ê′2 − sin θ cos θ 0
ê′3 0 0 1

Using the well-known relationships

cos (θ − π/2) = sin θ

cos (θ + π/2) = − sin θ.
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Abbildung 1.2: The coordinate systems K and K ′

we have for example

α21 = cos(ê′2, ê1) = cos(−π/2− θ)
= − sin θ.

and the rotation matrix is therefore

[αij ] =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


Exercise 5. In the coordinate system K the the vector x is given by x = 2ê1+1ê2+3ê3. Determine
the components of x in the coordinate system K ′.

Solution. We use the same rotation matrix as above and determine the components in K ′ using

x′i = αip xp.

It follows that

x′1 = α11x1 + α12x2 + α13x3

= cos θ · 2 + sin θ · 1 + 0 · 3
x′2 = α21x1 + α22 x2 + α23 x3

= − sin θ · 2 + cos θ · 1 + 0 · 3
x′3 = α31 x1 + α32 x2 + α33x3

= 0 · 2 + 0 · 1 + 1 · 3,

or

x = (2 cos θ + sin θ)ê′1 + (−2 sin θ + cos θ)ê′2 + 3 ê′3.
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1.3 Cartesian tensors

We have shown that for a vector a

a = apêp and

a = a′pê
′
p (1.19)

and also that

a′i = αipap and

ai = αpia
′
p. (1.20)

with αij being the components of the rotation matrix.
We now use these results and to de�ne a quantity that we refer to as a Cartesian tensor of

order one.

De�nition. A Cartesian tensor a of order one is an entity represented through three numbers
referred to as the components of the tensor. For two di�erent coordinate systems K and K ′ , the
components obey the following transformation rules

a′i = αip ap and

ai = αpi a′p, (1.21)

were αij are the components of the corresponding rotation matrix.

This de�nition can easily be extended. Consider the two Cartesian tensors a and b of order
one. We have

b′i = αipbp and

bi = αpib
′
p

and furthermore

a′ib
′
j = (αipap)(αjqbq)

= αipαjqapbq.

This expression gives us the transformation rule for aibj , which we can consider to be a new entity
with nine components, as we go from system K to system k′

Let us now consider the inverse transformation rule.

aibj = (αpia
′
p)(αqjb

′
q)

= αpiαqja
′
pb
′
q. (1.22)

If we de�ne
cij := aibj

in K and correspondingly de�ne
c′ij := a′ib

′
j

in K ′, we have shown that

cij = αpiαqjc
′
pq and c′ij = αipαjqcpq. (1.23)

The entity [aibj ] (or [cij ]) can be written as a 3× 3 Matrix,

[cij ] := [aibj ]

 a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 (1.24)

Thus, from two vectors a and b we have de�ned a new entity c = [cij ] := [ai bi] which can repre-
sented through a 3 matrix. We furthermore have shown that this entity follows the transformation
laws (1.23).
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Tabelle 1.1: Examples of vector and su�x notation

symbolic notation su�x notation
c = a · b c = aibi dot product
c = A : B c = aijbij double contraction
c = a× b ci = εijkajbk vector product
c = Ab ci = aijbj matrix-vector multiplication

C = a⊗ b cij = aibj tensor product
C = AB cij = aikbkj matrix-matrix multiplication

De�nition. In a given coordinate system K the tensor product of two �rst order tensors a and b
with the components ai and bi, is an entity with the components

cij = ai bj .

In symbolic notation this relationship is expressed as

C = a⊗ b,

where the symbol ⊗ is used to denote the fact that c is the tensor product of a and b. Some
authors refer to C as the dyad of the vectors a and b. Remember that in our notation we can refer
to the components cij of a matrix C as [C]ij , and the components of a vector a as [a]i. We can
therefore also write

[a⊗ b]ij = ai bj = [a]i [b]j (1.25)

Clearly, in general, a⊗ b 6= b⊗ a because generally [a⊗ b]ij = ai bj 6= bi aj = [b⊗ a]ij .
Note that for two vectors a and b we have now de�ned three di�erent type of products: the

scalar product (a · b = aibi), the vector product (a × b = εijkai bj êk), and the tensor product
([a⊗b]ij = aibj). As the names suggest, the scalar product is a scalar, the vector product a vector,
and the tensor product a tensor.

We can de�ne a further entity having the components

dijk := ai bj ck

where ai, bi, and ci are components of the vectors (�rst order tensors) a, b, and c. The entity
d = [dijk] is the tensor product of three vectors, that is

D = a⊗ b⊗ c.

Exercise 6. What are the transformation rules for d de�ned as

D = a⊗ b⊗ c

where a, b, and c are �rst order tensors?

De�nition. A Cartesian tensor a of order n is an entity represented through 3n numbers referred
to as the components of the tensor. For two di�erent coordinate systems K and K ′ , the components
obey the following transformation rules

a′i1,i2,...,in
= αi1,j1αi2,j2 · · ·αin,jnaj1,j2,...,jn and

ai1,i2,...,in = αj1,i1αj2,i2 · · ·αjn,inaj1,j2,...,jn (1.26)

were αij are the components of the corresponding rotation matrix.

It follows from this de�nition that the tensor product of two tensors is a tensor.
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Exercise 7. Consider the scalar �eld φ = φ(xi). In any given coordinate system we de�ne the
components of the entity a as ai := φ,i. Is a a tensor?

Solution. We must determine if the components of a follow the transformation rule (1.26). By
de�nition we have in every coordinate system

a′i =
∂φ

∂x′i
.

Using the chain rule

a′i =
∂φ

∂x′i
=

∂φ

∂xk

∂xk

∂x′i
= φ,k

∂xk

∂x′i

According to Eq (1.17)

∂xk

∂x′i
= αik,

and therefore

a′i = αik φ,k = αikak.

Comparing with (1.26) we see that ai are the components of a �rst order tensor.

Exercise 8. In one particular coordinate system K the components of a second order tensor A
are

A =

 0 γ 0
γ 0 0
0 0 1

 .

We form the coordinate system K ′ through a positive rotation about the ê3 axis by the angle
θ = π/4. What are the components of A in the K ′ system?

Solution. Since A is a second-order tensor it follows from (1.26) that

a′ij = αikαjlakl. (1.27)

The rotation matrix is

[αij ] =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


with θ = π/4. Inserting into (1.27) leads to

a′11 = α1kα1lakl

= α11(α11a11 + α12a12 + α13a13)
+α12(α11a21 + α12a22 + α13a23)
+α13(α11a31 + α12a32 + α13a33)

= cos θ(0 cos θ + sin θγ + 0)
+ sin θ(cos θγ + 0 sin θ + 0)
+0(...)

= 2γ cos θ sin θ = 2γ
1√
2

1√
2

= γ ,

and therefor

a′11 = γ .
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We also �nd

a′12 = α1kα2lakl

= α11(α21a11 + α22a12 + α23a13)
+α12(α21a21 + α22a22 + α23a23)
+α13(α21a31 + α22a32 + α23a33)

= cos θ (−0 sin θ + γ cos θ + 0)
+ sin θ(− sin θγ + 0 cos θ + 0)
+0(...)

= γ(cos2 θ − sin2 θ)
= γ(cos2 θ − sin2 θ)|θ= π

4
= 0 ,

and

a′21 = 0 .

The components of A in the K ′ system are, thus

A =

 γ 0 0
0 −γ 0
0 0 1

 .

Exercise 9. Show that êi ⊗ êi = I, where êi for i = 1, 2, 3 are unit vectors, êi · êj = δij, and I is
the unit matrix.

Solution. By the de�nition of a tensor product, any particular component of êi ⊗ êi is given by

[êi ⊗ êi]pq = [êi]p [êi]q.

Because [êi]p = δip (see exercise 2) we have

[êi]p [êi]q = δip δiq = δpq

that is

êi ⊗ êi = I.

Exercise 10. Show that

(a⊗ b) c = (b · c)a

Solution. We �rst observe that a⊗b is a tensor product of two �rst-order tensors, and therefore a
second-order tensor with the components [a⊗b]ij = ai bj. We can de�ne D having the components
dij as dij := ai bj and write (a ⊗ b)c = Dc, which represents the multiplication of the matrix D
with the vector c, the result being a vector. Now that we have seen that the expression (a⊗ b)c is
a vector we determine its components as follows

[(a⊗ b)c]i = dij cj = ai bj cj = ai(b · c) = [(b · c)a]i

where we have used that bjcj = b · c. We thus have

(a⊗ b) c = (b · c)a.

Exercise 10 shows that the tensor product a⊗b of two vectors a and b can be thought of as a
linear transformation that transforms a vector c into another vector with the direction a according
to the rule

(a⊗ b) c = (b · c)a.
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1.4 Invariants

A scalar quantity, associated with a tensor, that has the same value in all coordinate systems is
called an invariant of the tensor. The length of a vector is, for example, the same in all coordinate
systems and therefore an invariant of the vector.

Exercise 11. If a and b are two vectors, show that their dot product is an invariant.

Solution. We must show that the product aibi is independent of the orientation of the coordi-
nate system. Let c = aibi in some coordinate system K, and a′i, b′j be the components of a and
b, respectively, in coordinate system K ′. The question is therefor, is c′ de�ned as a′i b′i equal to
c? Using the fact that a and b are vectors and that their components therefore must follow the
transformation rules (1.6) and (1.13) we �nd

c′ = a′ib
′
i

= αipapαiqbq

= αipαiqapbq

= δpqapbq

= apbp

= aibi

= c.

Exercise 12. The second-order tensor C has, in one particular coordinate system, the components
cij. Show that the trace of C given by trC = cii is an invariant of C.

Solution.

c′ii = αipαiqcpq

= δpqcpq

= cpp = cii

Exercise 13. C is a second-order tensor. Show that cik cki is an invariant.

Solution.

c′ikc′ki = αiqαkpcqpαkrαiscrs

= αiqαisαkpαkrcqpcrs

= δqsδprcqpcrs

= cqpcpq = cikcki

Exercise 14. Show that trA2, and trA3 are invariants.

It is clear that the sum of two invariants is also an invariant. So, for example, since trA and
trA2 are invariants of A, the quantity (trA)2− trA2 is also an invariant of A. It can, furthermore,
be shown, that a second-order tensor has only three (independent) invariants. There is a certain
degree of arbitrariness inevitable in de�ning a particular set of three invariants. We could, for
example, use trA, trA2, and trA3 as our set of three invariants, but it is custom to refer to the
following set of invariants of a second-order tensor as the principal invariants of A:

IA := trA (1.28)

IIA :=
1
2
((trA)2 − trA2) (1.29)

IIIA :=
1
6
((trA)3 + 2 trA3 − 3 trA2 trA) (1.30)



Version: 25. Mai 2010 15

Exercise 15. Write expressions (1.28) to (1.30) in su�x notation

Solution.

IA = aij , (1.31)

IIA =
1
2
(aijaij − aiiajj), (1.32)

IIIA =
1
6
(aiiajjakk + 2aijakmami − 3aikakiajj). (1.33)

The second principial invariant can also be written as

IIA =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣+ ∣∣∣∣ a11 a13

a31 a33

∣∣∣∣+ ∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ . (1.34)

This follows directly from the de�nition of IIA. The third principial invariant can be written on
the form

IIIA = detA. (1.35)

Some tedious algebra is needed to show this and we obmit here the proof.
Note that the characteristic equation of A can be written in terms of the three principial

invariants as

det(A− λI) =

∣∣∣∣∣∣
a11 − λ a12 a13

a21 a22 − λ a23

a31 a23 a33 − λ

∣∣∣∣∣∣ (1.36)

= λ3 − IA + IIAλ− IIIA. (1.37)

Exercise 16. Using the de�nitions of the three principial invariants ((1.28) to (1.30)), show that
det(A− λI) = λ3 − IA + IIAλ− IIIA.

The fact that the characteristic equation of a second-order tensor det(A− λ I) can be written
on the form λ3 − IA + IIAλ − IIIA goes some way towards explaining why this particular set of
invariants is referred to as the principal invariants.

1.5 Isotropic tensors

A tensor whose components are unchanged by any rotation of the coordinate system is isotropic.
For an isotropic tensor of rank-n with the components aijk... in the coordinate system K and the
components a′ijk... in a rotated coordinate system K ′ we therefore must have have

a′ijk... = aijk....

The unit tensor I is an example of an isotropic tensor, as we can easily verify in the following
manner. The components of I are δij and using the transformation rules of second-order tensors
we �nd

δ′ij = αipαjqδpq (Eq. (1.26))

= αipαjp

= δij (Eq. (1.14))

or
δ′ij = δij

showing that the components of I are unchanged by a rotation of the coordinate system. I is
therefore an isotropic tensor.
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It can furthermore be shown that all isotropic second-order tensors can be written on the form
α I, where α is some scalar, and all isotropic third-order tensors A on the form [A]ijk = α εijk,
where again α is some scalar.

Every fourth-order isotropic tensor can be written as

[A]ijkl = α δijδkm + β δikδjm + γ δimδjk (1.38)

where α, β and γ are scalars. There are no �rst-order isotropic tensors.
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Exercises

Exercise 17. Which of the following expressions are meaningful?

1. aii

2. aiibi

3. arsbsr

4. aijbj

5. aijkbik

6. aiibii

7. aiibjj

8. aijkbijkl

Exercise 18. If aij = −aji show that aijxixj = 0 for all xi.

Exercise 19. Show that

1. δijδij = 3

2. δijδjkδik = 3

3. δikδjmδij = δkm

Exercise 20. Write following expressions in matrix notation.

1. αipαjp = δij

2. αpiαpj = δij

3. aij = αδijbkk + βbij

Exercise 21. Show that αij = ∂x′i
∂xj

where αij are the components of the rotation matrix. Hint:

Calculate the partial derivative x′i = αipxp with respect to xj.

Exercise 22. A tensor A has the components aij. Show that aii is an invariant of A.

Exercise 23. Which of the following expressions are correct?

1. εijk = εjki

2. εijk = εkij

3. εijk = −εikj

4. εijk = εjik

5. εijk = −εjik

Exercise 24. Show that for any vector a the quantities εijkak form the components of a second-
order tensor.

Exercise 25. If A with the components aijkl is a fourth-order tensor, show that

bij := aippj

form the components of a second-order tensor.
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Exercise 26. The components aij and bij of the second-order tensors A and B are related through

aij = cijkl bkl

with cijkl being the components of a fourth-order isotropic tensor. If B is symmetric, i.e. bij = bji

show that
aij = λ δijbqq + 2 µ bij

where λ and µ are some scalars. (Use Eq. (1.38) to show this.)

1.6 Vector and tensor calculus

Tabelle 1.2: Divergence, gradient, and curl (rotation). φ is a scalar, u a vector with the components
ui, and A a second-order tensor with the components aij .

symbolic notation su�x notation

∇φ [∇φ]i = φ,i gradient
∇ · u ∇ · u = ui,i divergence
∇× u [∇× u]i = εijkuj,k curl (rotation)
u · ∇ u · ∇ = uj

∂
∂xj

∇u [∇u]ij = ui,j gradient
∇2u [∇2u]i = ∇2ui Laplacian
∇A [∇A]ijk = aij,k gradient
∇ ·A [∇ ·A]i = aij,j divergence
∇×A [∇×A]ij = εipqajp,q curl (rotation)
∇2A [∇2A]ij = ∇2(aij) = ∇2[A]ij Laplacian

[∇v]ij =
∂vi

∂xj
= vi,j (tensor)

[(∇v)a]i =
∂vi

∂xj
aj (vector)

a · ((∇v)a) = ai
∂vi

∂xj
aj (scalar)

1
2
a · (∇v +∇vT)a =

1
2
ai

(
∂vi

∂xj
+

∂vj

∂xi

)
aj

= ai
∂vi

∂xj
aj



Chapter 2

Kinematics

2.1 Introduction

Continuum mechanics treats physical objects as a continuous distribution of matter. The partic-
ular atomic and molecular structures are ignored. Only the collective properties of large number
of atomic particles, such as density and temperature, are studied. This macroscopic approach is
useful as long as we are interested in regions of matter that are large compared to atomic distances.

Continuum mechanics encompasses both the study of �uids and solids. It can be divided
into the study of i) motion and deformation (kinematics), ii) forces in continuum (kinetics), iii)
conservation laws (mass, momentum, energy, increase of entropy), and iv) the relation between
forces and deformation (constitutive equations). This is also roughly how continuum mechanics
will be presented here.

2.2 Material particles

Kinematics is the study of the motion of objects without reference to the forces involved. We will
look at how motion of material particles and the deformation of a continuum can be described.

• A continuum is a hypothetical body in which the matter is continuously distributed.

• A material particle is a point-like part of the continuum having spatial dimensions which are
large compared to atomic distances but small compared to the overall size of the object.

A material particle will be treated as a mathematical point, and the continuum is a connected
set of such particles. The position of a material particle at t = 0 is given by r◦. The function
r(r◦, t) describes the movement of this material particle over time

r = r(r◦, t). (2.1)

We will refer to the material particle having the position r◦ at t = 0 as the material particle
r◦, that is r◦ is both the position of the particle at t = 0 and its name. At some late time the
material particle will, in general, be at some other location in space (given by the function r(r◦, t))
but its name (r◦) stays the same.

De�nition: The name (label) of every material particle is its position at at t = 0.

Note that since the motion of the material particle r◦ is described by the function r(r◦, t), we
have

r◦ = r(r◦, t = 0)

.

19
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Figure 2.1: The motion of the material particle r◦ as a function of time. Its position as a function
of time is described by the function r(r◦, t). The `name' of this particular material particle is its
location at t = 0, that is r◦ = r(r◦, t = 0).

2.3 Material and local time derivatives

We must make a clear distinction between the rate-of-change of some variable (temperature,
density, etc..c) at some speci�c point in space, and the rate-of-change of that variable as we follow
a material particle on its journey through space. The temperature at some speci�c point in space
may, for example, not change with time. If, however, the temperature changes from one point in
space to another, the temperature of a material particle having a non-zero velocity will change
with time.

Let the function ϕ describe some �eld variable (Temperature, Energy, Density). This function
ϕ is then a function of r and t, with r being the position of the material particle r◦,

ϕ = ϕ(r(r◦, t), t). (2.2)

We de�ne Dϕ
Dt as the rate-of-change of ϕ for a given particle r◦ (We can, for example, think of

Dϕ(r(r◦, t), t)/Dt as the rate-of-change of the temperature of the particle r◦).

De�nition: Let ϕ be some quantity of the material point r◦. Then

Dϕ

Dt

is the rate-of-change of ϕ as seen by an observer following r◦.

By de�nition, we therefore have

Dϕ

Dt
:=
(

∂ϕ(r(r◦, t), t)
∂t

)∣∣∣∣
r◦=�xed

.

This derivative denotes the rate-of-change of the �eld variable ϕ as we follow the material particle
r◦ through space. This derivative is called the material derivative (German: materielle or the
substantielle Ableitung).

The velocity v of the material particle r◦ is the rate-of-change of the position of that particle.
This means that we must consider the time derivative of r(r◦, t) where r◦ is kept �xed. The
velocity is, thus, the material derivative of the position

v(r(r◦, t), t) =
Dr(r◦, t)

Dt
=

∂r(r◦, t)
∂t

∣∣∣∣
r◦=�xed

. (2.3)
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The local time derivative is the rate-of-change at a given point in space, that is

∂ϕ

∂t
=
(

∂ϕ(r, t)
∂t

)∣∣∣∣
r=�xed

.

Exercise 27. Think about the di�erence between the material and the local derivative. Can you
think of an example where they are not equal?

Since we have decided to express ϕ as a function of r and t, the local time derivative is simply
the partial derivative with respect to t.

• The function ϕ(r, t) represents the value of ϕ at the point r and time t. A material particle
situated at point r at the time t will experience this value of ϕ.

• The material time derivative Dϕ/Dt is de�ned as the partial derivative of ϕ with respect to t
with r◦ held �xed. Physically, this is the rate-of-change of ϕ with time as a material particle
is followed. For this reason the material derivative is sometimes also called the derivative
following a particle.

• The local time derivative ∂ϕ/∂t is the partial derivative of ϕ with respect to t. It represents
the rate-of-change of ϕ with time at the point r.

Both the local and the material time derivatives are partial derivatives with respect to t. The
essential di�erence is that the local derivative is de�ned for a function of r and t, whereas the
material time derivative is de�ned for a function of the variables r◦ and t. The form ϕ(r, t) is
referred to as spatial form or as Eulerian description (German: räumliche Darstellung or Eulersche
Darstellung). The form ϕ(r◦, t) is called material description or Lagrangian description (German:
materielle or Lagrangesche Darstellung).

If the �eld variable ϕ is expressed in spatial form, that is

ϕ = ϕ(r, t) = ϕ(ri, t),

then we must express r as a function of r◦ and t in order to calculate the material derivative. The
function φ becomes a function or r and t, with r again being a function of r◦ and t, that is

ϕ = ϕ(r(r◦, t), t) = ϕ(ri(r◦k, t), t).

Using the chain rule of partial di�erentiation we obtain

∂ϕ

∂t

∣∣∣∣
r◦k︸ ︷︷ ︸

Dϕ
Dt

=
∂ϕ

∂ri

∣∣∣∣
t︸ ︷︷ ︸

ϕ,i

∂ri

∂t

∣∣∣∣
r◦k︸ ︷︷ ︸

vi

+
∂ϕ

∂t

∣∣∣∣
ri︸ ︷︷ ︸

∂ϕ
∂t

,

or

Dϕ

Dt
=

∂ϕ

∂t
+ viϕ,i (2.4)

=
∂ϕ

∂t
+ (v · ∇)ϕ. (2.5)

which can be written in the form

D

Dt
=

∂

∂t︸︷︷︸
local derivative

+ (v · ∇)︸ ︷︷ ︸
convective derivative︸ ︷︷ ︸

material derivative
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Figure 2.2: A �uid �ows through the pipe with a velocity u. As it enters the pipe at the left
end is has a somewhat higher temperature (T = TA) than at exit from the right end (T = TB).
At every location within the pipe the temperature of the �uid does not change with time. The
local derivative is, thus, zero. The temperature of a material particle, nevertheless, changes in the
course of time.

The second term on the right-hand side is called the convective derivative (German: die konvektive
Ableitung). The material derivative can be considered to be the sum of the local and the convective
derivatives.

Remark: We have

Dϕ

Dt
= 0 ⇐⇒ ϕ (German: materiell konstant)

∂ϕ

∂t
= 0 ⇐⇒ ϕ steady state.

Exercise 28. Can you think of an example where the material derivative is zero but the local time
derivative not?

Example: Consider a pipe �lled with �uid (Fig. 2.2). The �uid moves with the velocity u
through the pipe. The �uid enters the pipe at the left end having the temperature TA. As it �ows
through the pipe it looses heat to the surroundings and the temperature decreases linearly with
distance travelled through the pipe (Fig. 2.3). At exit through the right end it has the temperature
TB 6= TA.

T

T

T

A

B

t = t
0

t = t t
1

Figure 2.3: Temperature as a function of time at some particular point within the pipe (dashed
line), and for a material particle (thick line).

For an observer who measures the temperature of the �uid at some point r within the pipe,
the readings will not change with time (dashed line in Fig. 2.3). For an observer who follows a
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material �uid particle and measures its temperature along the way, the readings will change with
time (thick line in Fig. 2.3).

Exercise 29. For T = a + bx1 with x1 ∈ [0, 1] and v = (c, 0, 0) calculate the material derivative
of T .

Solution: By using Eq. (2.4) we obtain

DT

∂t
=

∂T

∂t
+ viT,i

= 0 + v1
∂T

∂x1
+

∂T

∂x2
v2 +

∂T

∂x3
v3

= cb

The acceleration of a material particle r◦ is the material derivative of the velocity.

Exercise 30. What is the physical meaning of the local derivative of the velocity? How is it
di�erent from the material derivative?

We put ϕ = vi into Eq. (2.4) and obtain

Dvi

Dt
=

∂vi

∂t
+ vkvi,k,

or
Dv
Dt

=
∂v
∂t

+ (v · ∇)v.

A velocity �eld is stationary if ∂v/∂t = 0, and uniform if (v · ∇)v = 0

∂v
∂t

= 0 ⇐⇒ v stationary

(v · ∇)v = 0 ⇐⇒ v uniform.

2.4 Material surfaces

A material surface is a surface that for every t consists of the same material particles.

Question: Is the glacier surface a material surface?

Question: Can there be a �ux of mass through a material surface?

Question: Can there be heat �ux through a material surface?

2.4.1 Material surfaces and the material derivative

Let a material surface be de�ned by
F (r, t) = 0 (2.6)

We will now show that it then follows that DF/Dt = 0.
For t = 0 consider some point on a material surface de�ned by Eq. (2.6). Let the material

particle at that point be called P◦. For t = 0 we, thus, have F (P◦, 0) = 0. Since the surface is a
material surface, it must consist of the same material particles at all times. The particle P◦ will,
thus, stay on the surface forever and F (P(P◦, t), t) = 0 for all t. The rate-of-change of F as P◦ is
followed is therefore zero. This is true of any material particle on the surface so

DF

Dt
= 0. (2.7)
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Conversely, let us now assume that DF/Dt = 0 and show that it then follows that F (r, t) = 0
de�nes a material surface.

If DF (r, t)/Dt = 0 it follows from the de�nition of D/Dt that the value of F (P(P◦, t), t) does
not change as some material particle P◦ is followed, that is DF (P(P◦, t), t)/Dt = K for every
material particle P◦, where K is some constant. The set of all such material particles ful�lling
F (r, t) = K forms a surface for some t (This is a general mathematical fact, because for every t
we have one equation for three unknowns.). The equation F (r, t) = K, hence, de�nes a material
surface for any value of K. Setting K = 0 concludes the proof.

We, thus, have seen that a surface described by an equation of the form F (r, t) is a material
surface if and only if DF/Dt = 0.

DF

Dt
= 0 ⇐⇒ F (r, t) = 0 de�nes a material surface (2.8)

Equation (2.7) can also be written on the form

∂F

∂t
+ (v · ∇)F = 0

and also as
∂F

∂t
+ viF,i = 0.

The unit normal n̂ to the surface is

n̂ =
∇F

|∇F |
, (2.9)

and it follows that

∂F

∂t
+ (v · ∇)F =

∂F

∂t
+ v · (∇F )

=
∂F

∂t
+ v · n̂|∇F |

= 0.

Thus

v · n̂ = −
∂F
∂t

|∇F |
, (2.10)

with v · n̂ being the speed of the surface in the direction of the normal n̂ to the surface.

Exercise 31. Show that (v · ∇)F = v · (∇F )

Solution:

(v · ∇)F =
(

(vx, vy, vz) ·
(

∂

∂x
,

∂

∂y
,

∂

∂z

))
F

=
(

vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)
F

=
(

vx
∂F

∂x
+ vy

∂F

∂y
+ vz

∂F

∂z

)
= (vx, vy, vz) ·

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
= v · (∇F ).
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Figure 2.4: The solid line represents a material surface separating the two regions M1 and M2.
At the point P the velocity �eld may be unsteady, and the tangential components vM1 and vM2

will in general not be equal. The velocity components normal to the surface vM1 and vM2 on the
other hand must be equal.

2.4.2 Surface speed

The velocity component tangential to a material surface can be discontinuous across the surface.
Let the two regions M1 and M2 be divided by a material surface with P being a material point
on this surface.

vM1 := lim
x→P

v(x), x ∈ M1

vM2 := lim
x→P

v(x), x ∈ M2

vn̂
Mi

(P, t) := lim
x→P

v(x, t) · n̂, x ∈ Mi for i = 1, 2 (2.11)

In general we have vM1 6= vM2 . On the other hand vn̂
M1

= vn̂
M2

. The velocity

u := vn̂
M1

= vn̂
M2

is the velocity of the material surface. It is the speed with which the surface moves in a direction
normal to itself. A material point at the surface can travel with a velocity di�erent from the
velocity u of the surface if it has a nonzero velocity component in tangential direction to the
surface.

Exercise 32. Give an example for a material surface where the tangential velocity is unsteady
across the surface.

2.5 Kinematics of the glacier surface

Let the vertical position of the glacier surface be described as a function of x and y

F (x, y, z, t) := zs(x, y, t)− z = 0 (2.12)

If there is no accumulation or ablation, the glacier surface is a material surface. In general this is,
however, not the case. The accumulation/ablation rate along the surface will be described by the
function ḃ(x, y, t) in the units m a−1. Accumulation is de�ned to be positive and ablation negative.

Because the glacier surface is not a material surface the velocity of a material particle at the
surface is, in general, not equal to the velocity of the surface itself (Fig. 2.5). We will denote the
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u

v

Figure 2.5: The vector v is the velocity of a material particle at the surface, and u is the velocity
of the surface.

velocity of a material particle situated at some moment at the surface by v, while u denotes the
velocity of the surface. Only if

(u− v) · n̂ = 0

will F (r, t) = 0 describe a material surface. If F does not describe a material surface we do, in
general, not expect (u− v) · n̂ = 0, and for that reason

∂F

∂t
+ v · ∇F 6= 0.

We have on the other hand
∂F

∂t
+ u · ∇F = 0. (2.13)

This is shown in detail in an exercise below. Note that because u is not a material velocity, (2.13)
does not correspond to the material derivative of F .

We de�ne

ḃ⊥ := (v − u) · n̂ (2.14)

were n̂

n̂ =
∇F

|∇F |

is the unit normal to the surface. Note that we can write the components of n̂ as

ni =
F,i

|∇F |
.

The function ḃ⊥ is de�ned as the projection of the di�erence between the material velocity at
the surface (v) and the surface velocity (v) onto the unit surface normal (n̂). (Question: What is
ḃ⊥ in �gure 2.5?) If this di�erence is equal to zero the corresponding material point travels with
the same speed in the direction normal to the surface as the surface itself. The material point
remains at the surface and there is no �ux of material across it. If on the other hand ḃ⊥ 6= 0 there
must be a �ux of material across the surface. The function ḃ⊥ thus represents the normal �ux
through the surface.

From Eq. (2.13) it follows that

∂F

∂t
+ (ui + vi − vi)F,i = 0
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Figure 2.6: The individual components of the kinematic boundary condition.

or

∂F

∂t
+ viF,i = (vi − ui)F,i

= (vi − ui)ni|∇F |
= |∇F |ḃ⊥.

If we de�ne
ḃ := |∇F |ḃ⊥. (2.15)

we can write this equation as
∂F

∂t
+ v · ∇F = ḃ (2.16)

For
F (x, y, z, t) := zs(x, y, t)− z = 0.

we obtain from Eq. (2.16)
∂zs

∂t
+ vx

∂zs

∂x
+ vy

∂zs

∂y
− vz = ḃ (2.17)

This equation describes the relation between the velocity components of a material particle at the
surface (vi), the surface slope (∂zs/∂x and ∂zs/∂y), the changes in altitude with time, and the
mass-balance rate (ḃ, German: Die Massenbilanzfunktion) Eq. (2.16) is the so called kinematic
boundary condition at the surface. The individual terms of Eq. (2.16) are shown graphically in
Fig. (2.6).

From the de�nition (2.14) of ḃ⊥ we see that ḃ⊥ is the �ux through the glacier surface as
measured in the direction normal to the surface. The geometrical meaning of ḃ as de�ned through
(2.15) is possibly less clear. Figure 2.7 shows the graphical relationship between |∇F |, |∂F/∂z|,
and ḃ⊥. For a surface de�ned by F (x, y, z, t) = 0 the gradient of F is always normal to the surface.
∂F/∂z is the component of gradient of F in z direction. As described above, it follows from its
de�nition, that ḃ⊥ represents the material �ux normal to the surface. ḃ is de�ned as ḃ := |∇F |ḃ⊥.
If F is written on the form F (x, y, z, t) := zs(x, y, t) − z = 0 we can give ḃ a simple geometrical
interpretation. Because now |∂F/∂z| = 1 we can write ḃ⊥/ḃ = |∂F/∂z|/|∇F | which shows that ḃ⊥
is to ḃ as |∂F/∂z| is to |∇F |. In �gure 2.7 it is assumed that F is written on this form, in which
case ḃ can be thought of as the �ux through the surface as measured with respect to a horizontal
plane.
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Figure 2.7: The geometrical relationship between ḃ and ḃ⊥.

Exercise 33. If F (r, t) = 0 is not a material surface but moves with a speed u di�erent from the
velocity v of the material particles at the surface, show that

(v − u) · n̂ =
DF/Dt

|∇F |

where n̂ is the normal to the surface.

Exercise 34. Why is Eq. 2.13 correct?

Answer: For t = 0 let o be some point at the surface. We de�ne the velocity of this point to
be the velocity of the surface at this point in space at all times. The point o will therefore always
stay at the surface and its velocity will be equal to u. The position of o can be described by the
function p(o, t). We have

ui =
∂pi

∂t

∣∣∣∣
ok

The surface is represented by the equation F (r, t) = 0. Because o is always situated at the surface
we have F (p(o, t), t) = 0 and

∂F

∂t

∣∣∣∣
o

= 0

Using the chain rule we obtain

∂F

∂t

∣∣∣∣
o

=
∂F

∂pi

∣∣∣∣
t

∂pi

∂t

∣∣∣∣
ok

+
∂F

∂t

∣∣∣∣
pi

and therefore
∂F (ri, t)

∂t
+ uk

∂F (ri, t)
∂rk

= 0

which is Eq. (2.13).

Example: A surface is represented by the equation F (r, t) = 0 with

F = x− ut.
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The equations describes a surface moving with the velocity u in x direction. It consists of all
points in the yz plane with x = ut and we have

∂F (ri, t)
∂t

+ uk
∂F (ri, t)

∂rk
= −u + u = 0

Exercise 35. What is the physical meaning of ḃ as de�ned by Eq. (2.15)?

Question: Does the correctness kinematic boundary condition depend on the material prop-
erties of the ice?

2.6 The kinematic boundary condition at bed

An analogous equation is found for the glacier bed. Let the glacier bed be given by the equation

F (x, y, z, t) := zb(x, y, z, t)− z = 0.

Then it follows that
∂zb

∂t
+ vx

∂zb

∂x
+ vy

∂zb

∂y
− vz = −ḃb , (2.18)

where ḃb is the ablation/accumulation rate at bed, which is usually small compared to the other
terms.

2.7 Strain rates

We consider a line element dx◦ of the medium K at t = t◦ (Fig. 2.8). The line element connects
two material points of the medium. With time the medium will deform and therefore the length
and the orientation of the line element will change. We will investigate the connection between
the velocity �eld and the deformation of the line element.

dx

dx

o

Figure 2.8: The movement of a line element dx◦ through space.

The position of the material point x◦ is given by

x = x(x◦, t).

We consider an in�nitesimal change in x such that

dxi =
3∑

j=1

∂xi

∂x◦j︸︷︷︸
=:Fij

dx◦j ,
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which can also be written on the form

dx = F dx◦. (2.19)

The elements

Fij =
∂xi

∂x◦j
(2.20)

of the tensor F are called the deformation gradients (German: Deformationsgradient).
Eq. (2.19) describes the transformation of the line element dx◦ into dx. Both dx◦ and dx

connect the same material points. In order to come up with a relation between the velocity �eld
and the deformation of the line element we consider the material derivative of the deformation
gradient

DFij

Dt
=

D

Dt

∂xi

∂x◦j
=

∂

∂t

(
∂xi

∂x◦j

)∣∣∣∣∣
x◦

=
∂2xi

∂x◦j∂t

∣∣∣∣∣
x◦

=
∂

∂x◦j
vi

=
∂vi

∂x◦j
=

∂vi

∂xk

∂xk

∂x◦j
(2.21)

which can also be written in the form

DF
Dt

= (∇v)F (2.22)

Exercise 36. Show that Eq. (2.22) and Eq. (2.21) are identical.

We now consider the material derivative of dx

D dx
Dt

=
D

Dt
(F dx◦) (Eq. (2.19))

=
DF
Dt

dx◦ (D(dx◦)/Dt = 0)

= (∇v)F dx◦ (Eq. (2.22))

= (∇v) dx (Eq. (2.19)).

or
D

Dt
(dx) = (∇v)(dx) (2.23)

Both changes in the length and the orientation of the line element dx contribute to Ddx/Dt. We
would like to separate these two contributions, and therefore write

dx =
dx
|dx|︸︷︷︸
=:a

|dx|︸︷︷︸
=:ds

,

or
dx = a ds. (2.24)

The material derivative of dx can then be written as

D

Dt
(dx) =

D

Dt
(a ds)

=
D(ds)

Dt
a +

Da
Dt

ds. (2.25)
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From Eq. (2.23) and the fact that (∇v) dx = (∇v)a ds = ds(∇v)a it follows that

D

Dt
(dx) = (∇v)(dx)

= ds(∇v)a

which allows us to write Eq. (2.25) on the form

ds (∇v)a =
D(ds)

Dt
a + ds

Da
Dt

.

By multiplying both sides with a and dividing by ds we obtain

a · (∇v)a =
1
ds

D(ds)
Dt

+ 0 (2.26)

The second term on the right-hand side is equal to zero because

a · Da
Dt

= a ·
(

∂a
∂t

+ (v · ∇)a
)

=
1
2

∂(a · a)
∂t

+ a ·
(

vx
∂ax

∂x
+ vy

∂ax

∂y
+ vz

∂ax

∂z
, · · · , · · ·

)
=

∂1
∂t︸︷︷︸
=0

+axvx
∂ax

∂x
+ axvy

∂ax

∂y
+ axvz

∂ax

∂z
+ · · ·+ · · ·

= vx
1
2

∂a2
x

∂x
+ vy

1
2

∂a2
x

∂y
+ vz

1
2

∂a2
x

∂z
+ · · ·+ · · ·

=
1
2

(
vx

(
∂a2

x

∂x
+

∂a2
y

∂x
+

∂a2
z

∂x

)
+ vy

(
∂a2

x

∂y
+

∂a2
y

∂y
+

∂a2
z

∂y

)
+ vz

(
∂a2

x

∂z
+

∂a2
y

∂z
+

∂a2
z

∂z

))

=
1
2

(
vx

∂

∂x
a · a + vy

∂

∂y
a · a + vz

∂

∂z
a · a

)
=

1
2

(
vx

∂

∂x
1 + vy

∂

∂y
1 + vz

∂

∂z
1
)

= 0.

Question: Why is a · a = 1?

We therefore have
1
ds

D(ds)
Dt

= a · (∇v)a.

But since

a · (∇v)a = aivi,jaj

=
1
2
ai (vi,j + vi,j) aj

=
1
2

(aivi,jaj + aivi,jaj)

=
1
2

(aivi,jaj + ajvj,iai) (swap i and j in the second term)

=
1
2

(aivi,jaj + aivj,iaj) (swap ai with aj in the second term)

=
1
2
ai (vi,j + vj,i) aj

=
1
2
a ·
(
∇v +∇vT

)
a



32 Karthaus: continuum mechanics

we also have
1
ds

D(ds)
Dt

=
1
2
a · (∇v +∇vT)︸ ︷︷ ︸

=:2D

a.

with the tensor D de�ned as

D :=
1
2
(
∇v +∇vT

)
(2.27)

The tensor D is called stretching tensor or the rate-of-deformation tensor (German: Verzerrun-
gungsgeschwindigkeitstensor). We have arrived at

1
ds

D(ds)
Dt

= a ·Da (2.28)

Eq. (2.28) gives us the information which we were looking for. On the left-hand side we have the
relative rate-of-change with time of the length of the line element dx◦ as we follow the material
particles that it connects. This rate is called the stretching rate at x along the direction a. On the
right-hand side we have the stretching tensor D and the vector a de�ning the orientation of the
line element. The stretching tensor is completely determined by the spatial velocity gradient. If
we know the velocity �eld, we can use the right-hand side of Eq. (2.28) to calculate the stretching
rate (ds−1 D(ds)/Dt) at any given point x of the medium in any given direction a.

Question: Can the stretching rate be calculated by the right-hand side of Eq. (2.28) for any
given velocity �eld, or only if the velocity gradients are small?

If follows from the de�nition 2.27 that D is a symmetrical tensor, that is

[D]ij = [D]ji

[D]ij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
The components of the stretching tensor are usually written as

ε̇ij :=
1
2
(vi,j + vj,i) (2.29)

and called strain rates.

Exercise 37. Show that Eq. (2.28) can be written as

D

Dt
ln(ds) = aiaj ε̇ij

Exercise 38. Calculate the stretching along the ê1 direction in terms of the strains rates ε̇ij.

Solution: We insert ê1 for a in Eq. (2.28):

1
ds

D (ds)
Dt

= ê1 ·Dê1

= ê1 ·

 D11

D21

D31


= D11 = ε̇11

This shows that ε̇11 represents the stretching rate along ê1 direction. The components ε̇11, ε̇22
and ε̇33, thus, are the stretching rates along ê1, ê2, and ê3 directions, respectively.

Exercise 39. What is the geometrical meaning of the o�-diagonal components of the stretching
tensor?



Chapter 3

Forces and stresses

3.1 Body forces and surface forces

All forces can be divided into body or surface forces (German: Volumenlasten and Ober�ächenlas-
ten). Body forces act within the body. The gravity force is an example for a body force. Surface
forces act on the bounding surface of the body.

b

Figure 3.1: Body force.

Let the body force at the point r be b(r). The total body force fV , is the integral over the
volume of the body

fV =
∫

V

ρb dV,

where ρ is the density. In a coordinate system with the ê3 axis pointing upward the gravity force
is, for example,

b = −g ê3,

with g = 9.81 m s−2. The product ρb has the units force per volume.
We consider the surface elements dA in Fig. 3.2. The orientation of this surface element is

de�ned as the direction of the unit normal to the surface n̂. The surface force per unit of area s
is the so called surface traction (German: Spannungsvektor). Other terms for the surface traction
s are stress vector, and surface force per unit of area. The surface can be a part of the exterior of
the body, or we can think of it as a part of an internal cut plane. If dA is a surface element in the
interior of the body, we think of

s = s(r, n̂, t)

as the internal surface force per unit area resulting from that part of the body into which n̂ is
directed into.

33
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A n
^

dA

s

Figure 3.2: Surface force.

The surface traction is to be thought of as the limit

s := lim
4A→0

4f
4A

where 4f is the surface force acting on the area 4A. It is important to realise that the surface
traction will, in general, depend on both the location r and the orientation ê of the surface element
dA, as well as on the time variable t, that is

s = s(r, n̂, t).

The total surface force acting on a surface A is given by the integral

fA =
∫

A

s dA.

Exercise 40. Think about at least one example where the surface traction depends on the orien-
tation of the surface.

If we consider a surface element ∆A within a body, there are always two possible directions
for n̂. If we arbitrarily chose one of these directions as n̂, then the surface traction

s(r, n̂, t)

is the surface force per unit area resulting from the part of the body to which n̂ is directed upon.
The surface traction

s(r,−n̂, t)

is the surface force per unit area acting on ∆A from the other side. We can think about s(r, n̂, t)
as the action and the s(r,−n̂, t) as the reaction surface force per unit area (or the other way
around). From Newton's third law of motion we conclude that 1

s(−n̂) = −s(n̂) (3.1)

(actio = reactio)

This relation is known as Cauchy's lemma or as Cauchy's reciprocal relation. Cauchy's lemma
states that the force due to the `outside' on the `inside' is equal in magnitude and opposite to the
force due to the `inside' to the `outside'.

1We will often simply write s(n̂) instead of the somewhat more accurate notation s(r, n̂, t).
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Figure 3.3: The slant face QSR is perpendicular to the exterior normal n. The vector s is the
stress vector (traction) on that plane.

3.2 The stress tensor

The surface traction (which is as vector quantity) at some time t depends on both the location
and the orientation of the surface element. We can never talk about the traction at some point
r without specifying the orientation n̂. It turns out that it is possible to completely specify the
traction (the stress vector) at a point for any given surface-element orientation n̂ if we know six
quantities. These six quantities together form the components of a symmetrical tensor. To see
this we consider the tetrahedron in Fig. 3.3.

The basic idea is to consider the relationship between the traction on planes perpendicular to
the coordinate axes and on some plane with an arbitrary orientation. If such a relationship exists,
then it is su�cient to specify the traction on the three planes perpendicular to the coordinate axes
at every point, in order to calculate the traction on any plane at that point.

The slant face bounded by the points R, S, and Q in Fig. 3.3 has an arbitrary direction. It
has the area 4A, and the traction on this area is s(n). Let 4Ai, for i = 1, 2, 3, be the areas of
the faces of the tetrahedron perpendicular to the ê1, ê2, and ê3 axes, respectively. The triangles
4Ai are, thus, the projections of the slant face 4A on the three planes de�ned by xi = 0, that is

4Ai = 4A ni (3.2)

with
ni = n̂ · êi = cos(n̂i, êi).

By the second law of Newton the sum of all forces equals the product of mass and acceleration
(assuming constant mass)

Sum of all forces︸ ︷︷ ︸
f

= mass︸ ︷︷ ︸
ρ4V

· acceleration︸ ︷︷ ︸
a

(3.3)

We now from the sum of all forces in each direction of the coordinate system. The volume force
in êi direction is

b · êi = ρ4V g · êi.
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The surface traction on, for example, the plane element with the orientation ê2 (bounded by the
points PSR) is given by −s(ê2). The minus sign follows from the fact that the normal vector ê2

points into the tetrahedron. The exterior normal to the face PSR is −n̂2. By Cauchy's Lemma
s(−ê2) = −s(ê2). The total force on that plane element is s(ê2)4A2. The component of the total
force along the ê1 direction is s(ê2)4A2ê1. In general the surface force component of the 4Ai

surface in the êj direction is given by

s(êi)4Ai · êj .

The surface force on the slant face QSR in êj direction is given by

s(n̂)4A · êj .

We do not need the minus sign here because the normal vector n̂ points out of the tetrahedron.
For the ê1 direction Newton's second law of motion then gives

4V ρa · ê1 = −4A1 s(ê1) · ê1 −4A2 s(ê2) · ê1 −4A3 s(ê3) · ê1 + s(n̂) · ê14A + ρ4V g · ê1 (3.4)

On the right-hand side we have the total sum of volume and surface forces in the ê1 direction. If
we now use

4V =
1
3
h4A

where h is the altitude of the tetrahedron2 and Eq. (3.2) we can rewrite Eq. (3.4) as

1
3
h4A ρa · ê1 = −4A n1s(ê1) · ê1−4A n2s(ê2) · ê1−4A n3s(ê3) · ê1 +s(n̂) · ê14A+ρ

1
3
h4Ag · ê1

(3.5)
Letting h → 0 leads to

0 = −4A n1s(ê1) · ê1 −4A n2s(ê2) · ê1 −4A n3s(ê3) · ê1 + s(n̂) · ê14A (3.6)

or
0 = −n1s(ê1) · ê1 − n2s(ê2) · ê1 − n3s(ê3) · ê1 + s(n̂) · ê1 (3.7)

As h approach zero, the volume and the four surface areas simultaneously go to zero and the
tetrahedron shrinks to a point. The above expression is, thus, valid at the point P .

By introducing the notation
σij := s(êi) · êj (3.8)

we can write Eq. (3.7) in the form
s(n̂) · ê1 = σi1ni.

Repeating the exercise to the other two directions shows that in general

Si(n̂) = σkink (3.9)

Remark: We did not have to make any assumption about force balance in deriving (3.9). It
remains true even if the body accelerates.

Eq. (3.9) expresses the relationship between the stress vectors on the faces 4Ai and the stress
vector s(n̂) on the face 4A. The orientation of the surface element 4A was completely arbitrary.
We, thus, only have to know the components of the stress vectors sj(êi) in some coordinate system
in order to calculate the stress vector (traction) s(n̂).

The quantities σij were de�ned above simply as short notation for the product of s(êi) and êj

(Eq. (3.8)). We now show that these nine quantities do indeed form the components of a second
order Cartesian tensor.

2The altitude h of the tetrahedron is the distance from P toward the slant plane QSR along the direction n̂.
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Figure 3.4: The physical interpretation of the individual components of the stress tensor follows
directly from their de�nition (3.8). The �rst subscript relates to the orientation of the cut plane,
the second to the component of the stress vector (traction) of the cut plane. The component σij

is, thus, the j component of the stress vector of the cut plane s(êi), or simply σij = s(êi) · êj ,
which is de�nition (3.8).

Exercise 41 (The quotient law). Proof that if the three components of the sum aijbi are compo-
nents of a vector, with bi being components of an arbitrary vector, then aij are components of a
tensor.

Solution. In the coordinate system xi let

ci = aijbj

and in some other coordinate system x′i let

c′i = a′ijb
′
j .

Since ci and bj are both components of vectors, we have between c′i, b′i, and ci, bi, respectively,
the usual rotational relationships between vectors (c′i = αijcj and ci = αjic

′
j where αij are the

elements of the rotation matrix.).

a′ijb
′
j = c′i

= αiqcq

= αiqaqpbp

= αiqaqpαjp b′j

or

0 =
(
αiqαjp aqp − a′ij

)
b′j .

Since this is true for any vector with the components b′i in system x′i it follows that the term in
the bracket must be equal to zero, that is

a′ij = αiqαjp aqp.

From the de�nition of a Cartesian tensor of second order it then follows that the quantities aij

form the components of a tensor.
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The quotient law shows that σij are the components of a second order tensor tensor (Exercise:
Explain this in detail). The tensor σ is called the Cauchy's stress tensor. (German: Cauchyscher
Spannungstensor or der Tensor der Reibungsspannungen, and σij Reibungsspannungen). The stress
tensor describes the stress �eld completely.

The stress tensor is given by the tensor product

σ = σij êi ⊗ êj

Eq. (3.9) can then be written on the form

s(n̂) = σT n̂ (3.10)

or as

s(n̂) =

 S1(n̂)
S2(n̂)
S3(n̂)

 =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

T  n1

n2

n3

 . (3.11)

If we know the components of the stress tensor, Eq. (3.9) can be used to determine the traction
(stress vector) on a plane with the unit normal n̂.

Exercise 42. The components of the stress tensor are

σT = [σji] =

 1 2 3
2 −1 1
3 1 0


Find the traction on the plane de�ned by

x1 + x2 − 1 = 0

Also determine the angle θ between the stress vector s(n̂) and n̂.

Solution. The unit normal is

n̂ =
1√
2

 1
1
0


and from Eq. (3.11) we have

s(n̂) = σT n̂ =

 1 2 3
2 −1 1
3 1 0

 1√
2

 1
1
0


=

1√
2

 3
1
4


The angle θ is

cos θ =
s(n̂) · n̂
|s(n̂)|

=
1√
2

4√
26

⇒ θ = 56◦.

3.2.1 The components of the stress tensor

A physical interpretation of individual terms can most easily be derived from the de�nition

σij := s(êi) · êj .
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This de�nition shows that σij is the projection of the of the surface traction (s(êi) along the unit
normal vector êj . Hence, σij is the j component of the surface traction s(n̂i).

The traction s(n̂) on the surface Fn̂ with the unit normal vector n̂ is the external force per
unit area, that is the force that acts on Fn̂ by the adjacent part of the material into which ê is
directed upon. The internal force, that is the force that is exerted on the surface by the part of
the material that ê is pointing away from, is given by s(−n̂). As mentioned above, there is a
simple relationship between the external and the internal force known as the, Cauchy's reciprocal
relation (see Eq. (3.1).

From the de�nition (3.8) we also see that σij is a positive number if the absolute value of the
angle between the surface traction s(êi) and the orientation of the surface êj is less than 90◦.
Thus, for the area Fn̂1 with the unit normal vector n̂1, σ11 is positive if s(n̂1) points `out' of
the area and negative if it points into it. Tensile stresses are therefore positive and compressive
stresses negative.

3.2.2 Normal and shear stresses

As shown in Fig. 3.5 the traction on a surface can be written as a sum of a normal and a tangential
vector, where

S

S

S
n

n

( n )
^

^

^

t

t

Figure 3.5: The traction (s(n̂)) and the corresponding normal (sn) and shear stresses (st), with
s(n̂) = sn + st.

Sn = n̂ · s(n̂) = n̂ · σT n̂

St = t̂ · s(n̂) = s(n̂)− Snn̂.

The quantity Sn is the normal stress and St is the tangential stress. Clearly one can never talk
about normal or tangential stress without specifying (n̂) the orientation of the surface. However,
somewhat confusingly, the main-diagonal elements of the stress tensor are also sometimes referred
to as the normal stresses and the o� diagonal elements as shear stresses.

3.2.3 Principal stresses

Consider a surface element with the normal vector n̂ and an associated stress vector s(n̂). In
general these two vectors will not be collinear. But if the stress tensor σ is given can we then �nd
a surface with a a unit normal so that

s(n̂) = λn̂

where λ is a real scalar? If we write the above equation on the form

s(n̂) = σT n̂ = λ n̂ (3.12)
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we see if we can solve this eigenvalue problem the eigenvector gives the orientation of the surface.
As we will later see, the conservation of angular momentum implies that the Cauchy stress tensor
σ must be symmetrical, that is

σij = σji.

Any textbook of linear algebra shows that for a symmetrical tensor the following statements hold:

• All eigenvalues are real and each eigenvector can be chosen so that each of its components
is a real number.

• Eigenvectors corresponding to distinct eigenvalues are orthogonal.

• The mutually orthogonal eigenvectors can be used as a basis for a coordinate system. In
this coordinate system all elements outside of the main diagonal are zero.

For the Cauchy stress tensor we can therefore always �nd a coordinate system in which the
tensor is on a diagonal form

σ =

 σ1 0 0
0 σ2 0
0 0 σ3

 . (3.13)

There is a bit of terminology used in this context. The three eigenvectors are called principal axes.
The eigenvalues σ1, σ2, and σ3, are the principal stresses. The principal stresses are real numbers,
and the principal axes from a Cartesian coordinate system.

On page 14 we discussed the three principal invariants of a second-order tensor, and showed that
the principal invariants of a second-order tensor are the coe�cients of the characteristic equation.
When written on the form (3.13), the characteristic equation of the Cauchy stress tensor is

det(σ − λI) =

∣∣∣∣∣∣
σ1 − λ 0 0

0 σ2 − λ 0
0 0 σ3 − λ

∣∣∣∣∣∣
= (σ1 − λ)(σ2 − λ)(σ3 − λ)
= −λ3 + λ2(σ1 + σ2 + σ3)− λ(σ1σ2 + σ1σ3 + σ2σ3)− σ1σ2σ3.

Hence, in terms of the principal stresses the three fundamental stress invariants are

IA = σ1 + σ2 + σ3,

IIA = σ1σ2 + σ1σ3 + σ2σ3,

IIIA = σ1σ2σ3.

3.2.4 Deviatoric stresses

As will become more clear in what follows it is often useful to decompose the Cauchy stress tensor
into a spherical and a deviator part as follows

σ =
1
3
σiiI︸ ︷︷ ︸

spherical part

+ σ(d)︸︷︷︸
deviatoric part

. (3.14)

The deviatoric part is referred to as the stress deviator and its components as the deviatoric
stresses.

We now de�ne a quantity p̄ as

p̄ := −1
3
σii. (3.15)
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The quantity p̄ is simply the negative of the mean value of the elements along the main diagonal
of the Cauchy stress tensor, i.e. the negative of the mean normal stress. Note that because the
trace of the stress tensor is an invariant, p̄ is also an invariant.

In the particular case of hydrostatic stress, p̄ can be given a simple physical interpretation as
follows. By de�nition stress at a given point r is hydrostatic if the same stress −p acts on every
area element going through that point, that is if

s(n̂) = −p n̂ (3.16)

for any given area element with the orientation n̂. We can also write this equation on the form

σn̂ = −p n̂ (3.17)

which is an eigenvalue problem. It follows that −p is the only eigenvalue and every unit vector an
eigenvector. Every direction is a principal directions and the stress tensor is on a diagonal form in
every Cartesian coordinate system. In this particular case the de�nition of p̄ given above leads to

p̄ = −1
3
σii = −1

3
(−p− p− p) = p.

Hence, for a hydrostatic stress �eld p̄ is equal to the hydrostatic pressure. The quantity p̄ is often
referred to as the mechanical pressure or simply the mean pressure.

Pressure and incompressibility

In general p̄ is not identical to the the thermodynamic pressure which in classical thermodynamics
is de�ned through a equation of state (p = p(T, ρ)) relating the pressure to temperature (T )
and speci�c density (ρ). For an incompressible media there is no such equation of state as, by
de�nition, neither the density ρ nor the temperature T changes with pressure. In this case we
simply de�ne the pressure as being p̄, write p instead of p̄ and refer to p as the pressure.

For an incompressible material the pressure p is an independent variable. It does not enter the
constitutive equations and, as we will see later, only its gradient enters the momentum equations.
Unless it is speci�ed somewhere as a part of the boundary conditions, the pressure can only be
determined within an additive constant.

Stokes Hypothesis

If the material is compressible the two quantities p̄ and p are distinct and not necessarily equal.
To clarify this consider the general isotropic linear material equation

σij = −pδij + λε̇kkδij + 2ηε̇ij

where p is the thermodynamical pressure and λ and η two material parameters. Using this equation
together with the de�nition of p̄ gives

p̄ = p− (λ +
2
3
η)ε̇ii.

Thus, if ε̇ii = 0 we have p̄ = p showing that the variable p̄ is a natural de�nition of pressure for
incompressible medium. If, on the other hand, ε̇ii 6= 0, then, in general p 6= p̄ unless

λ = −2
3
η. (3.18)

G. G. Stokes suggested that this expression might hold for many materials, in which case p = p̄.
As it turns out this Stokes hypothesis, although not strictly correct for any materials, is su�ciently
good for most incompressible �ow situations. This Stokes hypothesis, however, continues to be a
controversional subject. The quantity

ηD = λ +
2
3
η
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is called the bulk viscosity. It is a measurable quantity and any deviation of its value from zero
would indicate a violation of Stokes hypothesis. Direct measurements appear di�cult to do and
not many references are found in the literature. In basically all practical work it is assumed that
ηD ≈ 0 or at least ηD � η. Note that the Stokes hypothesis reduces the number of material
parameters for an incompressible viscous material by one.

3.2.5 Invariants of the deviatoric stress tensor

The deviatoric stresses

σ
(d)
ij = σij −

1
3
σkkδij

= σij + p δij

describe the deviation of the stress �eld from a hydrostatic pressure �eld. For incompressible
materials, only the deviatoric part of the stress tensor causes material deformation. In this sense
the stress deviator is the `interesting' part of the stress tensor.

There is a simple connection between the eigenvectors and the eigenvalues of the stress deviator
with those of the stress tensor. If s is a eigenvector of the stress tensor σ for the eigenvalu λ. i.e.

σs = λ s,

it follows that

σ s = (σ(d) − pI) s
= σ(d)s− p s

= λ s

and therfore
σ(d) s = (λ + p) s.

Thus, the stress deviator and the stress tensor have the same eigenvectors, and the eigenvalues
are connected through

λ(d) = λ + p.

The �rst invariant of the stress deviators is identically equal to zero:

I
(d)
σ = σ

(d)
ii

= σ
(d)
11 + σ

(d)
22 + σ

(d)
33

= σ11 −
1
3
(σ11 + σ22 + σ33)

+ σ22 −
1
3
(σ11 + σ22 + σ33)

+ σ33 −
1
3
(σ11 + σ22 + σ33)

= 0

The second invariant can be simpli�ed to

II
(d)
σ =

1
2
(σ(d)

ii︸︷︷︸
0

σ
(d)
jj︸︷︷︸
0

−σ
(d)
ij σ

(d)
ji )

= −1
2
σ

(d)
ij σ

(d)
ji

= −1
2
Sp
(
σ(d)σ(d)

)
.
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The third invariant is, as before, equal to the determinat of the stress deviator, or

III
(d)
σ = det(σ(d)

ij ).

If we know the eigenvalues of the stress deviator the invariants can be calculated in the same
way as for any other symmetrical second-order tensor using

II
(d)
σ = σ

(d)
1 σ

(d)
2 + σ

(d)
2 σ

(d)
3 + σ

(d)
3 σ

(d)
1 ,

III
(d)
σ = σ

(d)
1 σ

(d)
2 σ

(d)
3 .

where σ
(d)
1 , σ

(d)
2 , and σ

(d)
3 are the three eigenvalues.

Sometimes it is useful to know the second invariant of the stress deviator in terms of the
eigenvalues of the stress tensor. Using the relationship between the eigenvalues of these two
tensors given above we �nd after some algebra that

II
(d)
σ = −1

6
(
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

)
.

Exercise 43. Show that
∂Iσ
∂σij

= δij , (3.19)

and also that
∂IIσ(d)

∂σij
= −σ

(d)
ij . (3.20)
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Chapter 4

Conservation laws

The �eld variables (momentum �eld, energy �eld, etc.) are subjected to the basic fundamental
conservation laws of nature. The mass, momentum, and energy of a closed system do, for example,
not change with time. These conservation laws lead, within the context of continuum mechanics,
to a set of �eld equations that hold at every point of a continuum and for all time. They relate
various �eld variables and are independent of the material properties of the medium.

4.1 Integral formulas

A number of integral formulas are of great utility in deriving the conservation laws. We will state
these formulas without a proof.

Consider the integral

I(t) =
∫

V (t)

Ti1i2...in(xi, t) dV.

The function Ti1i2...in(xi, t) is a tensor of order n, and the integration follows over a time-dependent
volume V (t). The volume V encloses a body, and the surface of this body (A) is a material surface.
The integral I(t) is, thus, for all t evaluated over the same set of material points. The rate-of-
change of I(t) with time therefore corresponds to a material derivative.

4.1.1 Leibniz's Theorem

Leibniz's theorem is very useful for moving the (material) derivative inside an integral over a
time-dependent volume. Let A(t) be the surface of the volume V (t), ni the components of a unit
normal vector of A(t), and vk the velocity components of a (material) particle. The Leibniz's
theorem states that

D

Dt

∫
V (t)

Ti1i2...in(xi, t) dV =
∫

V (t)

∂Ti1i2...in

∂t
dV +

∫
A(t)

nkvkTi1i2...in dA . (4.1)

The integral on the left-hand side is a material integral, that is the (material) volume V is the
volume of a body enclosed by a material surface. Note that we must think of the integral on the
left-hand side in this way because the time derivative (taken after the integration over V (t)) is a
material derivative. For the �rst term on the right-hand side, on the other hand, this interpretation
of the volume integral is not necessary. The result of this integral (�rst term on the right hand
side) would not change if we were to substitute the material volume by a �xed integration range
coinciding at time t with the material volume.

The theorem of Leibniz, therefore, gives us the relationship between 1) the rate-of-change with
time of the integral of Ti1i2...in

(xi, t) over the material volume V moving with the body, 2) the
integral of the local time derivative of Ti1i2...in(xi, t) over a �xed region that at t coincides with

45
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the time-dependent volume V (t), and 3) the �ux of Ti1i2...in
(xi, t) through the surface of that �xed

region.
A useful special case of the theorem is obtained by setting Ti1i2...in = f(x, t).

D

Dt

∫ x=b(t)

x=a(t)

f(x, t) dx =
∫ x=b(t)

x=a(t)

∂f(x, t)
∂t

dx +
db(t)
dt

f(b, t)− da(t)
dt

f(a, t).

Exercise 44. What about the special case Ti1i2...in = 1? Can you interpret the resulting theorem?

4.1.2 Reynold's transport formula

For Ti1i2...in
= φ(r, t) we obtain the so called Reynold's transport formula

D

Dt

∫
V

φdV =
∫

V

∂φ

∂t
dV +

∫
A

φnkvk dA . (4.2)

4.1.3 Integral formula of Gauss (divergence theorem)

The integral formula of Gauss is a further useful and well-known theorem∫
V

Ti1i2...in

∂xi
dV =

∫
A

niTi1i2...in
dA. (4.3)

The special case Ti1i2...in = ξi, where ξi is a vector �eld leads to∫
V

ξi,i dV =
∫

A

niξi dA. (4.4)

4.2 Conservation of mass

The total mass of a material body having the volume V (t) is given by the integral of density �eld
ρ(r, t) over the total volume of the body

M =
∫

V (t)

ρ(r, t) dV.

The conservation of mass reads
DM

Dt
= 0.

Using the transport formula (with φ = ρ in Eq. (4.2)) and the integral formula of Gauss (with
ξ = viρ in Eq. (4.4)) leads to

DM

Dt
=

D

Dt

∫
V (t)

ρ dV =
∫

V (t)

∂ρ

∂t
dV +

∫
A(t)

ρnkvk dA

=
∫

V (t)

(
∂ρ

∂t
+

∂

∂xk
(vkρ)

)
dV . (4.5)

Equation (4.5) holds for any volume at all times. It, thus, follows that

∂ρ

∂t
+

∂

∂xk
(vkρ) = 0 , (4.6)

or in vector notation
∂ρ

∂t
+∇·(ρv) = 0. (4.7)
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Eq. (4.6) is usually referred to as the equation of continuity or the continuity equation. In glaciology
the term 'continuity equation' is usually used for a di�erent equation, and for that reason we
will refer to Eq. (4.6) as the mass-conservation equation (German: Massenerhaltungsgleichung).
The vector form of the mass-conservation equation (Eq. (4.7)) is independent of the particular
coordinate system used.

Another useful form of mass-conservation equation is found by writing the second term on the
left-hand side of Eq. (4.6) as

(ρvk),k = ρvk,k + vkρ,k , (4.8)

which then leads to
∂ρ

∂t
+ vkρ,k︸ ︷︷ ︸

Dρ
Dt

+ρvk,k = 0,

︸ ︷︷ ︸
Dρ
Dt +ρ vk,k=0

(4.9)

or in vector notation
Dρ

Dt
+ ρ∇·v = 0. (4.10)

4.2.1 Incompressible continuum

In an incompressible continuum (German: dichtebeständiges Medium)1 the density ρ remains
unchanged during the motion. The rate-of-change of ρ as the motion of a material particle is
followed is therefore zero

Dρ

Dt
= 0 (incompressible continuum (dichtebeständiges Medium)). (4.12)

For an incompressible continuum it follows from Eq. (4.10) that

∇·v = 0,

or
vk,k = 0 . (4.13)

This is known as the condition of incompressibility.

4.3 Another useful integral formula

The mass-conservation equation (4.6) can be used together with the Reynold's transport formula
(4.2) to arrive at another useful integral formula.

Let φ be some scalar variable. The formula of Gauss (4.3) when applied for the product φvi

gives ∫
V

(φvi),i dV =
∫

A

φvini, dA.

The term on the right-hand side is identical to the second term on the right-hand side of the
transport formula (4.2). The transport formula (4.2) can therefore be written on the alternative
form

D

Dt

∫
V

φ dV =
∫

V

∂φ

∂t
dV +

∫
V

(φvi),i dV (4.14)

1In German one uses the term inkompressibel if the density is independent of pressure, that is if

∂ρ

∂p
= 0 (incompressible continuum). (4.11)
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Now using the identity
∂φ

∂t
+ (φv),i =

Dφ

Dt
+ φv,i

Eq. (4.14) can written as
D

Dt

∫
V

φ dV =
∫

V

(
Dφ

∂t
+ φv,i)

)
. (4.15)

For φ = ρθ where ρ is the mass density and θ some arbitrary function (4.15) gives

D

Dt

∫
V

ρθ dV =
∫

V

{
D

Dt
(ρθ) + ρθvi,i

}
dV

=
∫

V

{
ρ
Dθ

Dt
+ θ

(
Dρ

Dt
+ ρvi,i

)
︸ ︷︷ ︸

=0

}
dV.

The bracket on the right-hand side is zero because of the mass-conservation equation. We, there-
fore, have the useful relation

D

Dt

∫
V

θρ dV =
∫

V

Dθ

Dt
ρ dV . (4.16)

In Eq. (4.16) the variable ρ stands for the density of the continuum. This fact was used in the
derivation above (where?). The variable θ, on the other hand, is any �eld variable and may be a
scalar, vector, or tensor function.

4.4 Balance of linear momentum

The sum of all forces acting on a body is the sum of all surface and body forces

sum of all forces =
∫

V

ρbi dV︸ ︷︷ ︸
body force

+
∫

A

si dA︸ ︷︷ ︸
surface force

,

where si are the components of the stress vector (s(r, n̂)). The Newton's second law of motion is

sum of all forces = rate-of-change of linear momentum︸ ︷︷ ︸
D
Dt

R
V

ρv dV

.

We, therefore, have
D

Dt

∫
V

ρvi dV =
∫

V

ρbi dV +
∫

A

si dA. (4.17)

This equation expresses the conservation of linear momentum for a continuum. We now proceed
to derive the local form of this expression.

Using (4.16) with θ = vi on the left-hand side gives

D

Dt

∫
V

ρvi dV =
∫

V

ρ
Dvi

Dt
dV (4.18)

The surface integral in (4.17) can be written as a volume integral using (4.3) (with Ti1i2...in =
σij) ∫

A

si dA =
∫

A

σkink dA

=
∫

V

σki,k dV. (4.19)
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Inserting (4.19) and (4.18) into (4.17) gives∫
V

ρ
Dvi

Dt
dV =

∫
V

(ρbi + σki,k) dV.

This must be true for every volume V , and therefore the integrand must be equal to zero, or

ρ
Dvi

Dt
= ρbi + σki,k , (4.20)

which in vector notation reads

ρ
Dv
Dt

= ρb +∇· σT .

Equation (4.20) expresses the balance of linear momentum in a local form. It is usually called
the momentum equation and is also known as Cauchy's equations of motion and as Cauchy's �rst
law of motion. (German: di�erentielle Impulsgleichung or Bewegungsgleichung)

4.4.1 Stokes �ow

For glaciers the acceleration term (left left-hand side of (4.20)) is much smaller than the other terms
of that equation. A simple order-of-magnitude estimation is su�cient to see this. Flow velocities
of glaciers are on the order of 100 ma−1, and the volume force (gravity) is ρg = 9.81×917 m s−2 ≈
1019 m a−2. The vertical stress gradient is on the order of ∂(ρgz)/∂z = ρg ≈ 1019 m a−2.

∂vi

∂t︸︷︷︸
∼ 100 m/a2

+ vkvi,k︸ ︷︷ ︸
∼ 100 m/a · 100 m/a

100 m︸ ︷︷ ︸
∼ 100 m/a2

= bi︸︷︷︸
∼ 1016 m/a2

+ σki,k
1
ρ︸ ︷︷ ︸

∼ 1016 m/a2

(4.21)

The acceleration term is, thus, about 1014 times smaller than the other terms, so that the
momentum equation can be used on the form

σki,k + ρ bi = 0. (4.22)

The acceleration term, which is only non-linear term of the momentum equation can, thus, be
ignored.

In glaciology the Eq. (4.22) is usually referred to as the momentum equation. In continuum
mechanics it is more common to refer to this equation as the equilibrium equation. Another often
used term for Eq. (4.22) is Stokes equation.

In terms of the deviatoric stresses

σij = σ
(d)
ij − p δij

the Stokes equation can be written as

σ
(d)
ki,k + ρbi = p,i. (4.23)

Exercise 45. Show that (pδki),k = p,i.

The motion of a �uid for which the acceleration terms are so small that they can be ignored is
known as Stokes �ow. Such type of motion is also called creeping �ow.2

Note that the time variable does not enter the Stokes equation (4.22). Any time dependency
arrives from the boundary conditions.

2The terms Stokes �ow and Stokesian �uid have di�erent meanings. For a Stokesian �uid the deviatoric stress
tensor is a homogeneous function of the stretching tensor D.



50 Karthaus: continuum mechanics

4.5 Balance of angular momentum

The law of balance of angular momentum states that the rate-of-change of the angular momentum
equals the vector sum of all moments of external forces.

The angular momentum of a continuum about the origin is given by the integral

L =
∫

V

x× (ρv) dV

or Li =
∫

V

ρ εijkxjvk dV

The resultant moment of all volume forces is∫
V

x× (ρb) dV or
∫

V

ρ εijkxjbk dV,

and the resultant moment of all surface forces is∫
A

x× S(x, n̂, t) dA or
∫

A

εijkxjSk dA.

The integral form of the law of balance of angular momentum is then

D

Dt

∫
V

ρ εijkxjvk dV︸ ︷︷ ︸
rate of change
of momentum

=
∫

V

ρ εijkxjbk dV︸ ︷︷ ︸
resulting moment
of volume forces

+
∫

A

εijkxjSk dA︸ ︷︷ ︸
resulting moment
of surface forces

. (4.24)

We will now derive the local form of (4.24). We do this by 1) changing the order of di�eren-
tiation and integration on the left-hand side of (4.24), and 2) by transferring the surface integral
on the right-hand side into an integral over the volume V .

First we consider the term on the left-hand side of (4.24). In order to change the order of
di�erentiation and integration we apply the integral formula (4.16) with θ = εijkxjvk and arrive
at

D

Dt

∫
V

ρ εijkxjvk dV =
∫

V

ρεijk
D

Dt
(xjvk) dV. (4.25)

We can also derive the above equation directly as follows:

D

Dt

∫
V

ρ εijkxjvk dV

=
∫

V

∂

∂t
(ρεijkxjvk) dV +

∫
A

nqvqρεijkvkxj dV (Leibniz Theorem (4.1))

=
∫

V

∂

∂t
(ρεijkxjvk) dV +

∫
V

(vqρεijkxjvk),q dV (Gauss integral formula (4.3))

=
∫

V

{
εijkxjvk

∂ρ

∂t
+ ρ

∂xj

∂t︸︷︷︸
vj

vkεijk + ρεijkxj
∂vk

∂t
+ (ρvq),qεijkxjvk + vqρεijk (xjvk),q

}
dV

=
∫

V

{
εijkxjvk

(
∂ρ

∂t
+ (ρvq),q

)
︸ ︷︷ ︸

=0(mass conservation)

+ ρεijkvjvk︸ ︷︷ ︸
=[v×v]i=0

+ρεijkxj
∂vk

∂t
+ vqρεijk(xjvk),q

}
dV

=
∫

V

ρεijk

{
∂

∂t
(xjvk) + vq

∂

∂xq
(xjvk)

}
=

∫
V

ρεijk
D(xjvk)

Dt
dV
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which is (4.25).

We now consider the second term on the right-hand side of (4.24):∫
A

εijkxjSk dA =
∫

A

εijkxjσqknq dA (Eq. (3.9))

=
∫

V

εijk
∂

∂xq
(xjσqk) dV (Gauss integral formula (4.3))

=
∫

V

(εijkδjqσqk + xjσqk,q) dV (Because xj,q = δjq)

=
∫

V

εijk (σjk + xjσqk,q) dV

Putting this expression together with Eq. (4.25) into Eq. (4.24) gives the local form of the angular-
momentum equation

ρεijk
D(xjvk)

Dt
= ρ εijkxjbk + εijkσjk + εijkxjσqk,q. (4.26)

because the volume B is arbitrary.
Equation (4.26) can be simpli�ed considerably. By rearranging terms of Eq. (4.26)

εijkxj

(
ρ
Dvk

Dt
− σqk,q − ρbk

)
︸ ︷︷ ︸

=0 Eq. (4.20)

+ρ εijkvk
Dxj

Dt︸ ︷︷ ︸
vj︸ ︷︷ ︸

=[v×v]i=0

= εijk σjk

we �nd that
εijk σjk = 0. (4.27)

By forming the triple sum εijkεkpqσpk and using the δ-ε-relation

εijkεkpq = δipδjq − δjpδiq,

we obtain

0 = εkpqσpq

= εijkεkpqσpq

= (δipδjq − δjpδiq) σpq

= σij − σji.

or
σij − σji = 0 . (4.28)

The balance of angular momentum leads to the conclusion that the stress tensor is symmetric.
Equations (4.28) are called Cauchy's second law of motion.

4.6 Energiebilanz

Nach den Gesetzen der Thermodynamik ist die zeitliche Änderung der gesamten Energie eines
geschlossenes Systems gleich der Leistung der äusseren Kräfte plus der pro Zeiteinheit von aussen
zugeführten Wärme. Wenn wir die gesamte Energie in die kinematische (K) und die innere Energie
(E) aufteilen, können wir diese Aussage folgendermassen in Symbolen ausdrücken

D

Dt
(K + E) = P + Q̇,
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wobei P die gesamte von äusseren Kräften pro Zeiteinheit geleistete Arbeit darstellt, und Q̇ die
gesamte dem Körper pro Zeiteinheit zugeführte Wärmemenge ist. Diese Aussage bezieht sich auf
ein geschlossenes System, wie z.B. einen materiellen Körper. Im wesentlichen wird durch diese
Aussage postuliert, dass 1) unterschiedliche Energieformen, wie z.B. mechanische und thermische
Energien, ineinander umgewandelt werden können, und 2), dass Energie dabei nicht vernichtet
werden kann.

Table 4.1: Neue in diesem Abschnitt eingeführte Symbole

Symbol Bedeutung
E Gesamte innere Energie eines Körpers
K Gesamte kinetische Energie eines Körpers
P Die gesamte von äusseren Kräften pro Zeiteinheit geleistete Arbeit
Q̇ Die gesamte dem Körper pro Zeiteinheit zugeführte Wärmemenge
e innere Energie pro Masseneinheit
qi Komponenten des Wärmestromvektors
h Wärmeproduktion pro Zeit- und Masseneinheit

Die gesamte innere Energie (E) eines Körpers ist eine extensive Grösse. Die spezi�sche in-
nere Energie (innere Energie pro Masseneinheit) bezeichnen wir mit e. Die innere Energie eines
materiellen Teilchens ist eρ dV , und die gesamte innere Energie damit

E =
∫

V

ρe dV,

wobei V das Volumen eines materiellen Körper darstellt. Dieses Volumen kann sich im allgemeinen
mit der Zeit ändern.

Die kinetische Energie eines materiellen Teilchens ist ρvivi/2 dV , und die gesamte kinetische
Energie ist durch

K =
∫

V

1
2
ρvivi dV

gegeben.
Die äusseren Kräfte teilen wir in Ober�ächenkräfte und Volumenkräfte auf. Die gesamte

geleistete Arbeit pro Zeiteinheit (die Leistung) setzt sich demnach aus der Leistung der Ober-
�ächenkräfte an jedem Flächenelement dA der Ober�äche des Körpers (sivi dA) und der Leistung
der Volumenkräfte zusammen

P =
∫

A

sivi dA +
∫

V

ρvibi dV.

Mit
si = σjinj (Siehe Gl. (3.9))

erhalten wir

P =
∫

A

σjinjvi dA +
∫

V

ρvibi dV.

Die dem Körper zugeführte Wärmemenge setzt sich aus der im Körper produzierten Wärme
(Radioaktiver Zerfall, Strahlung) und dem durch die Ober�äche tretenden Wärme�uss zusammen.
Die pro Zeit- und Masseneinheit produzierte Wärme bezeichnen wir mit h, und den Wärmestrom
durch ein Element der Ober�äche mit −qini dA. Der Vektor q ist der Wärmestromvektor. Das
negative Vorzeichen sorgt dafür, dass ein�iessende Energie als positive Grösse gerechnet wird

Q̇ =
∫

V

ρh dV −
∫

A

qi ni dA.
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Die Energiebilanz eines materiellen Körpers lautet damit

D

Dt

∫
V

(
1
2
vivi + e

)
ρ dV =

∫
V

ρvibi dV +
∫

A

σjinjvi dA +
∫

V

ρh dV −
∫

A

qini dA. (4.29)

4.6.1 Herleitung der lokalen Form der Energieerhaltung

Um eine lokale (di�erentielle) Form der Energiebilanz zu erhalten, vertauschen wir zuerst die
Reihenfolge der materiellen Ableitung und des Volumenintegrals auf der linken Seite, und wandeln
danach alle Flächenintegrale in entsprechende Volumenintegrale um.

Die Reihenfolge der materiellen Ableitung und des Volumenintegrals auf der rechten Seite von
Gl. (4.29) tauschen wir nach dem Theorem (4.16) wie folgt um

D

Dt

∫
V

(
1
2
vivi + e

)
ρ dV =

∫
V

{
D

Dt

((
1
2
vivi + e

)
ρ

)
+
(

1
2
vivi + e

)
ρvk,k

}
dV (Gl. (4.16))

=
∫

V

{
ρ

D

Dt

(
1
2
vivi + e

)
+
(

1
2
vivi + e

)(
Dρ

Dt
+ ρvk,k

)}
dV.

Aufgrund der Massenerhaltung ist die letzte Klammer Null (siehe Gl. (4.10)). Also ist

D

Dt

∫
V

(
1
2
vivi + e

)
ρ dV =

∫
V

ρ
D

Dt

(
1
2
vivi + e

)
dV

=
∫

V

ρ

(
vi

Dvi

Dt
+

De

Dt

)
dV. (4.30)

Die beiden Flächenintegrale auf der rechten Seite von Gl. (4.29) lassen sich nach dem Gauss'schen
Satz in entsprechende Volumenintegrale umwandeln, d.h.∫

A

σjinjvi dA =
∫

V

(σjivi),j dV (Gauss, Gl. (4.4))

=
∫

V

(σji,jvi + σjivi,j) dV (4.31)

und ∫
A

qini dA =
∫

V

qi,i dV. (Gauss, Gl. (4.4)) (4.32)

Nach diesen Umformungen einiger Integrale in der Gl. (4.29) können wir diese Gleichung jetzt
wie folgt schreiben∫

V

ρ

(
vi

Dvi

Dt
+

De

Dt

)
dV =

∫
V

(ρvibi + σji,jvi + σjivi,j + ρh + qi,i) dV.

Dieser Ausdruck lässt sich noch vereinfachen. Dazu schreiben wir zuerst anstelle der materiellen
Ableitung die Summe der lokalen und der konvektiven Ableitung (D/Dt = ∂/∂t + vj∂/∂xj) und
erhalten∫

V

{(
∂vi

∂t
+ vjvi,j − ρbi − σij,j

)
vi + ρ

∂e

∂t
+ ρvie,i − σijvi,j + qi,i − ρh

}
dV = 0.

Aufgrund der Impulserhaltung verschwindet der erste Klammerausdruck (Siehe Gl. (4.20)).
Die zweifache Summe σijvi,j kann, da der Spannungstensor symmetrisch ist, folgendermassen
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umgewandelt werden

σijvi,j =
1
2
(σijvi,j + σijvi,j)

=
1
2
(σijvi,j + σjivj,i)

=
1
2
(σijvi,j + σijvj,i)

= σij
1
2
(vi,j + vj,i)

= σij ε̇ij .

Damit ist ∫
V

{
ρ
∂e

∂t
+ ρvie,i − σij ε̇ij + qi,i − ρh

}
dV = 0.

Da der Integrationsbereich beliebig ist und der Integrand als stetig vorausgesetzt wird, muss der
Integrand verschwinden, d.h.

ρ
∂e

∂t
+ ρvie,i = σij ε̇ij − qi,i + ρh . (4.33)

Es ist interessant, diesen Ausdruck mit der Formulierung des ersten Hauptsatzes der klassischen
Thermodynamik zu vergleichen. Nach dem ersten Hauptsatz gilt

de = δw + δq.

Hier ist de die Änderung der spezi�schen inneren Energie in der Zeit dt, δw die in dieser Zeit
verrichtete Arbeit, und δq die in dieser Zeit zugeführte Wärme. Ebenfalls gilt

de

dt
= δẇ + δq̇.

In einer kontinuumsmechanischen Feldtheorie wäre die Änderung der inneren Energie eines ma-
teriellens Teilchens pro Zeiteinheit durch die materielle Ableitung von de gegeben, d.h.

De

Dt
= δẇ + δq̇. (4.34)

Diese Gleichung vergleichen wir jetzt mit der Gl. (4.33). Auf der linken Seite von Gl. (4.33)
erkennen wir die materielle Ableitung von e, und durch leichtes Umschreiben dieser Gleichung
erhalten wir

De

Dt
= ρ−1σij ε̇ij + (h− ρ−1qi,i). (4.35)

Aus diesem Vergleich schliessen wir, dass der zweite und der dritte Term auf der rechten Seite
(die Terme in der Klammer) zusammen die pro Zeit- und Masseneinheit dem materiellen Teilchen
zugeführte Wärme darstellen. Aus dem Vergleich der Gl. (4.35) mit Gl. (4.34) wird ebenfalls klar,
dass die Summe ρ−1σij ε̇ij der geleisteten Arbeit pro Zeit- und Masseneinheit entspricht, d.h.

δẇ = ρ−1σij ε̇ij .

Mit
σij = σkkδij + σ

(d)
ij

erhalten wir
ρ δẇ = σkk ε̇ii + σ

(d)
ij ε̇ij . (4.36)

Es kann weiterhin noch gezeigt werden, dass der erste Term auf der rechten Seite dem reversiblen
Anteil der Leistung entspricht. Der zweite Term ist die Leistung, die infolge der Deformation des
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Körpers irreversibel in Wärme umgewandelt wird. Die irreversible Arbeit pro Zeit- und Volum-
eneinheit ist daher mit

Φ := ε̇ijσ
(d)
ij

durch die Dissipationsfunktion Φ gegeben.
Für inkompressible Medien, bei welchen vi,i = ε̇ii = 0 ist, verschwindet der erste Term auf der

rechten Seite von Gl. (4.36), d.h.
ρ δẇ = σ

(d)
ij ε̇ij .

Demnach wird bei einem kriechenden (Beschleunigungsterme vernachlässigbar klein) inkompress-
iblen viskosen Medium die gesamte von den äusseren Kräften geleistete Arbeit im Körper in Wärme
umgewandelt.

In einem Gletscher ist die dem Eis durch Strahlung zugeführte Wärme h in der Regel ver-
nachlässigbar klein. Ausserdem ist Gletschereis inkompressibel (vi,i = ε̇ii = 0). Die Energiebilanz
können wir daher in diesem Fall auch in der Form

ρ
De

Dt
= Φ− qi,i (4.37)

schreiben. Die spezi�sche innere Energie eines dichtebeständigen Materials ändert sich nach der
obigen Gleichung aus zwei Gründen: Erstens infolge der inneren Reibung, wodurch mechanische
Energie irreversibel in Wärme dissipiert, und zweitens infolge von Wärmeleitung.

4.7 Bilanz der Entropie

Wird einem System die di�erentielle Wärmemenge δq reversibel zugeführt, ändert sich die Entropie
(S) des Systems um den Betrag

dS =
δq

T
(reversible Prozesse).

Nach dem zweiten Hauptsatz der Thermodynamik nimmt bei jedem irreversibel ablaufenden
Prozess die Entropie zu, d.h

dS ≥ δq

T
(alle in der Natur vorkommenden Prozesse).

Bei jedem Prozess kann also die Entropie nur zunehmen.
Für einen materiellen Körper wäre die entsprechende kontinuumsmechanische Formulierung

des zweiten Hauptsatzes
DS

Dt
≥ δq̇

T
. (4.38)

Sowie die Änderung der gesamten Wärme eines materiellen Körpers sich aus der Summe der
im Körper produzierten Wärme∫

V

ρh

T
dV (Wärmeproduktion)

und der dem Körper über den Rand zugeführten Wärme

−
∫

A

qini

T
dA (Wärme�uss)

zusammensetzt, entspricht die Änderung der gesamten Entropie eines solchen Körpers der Summe
der im Körper produzierten Entropie3∫

V

ρh

T
dV (Entropieproduktion)

3Diese Grösse wird in der deutschsprachigen Fachliteratur auch die Entropiezufuhr genannt. Der englische
Fachausdruck ist entropy source.
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und der dem Körper über den Rand zugeführte Entropie

−
∫

A

qini

T
dA (Entropie�uss).

Wenn wir mit s die Entropie pro Masseneinheit (die spezi�sche Entropie) bezeichnen, so
erhalten wir Gl. (4.38) in der Form

D

Dt

∫
V

ρs dS ≥ −
∫

A

qini

T
dA +

∫
V

ρh

T
dV. (4.39)

Um die lokale Form der Entropiebilanz zu erhalten, formen wir die linke Seite der obigen
Gleichung mit der Hilfe der Gl. (4.16) um. Der Satz von Gauss wird dann benutzt, um das
Ober�ächenintegral auf der rechten Seite in ein Volumenintegral umzuwandeln. Daraus folgt, dass∫

V

(
ρ
Ds

Dt
− ρh

T
+
(qi

T

)
,i

)
dV ≥ 0.

Da dieses Integral für jedes Volumen verschwinden muss, gilt

ρ
Ds

Dt
− ρ

h

T
+
(qi

T

)
,i
≥ 0. (4.40)

Diese Ungleichung ist als die Clausius-Duhem-Ungleichung bekannt.
Jetzt ist aber (qi

T

)
,i

=
1
T

qi,i −
1

T 2
qiT,i,

und nach Gl. (4.33) (Energieerhaltung) gilt

qi,i = σij ε̇ij + ρh− ρ
De

Dt
.

Somit lässt sich Gl. (4.37) auch in der Form

ρT
Ds

Dt
+ σij ε̇ij − ρ

De

Dt
− 1

T
qiT,i ≥ 0 (4.41)

schreiben.
Der Nutzen der oben aufgeführten Ungleichungen besteht vor allem darin, dass sie gewisse

Einschränkungen für die möglichen Formen von Materialgesetzen liefern. So muss z.B. für jedes
Fluid der funktionale Zusammenhang zwischen den Dehnungsraten ε̇ij und den Komponenten des
Spannungstensors σij , wie auch der funktionale Zusammenhang zwischen der Temperatur und
dem Wärmestromsvektor dergestalt sein, dass die Ungleichung (4.37) für jede mögliche Lösung
der Feldgleichungen (Masse, Impuls, Energie) erfüllt ist.



Chapter 5

Constitutive equations

5.1 Introduction

The �eld equations can be summarized as follows

vi,i = 0 (mass) (5.1)

σki,k + ρbi = 0 (linear momentum) (5.2)

σij − σji = 0 (angular momentum) (5.3)

ρ
De

Dt
− ε̇ijσ

(d)
ij + qi,i − ρh = 0 (energy). (5.4)

The mass-conservation equation only holds for an incompressible continuum, and in the linera-
momentum conservation equation the acceleration term has been ignored. These simpli�cations
can almost always be made in glacier mechanics.

In the system above there are eight scalar equations (mass 1, linear momentum 3, angular
momentum 3, energy 1) and 16 unknown �elds (vi (3), σij (9), qi (3), e (1)). The system is, thus,
not closed, that is using these equations alone it is not possible to determine all the �eld functions.
We should, of course, not expect this to be possible. Note that the �eld equations listed above
hold equally well for all incompressible materials (if acceleration terms can be ignored) and do
not account for di�erences in the thermal and the mechanical properties of materials. We have
yet to give a description of how the material deforms in the presence of applied stresses, and this
description is needed to close the system.

The mechanical and thermal properties of the material under study are described by the so
called constitutive equations (German: Konstitutivgleichungen or Materialgleichungen). Usually
a set of three equations: a law of heat conduction, a caloric equation of state, and a material
law, are needed to completely specify all mechanical and thermal properties. The law of heat
conduction describes the relation between the heat-�ux vector and the temperature gradient.
A caloric equation of state gives the connection between the speci�c internal energy and the
temperature. A material law relates the stress tensor and the other �eld variables.

5.2 Stokesian �uid

A constitutive equation expresses the physical properties of the material concerned and can not
be derived using theoretical arguments alone. Nevertheless, theoretical arguments can be used to
narrow down the possible mathematical form of the constitutive equation.

One can, for example, show that if the stress tensor is a function of the rate-of-deformation
tensor, and both tensors possess the same symmetries, then the most general form of the material
law is

σij = α δij + βε̇ij + γε̇ik ε̇kj (5.5)

57
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where α, β, and γ are some scalar functions of density, temperature, and the three invariants of
the stretching tensor.

Eq. (5.5) represents the most general relationship between stresses and strain-rates under
fairly general assumptions. These assumptions are that the �uid is isotropic and homogeneous,
with the stress tensor being a continuous function of the rate-of-deformation tensor and of some
thermodynamical variables only. We will not proof in detail that Eq. (5.5) follows from these
assumptions. We note, however, that the assumption of isotropic �uid implies that the functional
relationship

σ = f(D)

between the stress tensor and the rate-of-deformation tensor must ful�ll

f(QDQT ) = Qf(D)QT , (5.6)

where Q is a rotation matrix. This implies that f is an isotropic tensor function.1 All isotropic
tensor functions of second order tensors can be written on the form

f(D) = α1 + βD + γD2

where α, β, and γ are scalar functions, from which Eq. (5.5) follows.
If we make the additional assumption that in the absence of deformation the stress is hydro-

static (sometimes used as a de�nition of �uids) then α in (5.5) must be equal to the negative of the
pressure p, that is α = −p. A �uid having constitutive equations on this form is called Stokesian
Fluid or sometimes Reiner-Rivilin Fluid.

5.3 Incompressible �uid

For a compressible material a change in pressure will in general lead to changes in density. In
this case there is a functional relationship between pressure (p) and density (ρ), and the thermo-
dynamical pressure p is given by the kinetic equation of state

p = p(ρ, T ).

For an incompressible material, however, there is no change in density with pressure, and thus
no corresponding relationship between these two variables. The pressure can therefore not be
derived from density and temperature, and becomes a new independent dynamical variable. In
the absence of a kinetic equation of state de�ning the (thermodynamical) pressure we must look
for alternative ways of de�ning the pressure in some sensible way.

In a �uid at rest all the normal stresses are equal and all the shear stresses are zero. That is

σij = −p̄ δij ,

whenever ε̇ij = 0, with p̄ de�ned as

p̄ := −1
3
σii.

The �eld variable p̄ is called the mechanical pressure. Note that (5.3) is a de�nition, and that the
mechanical pressure is simply the negative of the mean value of the normal stresses. 2 In what
follows we will be dealing with incompressible materials only, and for this reason we will simply
write p for the mechanical pressure.

1A tensor whose components remain unchanged under all coordinate transformations is called an isotropic tensor.
2It can be shown that for a compressible material

p− p̄ = −
„

λ +
2

3

«
1

ρ

Dρ

Dt
.

Taking the limit Dρ/Dt→ 0 we �nd p = p̄. This shows that for a incompressible material the mechanical pressure
is the correct limit of the thermodynamical pressure as de�ned for a compressible material.
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With α = −p the general form of the constitutive law can now be written as

σij = −p δij + βε̇ij + γε̇ik ε̇kj . (5.7)

Using the de�nition of mechanical pressure and the de�nition of deviatoric stresses (σ(d)
ij = σij −

p δij), this expression can also be written as

σ
(d)
ij = βε̇ij + γε̇ik ε̇kj . (5.8)

Because changes in pressure do not lead to any deformations in an incompressible material it is
usually much more convenient to work with Eq. (5.8) than Eq. (5.7). The constants β and γ can
be functions of thermodynamical variables and the three invariants of the stretching tensor.

Instead of writing the deviatoric stresses as a function of strain rates as done in (5.8) one can
equally well invert this relationship (not always in a closed form) and write the strain-rates as
functions of the deviatoric stresses.

5.4 The constitutive law of ice

Considerable experimental work has been done towards determining the constitutive law of ice.
These experiments su�er from the fact that it is, for practical reasons, not possible to conduct
mechanical tests on ice at strain-rates that are typically found in glaciers and ice sheets (10−4

to 10−2 a−1). Strain rates used in the laboratory are at least two orders of magnitude larger
than those typically found in nature. If one does not agree with the claim that it is possible
to extrapolate the experimental �ndings to regions of strain-rates and stresses typically found in
glaciers, it must concluded that none of the laboratory work done to date on the rheology of ice
has any relevance to the rheology of glaciers!

Ice comes in various crystalline forms. There are at least twelve states of ice, with the twelfth
structure being found in the late nineties. At normal pressures and temperatures there is only one
stable crystal structure of ice, Ice Ih (h for hexagonal). In Ice Ih each oxygen atom is bounded
to two hydrogen atoms by electron orbitals, forming a covalently bounded H2O molecule. The
protons of the two hydrogen nuclei are not completely shielded by the electrons shared with the
oxygen atom, leaving the hydrogens positively charged. There are further two bounding orbitals
with two electrons each (two so called lone pairs). These four orbitals radiate tetrahedrally from
the oxygen nucleus, forming an almost exact tetrahedral arrangement. Two of these orbitals are
associated with excessive positive charge and the other two with excessive negative charge. Each
H2O can, therefore, hock up with four other H2O molecules. In Ice Ih this gives rise to a layered
structure of H2O molecules. Within the layers the molecules are arranged in hexagonal structures.
The plane parallel to the layer-structure is called the basal plane. The direction perpendicular to
the basal plane is referred to as the c-axis.

From laboratory experiments it is known that ice deforms much more easily in the basal plane
than along any other planes (or slip systems). The mechanical properties of single ice crystals are
therefore strongly anisotropic. If, however, the individual ice crystals are randomly oriented (ran-
dom fabric), the bulk mechanical properties of glacier ice may nevertheless be described through
an isotropic constitutive relationship on the form (5.8). After prolonged constant shearing in-
dividual ice crystals, however, tend to become reoriented and reorganized through a number of
processes collectively referred to as dynamic recrystallization, and with time this can lead to a
strongly anisotropic ice. On the other hand, for ice warmer than about -10 degrees Celsius, the
current understanding is that enough planes of deformation are active for ice to remain isotropic
inde�nitely even when subjected to prolonged periods of constant deformation.

The ability of ice, as of all crystalline solids, to deform depends critically on the density and
the types of various defects in the crystal structure. Such packing irregularities can be numerous.
In metals a density of 1012 per square centimeter is not uncommon. Packing irregularities within
a crystal lattice are of various types. They can be categorized in terms of their dimensionality.
Examples are point defects, where atoms are missing or some irregularities are found at isolated
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Figure 5.1: H2O molecule. The four corners of the tetrahedral are formed by the hydrogen atoms
and the two `lone pair' electrons (black), with the oxygen atom in the center. There are excessive
positive and negative charges associated with the hydrogen atoms and the lone pairs, respectively.

locations within the crystal lattice, and linear defects where groups of atoms or molecules have been
displaced, are missing or have been introduced, with the result than a line of defects within the
lattice is formed, and plane defects. Each of these di�erent groups of defects come in various types.
Examples of point defects are: lattice vacancies, substitutional impurities, interstitial impurities,
and proper intersitials. Line defects include screw and edge dislocations, and plane defects include
small-angle-grain boundaries, stacking faults, and twin boundaries.

Dislocations are linear defects. Dislocations are movable and the stress needed to move a
dislocation is, in general, much lower than the stress needed to deform a perfect crystalline.
Dislocations reduce the strength of a material well below its theoretical strength as expected on
the basis of the strength of individual atomic bounds within the crystal lattice. Dislocation is
a key factor a�ecting the mechanical properties of solids. Insight into the possible rheology of
materials can be gained from knowledge of the dynamics of dislocations.

For a given stress (σ) the strain-rate within a sample of ice can be expected to be given by the
product of the density of dislocations, the rate at which they move through the material, and the
displacement associated with each dislocation, that is

ε̇ = ρdvdφb (5.9)

where ρd is the density (number of dislocation lines that cut a cross-sectional area) of mobile
dislocations, vd is the velocity by which dislocation travel through the crystal lattice, φ is an
orientation factor related to the orientation of the slip plane with respect to applied stress, and b
the Burges vector (together with the orientation factor the atomic displacement associated with
the dislocation.) Eq. (5.9) is known as the Orowan relation.

The dislocation density re�ects a balance between the creation and destruction of dislocations.
It is, in general, di�cult to derive the density as a function of stress. One possibility is equating the
externally applied stress on an ice crystal with the internal stress associated with the dislocations
within it as follows. The stress associated with a dislocation as it gets activated will be proportional
to the displacement (Burges vector) times some material constant µ which we can think of as the
shear modulus or as a spring constant. The stress associated with each dislocation will go up with
with increasing distance d between dislocations (there are less dislocations to take up the stress),
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which means that less applied stress is needed to activate individual dislocation

σ ∝ bµ

d
.

The density of dislocations is measured as number of dislocations per area. The average distance
d between dislocations is therefore proportional to ρ

−1/2
d . The internal stress is therefore

σ ∝ bµρ
1/2
d ,

or

ρd ∝
σ2

b2µ2
, (5.10)

showing that when the generation rate of dislocations equals the annihilation rate, the dislocation
density is proportional to the square of the applied stress. Combining (5.10) with the Orowan
relation (5.9) gives

ε̇ ∝ vφσ2

bµ2
(5.11)

The dislocation velocity (v) is known both theoretically and experimentally to be linearly propor-
tional to the applied stress. (At -18 degrees Celsius v in ice is, for example, equal to 2 µm s−1 MPa−1.)
It is, furthermore, strongly dependent on temperature, with

v ∝ σe−
Q

kT (5.12)

where Q is an activation energy, k the gas constant, and T is temperature. Inserting Eq. (5.12)
into (5.11) leads to

ε̇ ∝ φ

bµ2
σ3 e−

Q
kT (5.13)

suggesting a power-law for the rheology of ice with an exponent of 3.
There are a number of reasons why (5.13) may not be correct for polycrystalline ice. Grain

boundaries can, for example, immobilize dislocations thereby reducing the number of active dislo-
cations. But grain boundaries can also act as sources for dislocations. Di�erently oriented grains
may have also di�culties deforming in a mutually compatible way leading to non-uniform distri-
bution of stresses with the polycrystalline ice. As a consequence, the grains may slide with respect
to each other, or the grain boundaries may migrate. Furthermore, recrystallization may occur
with new grains being formed with slip planes better oriented for deformation, or existing grains
may become subdivided (polygonization).

In deriving Eq. (5.13) use was made of (5.10) which predicts the dislocation density, ρd, to
increase with σ. If, for some reason, ρd where to remain constant with increasing stress, the �ow
law would become linear. There is some indication of this happening in ice at small stresses (less
than 0.01 MPa).

5.5 Creep curves

Creep is here de�ned as a time-dependent inelastic deformation at constant stress. When uniaxial
compression is applied to a sample of polycrystalline ice, the resulting curve describing strain
as function of time can be divided into a number of regions. Initially, there is an instantaneous
elastic response. This is follows by a combination of delayed elastic strain3 and viscous strain. The
delayed elastic strain is fully recoverable following an unloading of the ice. The viscous strain,
on the other hand, not. With time, the contribution of delayed elastic strain to the creep-rate
(the slope of the strain versus time curve) decreases. The minimum value in observed slope is

3Other terms used for delayed elastic strain are primary creep, transient creep, recoverable creep and pseudo-
elastic strain
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Figure 5.2:

referred to as the secondary creep. In laboratory experiments secondary creep is usually reached
after about 1% strain, but this is expected to depend on the contribution of delayed elastic strain
to the total strain and therefore on the applied stress level. In laboratory experiments, secondary
creep is not a steady-state process and is eventually followed by a renewed increase in creep-rate,
with is referred to a tertiary creep.

The delayed elastic strain is of little interest with respect to the long-term deformation of
glacier ice. Tertiary creep seems to be at least partially associated with internal crack formation
and dynamic recrystallization (Duval et al., 1983), and ultimately may simply be a consequence
of delayed elastic strain. This indicates that as the applied stress is reduced to typical values of
deviatoric stresses in glaciers (0.1 MPa) no tertiary creep will be observed. It is therefore the
secondary creep, or the minimum value of the slope of the creep versus time curve, which is of
relevance with regard to the rheology of glacier ice at stresses typically found in glaciers.

Laboratory studies of isotropic polycrystalline ice under uniaxial compressive and tensile load-
ing conducted in the early �fties showed that for secondary creep the strain rate is related to stress
through a power law on the form

ε̇ = A σn (5.14)

where ε̇ is the strain-rate along the same axis as the applied stress σ Steinemann (1954, 1958a,b);
Glen (1955) The exponent n is thought to be in the range form 2 to 5. At strain rates below
10−5 s−1 and stresses below 1 MPa, many authors have reported that n close to 3 gives the best �t
to the data (e.g. Glen, 1952; Steinemann, 1958a; Mellor and Cole, 1983; Mellor and Smith, 1967)
although some con�icting reports are found in the literature. Theoretical studies of dislocation
dynamics in ice suggest that the n = 3 results from dislocation glide along the basal plane.
Dislocations can also climb from one glide plane to another within a grain. Eventually, dislocations
hit grain boundaries and continuous deformation requires changes in crystal structure. For stresses
above 1 MPa an exponent of n = 4 seems to give a better �t Steinemann (1954); B. et al. (1992).
This suggest dislocation glide along some of the hard slip systems.

A power-law relationship between stress and strain-rates is not only found for ice, but for
numerous other materials and substances including metals close to their melting point (and ketchup
too). Note that almost all test have been performed on cold ice and the rheology of temperate ice
is much less well constrained through laboratory experiments.

As mentioned above, it is di�cult, if not impossible, to perform laboratory experiments for
stresses and strain-rates typical of glaciers and ice sheets. The n = 3 exponents, for example, was
obtained in experiments where the strain-rates were at least two order of magnitudes larger than
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Figure 5.3: Stress and strain-rate relationship of �ne-grained ice as determined by Goldsby and
Kohlstedt (2001). The authors identify three creep regimes. At highest stresses the �ow law
exponent is n = 4, for intermediate stresses n = 1.8, and n = 2.4 at the lowest stresses.

typical of glaciers. Recently Goldsby and Kohlstedt (2001) have conducted series of experiments
of ice at temperatures between 170 and 268 K, di�erential stresses of 0.2 to 20 MPa with strain
rates varying from 10−8 to 10−4 per sec. One of the novel aspects of their experiments is the
use of ice samples of various grain sizes, including very �ne-grained samples with sizes from 3 to
100 µm. Goldsby and Kohlstedt (2001) conclude that the �ow of ice is controlled by at least four
di�erent deformation mechanisms, each one being characterized by di�erent stress exponents n
and activation energy Q. At high stresses, above 1 MPa, n = 4 and the primary deformation is
dislocation creep along both the basal and the nonbasal slip systems. At somewhat lower stresses,
a combination of both grain boundary sliding and basal slip determine the �ow.4 At �rst the
GBS is rate-controlling mechanism deformation mechanism, and n = 1.8. As the stresses are
lowered further, GBS becomes faster and the basal slip is now the rate-controlling mechanism.
This gives rise to a stress exponent n = 2.4. At even lower stresses a di�erent process, di�usion
of grain boundaries, starts to dominate the deformation of ice. For this di�usional �ow n = 1.
Typical deviatoric stresses in glaciers and ice sheets are either too small or too large for both the
dislocation creep regime (n = 4) and the di�usional �ow regime with (n = 1). The n = 2.4 regime
(basal slip accommodated by grain boundary sliding) is also only of relevance for temperatures
close zero and deviatoric stresses smaller than 0.01 MPa. According to Goldsby and Kohlstedt
(2001) it is the n = 1.8 regime (grain boundary sliding accommodated by basal slip) which is the
rate-limiting creep mechanism over most glacilogically signi�cant stresses and temperatures.

Previously secondary creep in ice was thought to be independent of grain size, however Goldsby
and Kohlstedt (2001) conclude that for the n = 1.8 regime strain rates do depend on grain size.
This grain-size dependency can be described as a power law with a grain size exponent of −1.4.

Goldsby and Kohlstedt (2001) propose a new constitutive equation for polycrystalline ice on
the form

ε̇ = ε̇diff +
(
ε̇−1
basal + ε̇−1

gbs

)−1

+ ε̇disl (5.15)

4In Grain boundary sliding the grains slide past each other along their common boundary. Grain boundary
sliding (GBS) requires some accommodating process (for example basal slip) for it to be sustained.
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Figure 5.4: Schematic diagram showing the dominating creep mechanism for ice at di�erent
stresses. From Goldsby and Kohlstedt (2001).

where each term on the right-hand side has the form

ε̇ = Aσnd−pe−(Q+PV )/RT ,

where A is a rate factor, d is grain size, Q the activation energy, V the activation volume, R the
gas constant, and n and p stress and grain size exponents. In Eq. (5.15) the subscripts refer to
di�usional �ow (di�) with n = 1, basal slip accommodated by grain boundary sliding (basal),
grain boundary sliding accommodated by basal slip (gbs), and dislocation creep (disl).

5.6 Flow law of ice

The experimental �ndings on the rheology of ice described above were made using fairly simple
stress con�gurations (simple shear, uniaxial compression, etc. ). They can be generalized for three-
dimensional stress, but only by making some additional assumptions such as that γ in Eq. (5.8)
is zero. In glaciology, the constitutive equation is usually written in an inverse form as compared
to Eq. (5.8), that is the strain rates are expressed as functions of the deviatoric stresses

ε̇ij = fσ
(d)
ij .

Here f is some scalar function of temperature and the invariants of the deviatoric stress tensor

f = f(T, I
σ(d) , IIσ(d) , IIIσ(d)).

For incompressible materials I
σ(d) = 0. It is also generally thought that the value of the third

invariant does not a�ect the deformation of ice, that is

f = f(T, II
σ(d))

although this assumption has sometimes been questioned.
Using these assumption and generalizing the power law (5.14) we then �nd

f = A(T ′) τn−1,

where

τ :=
√
−II

σ(d)

=

√
1
2
σ

(d)
ij σ

(d)
ji (Eq. (3.19)).
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This �law� is in glaciology known as Glen's �ow law. It has been used extensively in glaciological
modeling work. To call it a �law� is misleading. It is not a law in the same sense as, for example,
the conservation of mass is a law of nature. The value of the �ow parameter n is thought to be
within the range 2 to 5. For some unknown reasons, most modeling work seems to be done using
n = 3, but there does not seem to be any strong justi�cation for using this particular value of n,
neither from �eld work or laboratory experiments.

The value of A depends strongly on the homological temperature

T ′ = T − TM

where TM is the pressure-dependent melting temperature of ice. Glen's �ow law can be written
on the form

ε̇ij = A(T ′) τn−1σ
(d)
ij . (5.16)

Inverting Glen's �ow law

The form of the Glen's �ow law given by Eq. (5.16) can be used to determine strain rates for given
deviatoric stress tensor. If we want to calculate deviatoric stresses as functions of strain rates this
expression must be inverted.

Starting with
ε̇ij = A τn−1 σ

(d)
ij

we multiply both sides with ε̇kl,
ε̇klε̇ij = A τn−1 σ

(d)
ij ε̇kl

using the Glen's �ow law on the right hand side

ε̇klε̇ij = A τn−1 σ
(d)
ij A τn−1 σ

(d)
kl .

By now multiplying both sides with δikδlj

δikδlj ε̇klε̇ij = A2 τ2(n−1) σ
(d)
ij σ

(d)
kl δikδlj

we get the sums
1
2
ε̇ij ε̇ij︸ ︷︷ ︸
IIε̇

= A2τ2(n−1) 1
2
σ

(d)
ij σ

(d)
ij︸ ︷︷ ︸

τ2

,

and therefore
IIε̇ = A2τ2 n,

or
ε̇ = A τn. (5.17)

after having de�ned ε̇ as

ε̇ :=

√
1
2
ε̇ij ε̇ij .

The quantity (ε̇) is the e�ective strain rate, in analogy with the quantity τ which is the e�ective
stress. Eq. (5.17) neatly expresses the relationship between the e�ective stress and the e�ective
strain rate.

According to (5.16) we have
σ

(d)
ij = A−1τ1−n ε̇ij .

By inserting Eq. (5.17) in this equation we obtain

σ
(d)
ij = A−1A

n−1
n ε̇

1−n
n ε̇ij

= A−1/nε̇
1−n

n ε̇ij ,
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and then

σ
(d)
ij = A−1/n ε̇

1−n
n ε̇ij . (5.18)

This is the expression that we were looking for, giving deviatoric stresses as a function of strain
rates.



Bibliography

B., D. W., H., K. S., and A., S. L. (1992). E�ects of dispersed particulates on the rheology of
water ice at planetary conditions. Journal of Geophysical Research, 97(20):20883�20897.

Duval, P., Ashby, M. F., and Anderman, I. (1983). Rate-controlling processes in the creep of
polycrystalline ice. Journal of Physical Chemistry, 87(21):4066�4047.

Glen, J. W. (1952). Experiments on the deformation of ice. Journal of Glaciology, 2(12):111�114.

Glen, J. W. (1955). The creep of polycrystalline ice. Proceedings of the Royal Society of London,
Ser A, 228(1175):519�538.

Goldsby, D. L. and Kohlstedt, D. L. (2001). Superplastic deformation of ice: Experimental obser-
vations. Journal of Geophysical Research, 106(B6):11,017� 11,030.

Mellor, M. and Cole, D. (1983). Stress/strain/time relations for ice under uniaxial compression.
Cold Regions Science and Technology, 6(3):207�230.

Mellor, M. and Smith, J. (1967). Creep of Snow and Ice. In Oura, H., editor, Physics of snow and
ice, International conference on low temperature science, pages 843�855, The Institute of Low
Temperature Science Hokkaido University.

Steinemann, S. (1954). Results of preliminary experiments on the plasticity of ice crystals. Journal
of Glaciology, 2:404�413.

Steinemann, S. (1958a). Experimentelle Untersuchungen zur Plastizität von Eis. Geotechnische
Serie Nr. 10, Beiträge zur Geologie der Schweiz.

Steinemann, S. (1958b). Résultats expérimentaux sur la dynamique da la glace et leurs correla-
tions avec le mouvement et la pétrographie des glaciers. International Association of Scienti�c
Hydrology, 47:184�198.

67


