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Abstract 10 

The Paris Climate Agreement aims to keep temperature rise well below 2°C. This implies 11 

mitigation costs as well as avoided climate damages. Here we show that independent of the 12 

normative assumptions of inequality aversion and time preferences, the agreement constitutes 13 

the economically optimal policy pathway for the century. To this end we consistently incorporate 14 

a damage-cost curve reproducing the observed relation between temperature and economic 15 

growth into the integrated assessment model DICE. We thus provide an inter-temporally 16 

optimizing cost-benefit analysis of this century’s climate problem. We account for uncertainties 17 

regarding the damage curve, climate sensitivity, socioeconomic future, and mitigation costs. The 18 

resulting optimal temperature is robust as can be understood from the generic temperature-19 

dependence of the mitigation costs and the level of damages inferred from the observed 20 

temperature-growth relationship. Our results show that the politically motivated Paris Climate 21 

Agreement also represents the economically favourable pathway, if carried out properly.  22 
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Introduction 23 

Tthe temperature targets as agreed upon in the Paris Climate Agreement1 result from a long and 24 

complex political process2. However, it is not clear whether the associated emission reduction 25 

efforts are economically favourable2,3. Although econometric analyses4–8 suggest large damages at 26 

higher temperatures, these have not yet been employed to derive the relative economic benefits of 27 

achieving these temperature targets2,3. In particular, estimates6,8 of observed temperature-induced 28 

losses in gross domestic product have not been accounted for in computations of the economically 29 

optimal policy pathways. Here we provide a macroeconomic assessment of these targets by 30 

accounting for recent estimates of warming-induced economic growth impacts, which are given by 31 

Burke et al.6,8 (BHM, hereafter). BHM have advanced prior knowledge4 on the relationship between 32 

temperature und economic growth by finding a universal non-linear relationship. Warming is 33 

shown to lead to a shift along the growth curve and to reduce growth beyond a certain 34 

temperature threshold. 35 

So far, the BHM estimates have been shown to correspond to rather high social cost of carbon9, 36 

indicating that emission reduction should be stringent. However, the implications for optimal policy 37 

have only been investigated along predetermined scenarios of warming and economic growth6,8–10. 38 

Although such estimates are not without criticism9,11, it is a natural and necessary next scientific 39 

step to compare them to the costs of mitigating climate change (mitigation costs, hereafter) using 40 

an integrated assessment model (IAM). IAMs account for the diverse dynamic interactions between 41 

the economy and the climate12,13. 42 

This comparison provides the end-of-century warming that is associated with the lowest total costs 43 

of damages and mitigation as employed in the IAM used (Figure 1). Cost-benefit optimal warming is 44 

thus determined by the shape of the two cost curves. The mitigation cost curves are characterized 45 

by two universal properties. First, they diverge at the present-day warming, in particular if negative-46 

emission technologies are not available. Second, the mitigation costs decrease to zero for a 47 

warming scenario without any mitigation efforts. The damage-cost curve, on the other hand, is 48 

known to be zero without warming and to increase with rising temperatures. The level to which the 49 
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damages rise without mitigation is subject to investigation. However, due to the divergence of the 50 

mitigation costs the economically optimal temperature becomes less sensitive to the exact level of 51 

damages once these have reached a certain level (Figure 1). Here, we examine whether the 52 

damages that follow from extrapolating the observed relation of economic growth and 53 

temperature6,8 are beyond this level. 54 

To this end we incorporate the BHM estimates into one of the most prominent IAMs14–16, DICE-55 

201316. With its simplicity, DICE allows assessing cost-benefit optimality in a scientifically highly 56 

transparent and controlled way. According to its original version, which has also been employed to 57 

advise US climate policy17–19 achieving the 2°C target would cause mitigation costs significantly 58 

larger than the consequent avoided damages16,20,21. This result is largely due to a damage function 59 

that does not incorporate recent estimations of economic impacts13,22,23. Here, we update this 60 

function according to the BHM estimates8. As DICE searches for the economic growth path that 61 

maximises global welfare, the growth estimates cannot be implemented directly. As a solution to 62 

this problem we develop a novel procedure that preserves the growth model feature. In that, we 63 

iteratively adjust the damage function to reproduce the estimated temperature-induced growth 64 

relation in DICE-2013. For consistency with the BHM estimates, we design a scenario that emulates 65 

a future world in which key conditions are similar as in the past, i.e. the absence of climate policy. 66 

We use this updated damage function to derive the cost-benefit optimal climate policy that begins 67 

with the year 2020. In this economically optimal scenario, mitigation is actively pursued to 68 

maximize global welfare. We continue holding the assumption of DICE-2013 that significant 69 

negative-emission technologies are not available in this century. We contrast the optimal policy 70 

with the business-as-usual (BAU) scenario, in which climate policy is absent. We find that under 71 

these conditions the 2°C target as set by the Paris Climate Agreement gives the cost-benefit optimal 72 

pathway till the end of this century. We observe that this finding is largely robust to diverse 73 

uncertainties. Our results thus advocate for rapid and decisive implementation of the Paris Climate 74 

Agreement.  75 
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Results 76 

Cost-benefit optimal temperature 77 

In our analyses, we account for uncertainty in the future temperature development by considering 78 

three alternative equilibrium climate sensitivity (ECS) values. In addition, we subject our results to 79 

extensive robustness tests. We examine the effects of uncertainty in the BHM estimates concerning 80 

the parameter values and the model specification. For this we adopt the bootstrapping approach 81 

from the original empirical study8 and use the resulting 1000 samples to derive a corresponding 82 

ensemble of damage functions. We also conduct a sensitivity analyses regarding social preferences 83 

for consumption changes24, alternative socioeconomic futures25, and mitigation costs. 84 

We find that the 2°C target represents the cost-benefit optimal temperature for the base 85 

calibration (Figure 2a). This calibration involves the best estimate8 of the temperature–economic 86 

growth relation in the past and the original ECS value in DICE-2013 of 2.9°C, which is at the centre 87 

of estimates for several decades26,27. Higher ECS values shift the level of target warming for which 88 

the mitigation-cost curve diverges to infinity to higher values (Figure 1), i.e. they incur substantially 89 

higher mitigation costs. For ECS of 4°C, for instance, the 2°C target becomes too costly. Yet, with an 90 

optimal target warming of 2.4°C the deviation from this target is not large. For smaller ECS values, 91 

e.g. of 2°C, limiting warming further to well below 2°C is economically optimal. Regardless of the 92 

exact ECS, the optimal mitigation efforts promise a significant damage reduction compared to the 93 

BAU scenario (~14% for ECS of 4°C, ~10% for ECS of 2.9°C, and ~8% for ECS of 2°C). These efforts 94 

are, as also claimed by the Paris Agreement, ambitious (Article 3)1 and involve very stringent 95 

measures from the outset (Figure 2c). 96 

Uncertainty in damage function 97 

To examine the effects of uncertainty in the impact estimates, we use the cumulative GDP losses 98 

until 2100 (in 2005 US$) in the BAU scenario as a measure for the impact severity and pair them 99 

with the economically optimal end-of-century temperature (Figure 3). The uncertainty in the 100 

damage costs, according to the empirical study6,8, is substantial with respect to the magnitude and 101 
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sign of the warming impact and also implies large differences in our results. Nonetheless, the 102 

ensemble median of the optimal temperatures is only marginally higher than 2°C for ECS of 2.9°C, 103 

and well below 2°C for ECS of 2°C. This result is robust to alternative specifications of the 104 

bootstrapping approach8 (Supplementary Figure 1-2) and to most alternative model specifications 105 

of BHM and the alternative econometric estimates by Dell et al4 (Figure 4 and Supplementary 106 

Figure 3-6). Hence, the goal to limit warming to 2°C or less is cost-benefit optimal for a wide set of 107 

damage functions. By contrast, the results of the original DICE versions16,21 deviate significantly 108 

from the computed likely range (Figure 2). 109 

Uncertainty regarding preferences 110 

We also test the sensitivity to two important preference parameters (Figure 5). First, the ‘initial rate 111 

of social time preference’ (IRSTP) which reflects the preference for consumption at different points 112 

in time, with a higher value giving more emphasis to present rather than to future consumption; 113 

and second, the ‘elasticity of marginal utility of consumption’ (EMUC) which describes the 114 

preferences for more consumption, irrespective of its timing, and is interpreted as generational 115 

inequality aversion21. As these parameters crucially affect decisions of optimal mitigation and 116 

investment28, the implied growth effects are critical for our results. Taking the prescriptive 117 

viewpoint of calibrating IRSTP and EMUC24, we account for wide value ranges, including the base 118 

calibration in DICE-2013 and the suggestions by the IPCC-AR529. The latter proposes near-zero IRSTP 119 

values, which we interpret as values smaller than 1%. With the exception of a few unusual 120 

parameter values, this wide range of options leads to optimal warming of around 2°C or lower 121 

(Figure 5). 122 

Cost-benefit optimal temperature under SSP scenarios 123 

Further tests also show robustness to alternative socioeconomic assumptions as described by the 124 

Shared Socioeconomic Pathways (SSPs)25 (Figure 6). As the mitigation-cost function in DICE is 125 

strongly simplified, we investigate how our results change with functions that describe different 126 

technological possibilities in the future (Figure 7). Similar to the differences between results for a 127 

range of damage functions, the uncertainty in mitigation costs reflects on the derived optimal 128 
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warming level. Nevertheless, the mitigation costs deriving from the different SSPs tend to imply 129 

rather lower median optimal warming levels (1.8°C, 1.9°C, 2.0°C). 130 

131 
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Discussion 132 

Our findings build on the most recent empirical advances of impact estimates, which we 133 

consistently integrate in a dynamic IAM. These estimates are, however, not without critique, 134 

especially regarding the assumed functional relationship, the significance of using weather variables 135 

for insights into climate impacts and on other methodological challenges. In particular, using them 136 

in projections assumes that the historically observed temperature-impact link can be extrapolated 137 

into the future. Yet, this relation can change if further warming is associated with an 138 

unprecedented variation in climatic extremes for example with potential cascading effects30–33 or 139 

with the occurrence of devastating climatic tipping points34,35, or with significant changes in the 140 

societal response to warming. We also follow other studies using the estimates for projections6,8 to 141 

derive the benefits for smooth temperature paths without variability. The economic costs 142 

associated with temperature variability may, however, require even more stringent mitigation 143 

efforts. 144 

Furthermore, assessing impacts in terms of GDP is an incomplete measure for the overall benefits 145 

of climate change mitigation as non-monetary losses such as loss of life and biodiversity are 146 

omitted. Unless adaptation to climate change becomes effective, most of these points suggest a 147 

strong underestimation of the mitigation efforts needed. 148 

Similarly, a global analysis like ours, of course, neglects distributional issues as to who bears the 149 

burdens of damages as well as mitigation costs. Some specifications of the damage functions we 150 

employ here differentiate at least between two classes of income levels. Here, we have to make 151 

simplifying assumptions regarding shares of these classes to incorporate them into the one-region 152 

model, which constitute another source of uncertainty (Figure 4). In general, a cost-benefit 153 

calculation has to be interpreted vary cautiously keeping ethical considerations in mind. Like other 154 

studies36 we use DICE as a parsimonious surrogate for more complex and spatially disaggregate 155 

IAMs. Future research should transfer our analysis to these IAMs to clarify questions of regional 156 

impact heterogeneity and to fully account for region-specific empirical estimates. 157 
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In our analysis, the leeway to reach the 2°C target is considerably constraint by ruling out negative 158 

emissions in this century. Nonetheless, we show that, if future damages follow the same 159 

temperature dependence as historically observed, the overall damage costs will reach a level that 160 

renders 2°C cost-benefit optimal. This result evolves as a direct consequence from the recently 161 

given empirical evidence attesting considerable marginal damage increases for higher temperatures 162 

and the universal functional behaviour of the mitigation costs in the vicinity of present-day 163 

temperatures (cf. Figure 1).   164 
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Methods 165 

The integrated assessment model DICE-2013 166 

The integrated assessment model (IAM) used for this analysis is DICE16,20, which fully couples a 167 

simple climate model with a Ramsey model of the global economy. DICE describes the interaction 168 

of climate change and economically optimal decisions of allocating the available income to 169 

consumption, to investment, and to mitigation efforts. Whereas consumption increases welfare to 170 

be maximized as the objective in the model, investment into production capital ensures future 171 

income. Production generating income thus assumes a crucial role for the wellbeing of present and 172 

future generations. The model also demonstrates the downside of increased production. If not 173 

mitigated, greenhouse gas emissions come as a by-product of economic activities. These gases 174 

accumulate in the atmosphere and drive - with some time delay - the global temperature. Climate 175 

impacts then cause economic losses that reduce the available income. Given all these trade-offs, 176 

the model searches for the allocation pathway that maximises welfare. 177 

The DICE version we use is DICE2013Rv2_102213_vanilla_v24b.gms, which we abbreviate as DICE-178 

2013 here and in the main text. This version was the most recent version when this research was 179 

started. Meanwhile, a more recent DICE-version, i.e. DICE2016R-091916ap.gms, was released by 180 

William Nordhaus. These two versions are similar with respect to their analytical background21, but 181 

imply slightly different optimal temperatures (DICE-2016 implies a 0.2°C higher optimal 182 

temperature occurring approximately 30 years later). DICE has been updated with respect to the 183 

calibration of the real gross domestic product (GDP), its future growth rates, population estimates, 184 

current emissions data, emission reduction costs, carbon intensity, the carbon cycle and the 185 

damage costs21. 186 

In particular, the calibration of the carbon cycle has undergone significant modifications. As state-187 

of-the-art climate models are too computationally expensive, simplified models that often consist 188 

of only a few linear equations are used in IAMs. However, it has been shown that many IAMs 189 

cannot fully reproduce the carbon cycle dynamics of complex, state-of-the-art models37,38. In 190 

particular, the linear carbon cycle representations reflect poorly the non-linear ocean response to 191 

higher atmospheric carbon levels39. Linear representations that are fitted to initial carbon uptake 192 

lead to too rapid removal of atmospheric CO2 after several decades39. Warming over the next 193 

centuries and the extent of necessary policy intervention are thus underestimated37–39. This 194 
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problem also exists in DICE-2013, which is aimed to fit short-run carbon cycle dynamics (primarily 195 

the first hundred years)21 of larger models. Employing the carbon cycle model of DICE-2013 in this 196 

study thus means that although the model represents the carbon cycle dynamics in this century 197 

well (cf. Figure 1 in Glotter et al.39 and the temperature development for the Representative 198 

Concentration Pathways in Supplementary Figure 7), our results concerning the temperature target 199 

and the optimal policy efforts are rather conservative estimates. The error in the policy 200 

recommendations may become particularly large for small discount rates, which is important to 201 

recognize with respect to our robustness test with alternative preference parameter values 202 

(Figure 5). 203 

In DICE-2016, the linearity of the first-order differential equations is maintained, but the 204 

parameters are calibrated to give a good fit for the more distant future (periods up to 4000 205 

years)21. The emission reduction costs have been adjusted slightly upwards in DICE-2016. Yet, this 206 

modification does not affect results significantly21. 207 

As stated by Nordhaus21, the major change in DICE-2016 is the method for estimating the damage 208 

function. This adjustment, however, does not affect our analysis, as we replace the damage 209 

function by a new curve. Furthermore, as explained below, we use more recent estimates and 210 

projections to update DICE-2013. Given the nature and extent of the updates in DICE-2016, and our 211 

own recalibration efforts to incorporate recent data, we believe that using DICE-2013 as the basis 212 

model for our study is justifiable. 213 

Recalibrating DICE-2013 214 

The original DICE-2013 simulation horizon starts with the year 2010. Instead of forcing the model to 215 

assume very low emission reduction efforts between 2010 and 2020, we make some minor 216 

modifications to have the simulation horizon start with the year 2020. To most parameters we 217 

assign their values in 2020 from the original model as the initial value. However, we assume a 218 

global average temperature increase above pre-industrial level of 1.2°C by 202027. We further use 219 

GDP projections from the World Economic Outlook by the IMF40 deflated to $US 2005 values (the 220 

base year for all values in DICE-2013). These values, together with the CO2-equivalent-emissions 221 

output ratio 𝜎𝜎 for 2020, imply industrial CO2 emissions of 37.52 GtCO2 in the year 2020. This 222 

number is slightly higher than 36.19 GtCO2 as projected for the RCP4.5 path41, but better reflects 223 

the latest observed increases in global emissions42. To update the cumulative industrial carbon 224 

emissions, we retrieve observed data from the PBL 2017 report42 and interpolate linearly between 225 
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the last observation in 2016 and the projected emissions in 2020 to obtain emissions for 2017-226 

2019. Using the updated GDP value in 2020, we also adjust the value of the initial production 227 

capital. For consistency with the estimated impacts, we recalibrate the 5-year-period DICE-2013 to 228 

an annual time step version with 600 years model run time in total. 229 

The temperature-growth relation 230 

The costs of warming are often given in terms of the contemporaneous changes in GDP43–45. This 231 

static approach, however, omits dynamic effects like changes in investment through which climate 232 

change may affect economic growth and hence future GDP46. 233 

An early estimate by Dell et al4 (DJO, hereafter) of the temperature-growth link finds a linear 234 

relation between growth and temperature. It also shows that only poor countries suffer from 235 

temperature. The results for rich countries are not significant and are inconclusive about whether 236 

these countries benefit or suffer from warming. 237 

BHM has updated this estimation by finding evidence for a non-linear, quadratic relation, which 238 

they attribute to the longer data set they use. BHM also argue that the inconclusive results 239 

concerning the rich countries’ impacts stem from the linear relation found. According to the BHM 240 

estimates, the poor countries are located on the downward facing slope of the concave relation 241 

between temperature and growth. In contrast, rich countries are distributed around the optimum 242 

of this function. A linear regression translates this relation into (inconclusive) statements that the 243 

rich countries are not vulnerable at all, or depending on the exact specification, might be affected 244 

slightly in a positive or negative way. 245 

The differences in these estimation results lead to completely different interpretations. While DJO 246 

predicts that all countries have a vulnerability that decreases over time as they become richer, BHM 247 

observes that countries get increasingly vulnerable over time as they become warmer on average. 248 

DJO’s estimates have accelerated research about how to model growth impacts for climate policy 249 

assessment. The channels through which climate change can affect economic development are 250 

manifold. Apart from direct production reductions that trigger higher-order effects such as reduced 251 

investment and thus alter the economic growth dynamics, climate change may also affect the 252 

progress of research and slow the growth of total factor productivity (TFP) or accelerate 253 

depreciation of the capital stock.  254 
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Moore and Diaz47 investigate the two latter pathways individually in a two-region DICE model. They 255 

choose to apply the DJO estimates that result for a lagged response of the damage costs to 256 

temperature. For this specification, the estimated negative temperature-growth relations for poor 257 

countries are significant at the 10 percent level and not significant for rich countries. To implement 258 

the point estimates, Moore and Diaz apply constant scaling factors to the TFP growth rate to 259 

reproduce the total estimated economic effects. Just as our study, Moore and Diaz47 find that 260 

optimal policy stabilizes global warming at 2°C.  261 

Based on DJO’s estimation method, Lemoine and Kapnick7 develop probability distributions for 262 

regional economic impacts of future climate change by combining distributions for the historical 263 

temperature-growth link with Shared Socioeconomic Pathways (SSPs)25 and global climate model 264 

results. Similar to Moore and Diaz47, they transfer their estimates to DICE-2013 by an explicit model 265 

of TFP growth reductions. 266 

Dietz and Stern48 include more than one impact channel of growth reductions and also find that 267 

optimal emission reduction efforts must be significantly increased. As empirical studies have so far 268 

not been able to quantify by how much the observed growth reductions can be traced back to the 269 

potential channels, studies including more than one impact channel have to rely on mostly arbitrary 270 

assumptions about the contribution of the channels to the growth reductions. 271 

Guivarch and Pottier49 investigate whether certain damage structures, e.g. those that imply that 272 

only TFP growth is affected, lead to a higher social cost of carbon than damage on production itself. 273 

They find that if the overall damage magnitude is the same, the ranking between these alternative 274 

models is not unequivocal and rather depends on the choice of the preference parameters. 275 

In the absence of a comprehensive and empirically validated model that captures the growth 276 

effects, we limit ourselves to finding a production reduction function, i.e. a damage function, that 277 

leads to the same growth effects as estimated. Our damage function thus serves to emulate the 278 

estimated growth impacts, without attempting to capture the underlying mechanisms. Compared 279 

to Moore and Diaz47 and Dietz and Stern48 ours is an alternative approach that does not require 280 

making any arbitrary assumptions. We believe that our approach adds substance to the literature 281 

concerned with developing damage functions for IAMs43–45. These damage function often lack 282 

recent empirical evidence, in particular with respect to the growth impacts13. 283 
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As opposed to Moore and Diaz47 and Lemoine and Kapnick7, the estimates we use for the damage 284 

function development stem from the more recent empirical work in the BHM study, which accounts 285 

for a non-linear temperature-growth relation.  286 

The BHM estimates have initiated a necessary debate about possible methodological advances to 287 

estimate the growth impacts, in particular with respect to the assumed functional relationship50, 288 

the significance of using weather variables for insights into climate impacts11,51 and on other 289 

methodological challenges9. Even though only short time series and small increases in temperature 290 

and other weather variables52 are available for estimation, enriching cost-benefit analysis of climate 291 

policy with the currently existing empirical evidence about the impacts is a necessary and highly 292 

relevant improvement to be made13. 293 

As also stated in the main text, the implications of future damages evolving according to BHM 294 

estimates have been investigated so far by using predetermined scenarios of warming and 295 

economic growth. An important contribution by Ricke et al9 finds that the BHM estimates are 296 

associated with a rather high social cost of carbon, which may indicate that optimal policy should 297 

be stringent. Burke et al8 show that there is a large potential damage reduction if temperature 298 

increase is limited to 1.5°C or 2°C. Ueckerdt et al10 additionally account for the costs of mitigation in 299 

a model with exogenous economic growth and temperature development. Compared to these 300 

contributions, our method of developing a damage function from the BHM estimates within an IAM 301 

allows maintaining the diverse feedback processes between the economic and climate mechanisms 302 

given by the DICE model. 303 

The temperature-induced growth impacts according to BHM 304 

Here, we give a short summary of the estimation of the relation between temperature and 305 

economic growth on which we base our analysis (for more details please see Burke et al.6 and the 306 

associated supplementary material). 307 

Burke et al.6,8 estimate this relation for all countries in the world based on observed data from 308 

1960-2010 based on the statistic model 309 

 Δln �
𝑌𝑌(𝑛𝑛, 𝑡𝑡)
𝐿𝐿(𝑛𝑛, 𝑡𝑡)

� = ℎ �𝑇𝑇ATM(𝑛𝑛, 𝑡𝑡)� +  𝜆𝜆1𝑃𝑃(𝑛𝑛, 𝑡𝑡) + 𝜆𝜆2𝑃𝑃(𝑛𝑛, 𝑡𝑡)2 + 𝜇𝜇(𝑛𝑛) + 𝜈𝜈(𝑡𝑡)

+ 𝜃𝜃(𝑛𝑛)𝑡𝑡 + 𝜃𝜃2(𝑛𝑛)𝑡𝑡2 + 𝜖𝜖(𝑛𝑛, 𝑡𝑡)  
(1) 
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for all countries 𝑛𝑛 and considered years 𝑡𝑡. The dependent variables are the first differences of the 310 

natural logarithm of annual real (inflation-adjusted) GDP per capita (being the fraction of GDP 𝑌𝑌 311 

and population 𝐿𝐿). These first differences are interpreted as annual growth rates of income. The 312 

independent variables are functional specifications ℎ of the absolute average regional temperature 313 

𝑇𝑇ATM and precipitation 𝑃𝑃. Furthermore, time-invariant factors, e.g. history and topography, are 314 

accounted for by including country-specific fixed effects 𝜇𝜇. Time-varying factors including abrupt 315 

shocks, e.g. global recessions and shocks to energy markets, and slowly evolving changes, e.g. 316 

demographic shifts and evolving institutions, are captured by year fixed effects 𝜈𝜈(𝑡𝑡) and country-317 

specific time trends 𝜃𝜃(𝑛𝑛)𝑡𝑡 + 𝜃𝜃2(𝑛𝑛)𝑡𝑡2, respectively. 318 

Burke et al.6,8 find strong evidence for a global quadratic temperature response according to 319 

  ℎ �𝑇𝑇ATM(𝑛𝑛, 𝑡𝑡)� = 𝛽𝛽1𝑇𝑇ATM(𝑛𝑛, 𝑡𝑡) +  𝛽𝛽2 �𝑇𝑇ATM(𝑛𝑛, 𝑡𝑡)�
2

. (2) 

They also test specifications of ℎ with different functional temperature response and find no 320 

improvements in the performance of these alternative models.  321 

For the global sample, Burke et al.8 find statistically significant estimates for the parameters in the 322 

temperature response function of 𝛽𝛽1 = 0.0127 and 𝛽𝛽2 = −0.0005 (Extended Data Table 1 in Burke 323 

et al.). While the country-level estimates given by Burke et al. would require population weights for 324 

usage in a global IAM, the global estimates can be used in a global IAM directly. These values, thus, 325 

constitute our base calibration. 326 

Burke et al.6 also compare data from 1960-1989 with data from 1990-2010 and find that the 327 

response has not changed significantly over time. This indicates that adaptation processes that 328 

could have changed the response in the past are not observable in the data. Furthermore, it implies 329 

that the investment response to current or future climate change, which affects economic growth, 330 

has not altered qualitatively over time despite increased availability of information about the 331 

climate problem. 332 

In a global analysis, Burke et al.6,8 extrapolate the estimated impact relation into the future and 333 

derive projections of future levels of income per capita relative to a world with temperatures fixed 334 

at their 1980-2010 average. In particular, the evolution of the global income per capita is described 335 

as 336 

 𝑌𝑌(𝑡𝑡 + 1)
𝐿𝐿(𝑡𝑡 + 1)

=
𝑌𝑌(𝑡𝑡)
𝐿𝐿(𝑡𝑡)

(1 + 𝜂𝜂(𝑡𝑡) +  𝜙𝜙(𝑡𝑡)). (3) 
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Here, 𝜂𝜂 is the hypothetical growth rate in the absence of climate change and 𝜙𝜙(𝑡𝑡) the additional 337 

effect of warming on growth in that year 𝑡𝑡. The growth rate 𝜙𝜙(𝑡𝑡) is expressed in terms of the 338 

estimated response function ℎ as 339 

 𝜙𝜙(𝑡𝑡) = ℎ�𝑇𝑇ATM(𝑡𝑡)� − ℎ(𝑇𝑇�ATM), (4) 

with 𝑇𝑇ATM(𝑡𝑡) being the global absolute temperature in a year 𝑡𝑡 and 𝑇𝑇�ATM being the average 1980-340 

2010 temperature. This average temperature represents climatic conditions to which the global 341 

economy and society have grown accustomed to and which are assumed to have no economic 342 

effects. 343 

Deriving a new damage cost function for DICE 344 

The climate impact function 𝜙𝜙(𝑡𝑡) is not tantamount to damage functions which are usually 345 

employed in IAMs. These damage functions typically describe reductions of the GDP level, which 346 

can be perceived as a productivity reduction of labour and capital. This can be seen when extending 347 

the standard Cobb-Douglas production function by temperature sensitive labour productivity 348 

𝐴𝐴L �𝑇𝑇ATM(𝑡𝑡)� and temperature sensitive capital productivity 𝐴𝐴K �𝑇𝑇ATM(𝑡𝑡)� as follows6 349 

 𝑌𝑌(𝑡𝑡)    = 𝐴𝐴(𝑡𝑡) �𝐴𝐴K �𝑇𝑇ATM(𝑡𝑡)�𝐾𝐾(𝑡𝑡)�
𝛾𝛾

 �𝐴𝐴L �𝑇𝑇ATM(𝑡𝑡)� 𝐿𝐿(𝑡𝑡)�
1−𝛾𝛾

  

           = 𝐴𝐴K�𝑇𝑇ATM(𝑡𝑡)�
𝛾𝛾
𝐴𝐴L�𝑇𝑇ATM(𝑡𝑡)�

1−𝛾𝛾
���������������������

=𝑓𝑓�𝑇𝑇ATM(𝑡𝑡)�

 𝐴𝐴(𝑡𝑡)𝐾𝐾(𝑡𝑡)𝛾𝛾𝐿𝐿(𝑡𝑡)1−𝛾𝛾 

= 𝑓𝑓 �𝑇𝑇ATM(𝑡𝑡)�𝑌𝑌gross(𝑡𝑡),                                   

(5) 

with GDP gross of level effects 𝑌𝑌gross(𝑡𝑡), temperature independent total factor productivity 𝐴𝐴(𝑡𝑡), 350 

productive capital 𝐾𝐾(𝑡𝑡), labour 𝐿𝐿(𝑡𝑡), output elasticity of capital 𝛾𝛾 and temperature sensitive 351 

productivity 𝑓𝑓�𝑇𝑇ATM(𝑡𝑡)�. GDP net of level damage costs 𝑌𝑌(𝑡𝑡) corresponds to the observed income 352 

levels in eq. (3). 353 

Unlike a level damage function 𝑓𝑓�𝑇𝑇ATM(𝑡𝑡)�, the climate impact function 𝜙𝜙(𝑡𝑡) is part of the GDP 354 

growth rate and thus entangles level effects and the investment response leading to growth effects. 355 

Directly using the growth rate 𝜙𝜙(𝑡𝑡) together with eq. (3) in DICE would result in an exogenous 356 

growth model, i.e. in a model in which investment is predetermined and cannot be adjusted 357 

optimally. To maintain the growth model feature, we seek a damage function 𝑓𝑓�𝑇𝑇ATM(𝑡𝑡)� as in eq. 358 
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(5) that is – together with the growth effects triggered by investment – consistent with the 359 

estimated growth impacts. 360 

To this end, we first convert the temperature increase Δ𝑇𝑇ATM(𝑡𝑡) (in °C from 1900) computed by 361 

the climate module in DICE to the absolute annual temperature 𝑇𝑇ATM(𝑡𝑡) in the estimated response 362 

function ℎ according to 363 

 𝑇𝑇ATM(𝑡𝑡) = 𝑇𝑇2010ATM +  Δ𝑇𝑇ATM(𝑡𝑡)  −  Δ𝑇𝑇2010ATM,  (6) 

with the absolute global temperature in the year 2010 𝑇𝑇2010ATM and the global average temperature 364 

increase in 2010, Δ𝑇𝑇2010ATM. For 2010, we use the average temperature over 2005-2010 to calibrate 365 

𝑇𝑇2010ATM. The data for calibration is compiled from a NASA dataset53,54. The global average 366 

temperature increase in 2010, Δ𝑇𝑇2010ATM, stems from the original DICE-2013 version. Important for the 367 

choice of the reference year, here 2010, is the availability of the required temperature data. Apart 368 

from that, the reference year can be chosen arbitrarily. 369 

To derive a damage function 𝑓𝑓 consistent with the impact estimates, we use an iterative algorithm 370 

that allows disentangling the productivity loss function as described by eq. (5) from the investment 371 

response, both of which jointly cause the growth impact 𝜙𝜙(𝑡𝑡). Extrapolating the past relation 372 

between temperature increase and productivity losses into the future is only a valid approach if the 373 

future economy and its vulnerability are similar as in the past. To obtain a scenario that emulates 374 

such a future world, we impose three key assumptions on the calibration run. 375 

First, we exclude the option to reduce emissions and thus mimic the absence of any notable 376 

emission reduction efforts from 1980-2010. Growth effects that might be induced by reallocating 377 

investment resources to mitigation efforts can thus be abstracted from. 378 

Second, as the estimated response relation for the years 1960-1989 does not differ significantly 379 

from the estimations for the years 1990-2010, notable adaptation is not observable in the data6. 380 

Accordingly, we also abstract from adaptation as a policy tool. Similar to assumption 1), this means 381 

that growth effects that might have resulted from reallocating investment resources to adaptation 382 

can be ignored. 383 

Third, we assume that investment is not slowed down to reduce emissions in the absence of 384 

mitigation efforts. Yet, the investment decision takes into account the emergence of future 385 

productivity losses making investments less profitable over time. Hence, investment reacts to 386 

productivity losses, but it is not used for damage-cost reduction. 387 
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Essentially, the third assumption is equivalent to postulating that the investment decision is made 388 

under ignorance of the temperature-productivity nexus. Accordingly, in the calibration run we seek 389 

a time series 𝑓𝑓(𝑡𝑡), rather than a temperature dependent function, that fulfils 390 

 
𝑓𝑓(𝑡𝑡 + 1)

𝑌𝑌gross(𝑡𝑡 + 1)
𝐿𝐿(𝑡𝑡 + 1) =

𝑌𝑌(𝑡𝑡)
𝐿𝐿(𝑡𝑡)

�1 +  𝜂𝜂(𝑡𝑡) +  𝜙𝜙(𝑡𝑡)�. (7) 

For the initial period we approximate 𝑓𝑓(1) ≈ (1 +  𝜙𝜙(1)) with 𝜙𝜙(𝑡𝑡) resulting from eq. (4) with the 391 

initial absolute temperature 𝑇𝑇ATM(1) from eq. (6). 392 

Preceding the iteration, we solve the model with no climate damage costs to obtain the investment 393 

rate 𝑠𝑠𝑡𝑡nocc optimal in absence of climate change. 394 

The iteration is then performed over a set of functions 𝑓𝑓(𝑡𝑡)(𝑗𝑗) with 𝑗𝑗 being the number of iteration 395 

steps. Starting with 𝑓𝑓(𝑡𝑡)(1) = 1, i.e. with zero climate damage for all temperatures, the iteration 396 

(Supplementary Figure 8) encompasses the following steps: 397 

First, solving DICE with a damage function 𝑓𝑓(𝑡𝑡)(𝑗𝑗): We solve the model with 𝑓𝑓(𝑡𝑡)(𝑗𝑗) as the damage 398 

function, yielding time series of income 𝑌𝑌gross(𝑡𝑡)(𝑗𝑗) and 𝑌𝑌(𝑡𝑡)(𝑗𝑗) as well as 𝜙𝜙(𝑡𝑡)(𝑗𝑗) that evolves from 399 

eq. (4). Applying the investment rate 𝑠𝑠𝑡𝑡nocc to 𝑌𝑌(𝑡𝑡)(𝑗𝑗) provides the hypothetical growth rate 𝜂𝜂(𝑡𝑡)(𝑗𝑗). 400 

Evaluating eq. (7) with 𝑓𝑓(𝑡𝑡 + 1)(𝑗𝑗), 𝑌𝑌gross(𝑡𝑡 + 1)(𝑗𝑗) , 𝑌𝑌(𝑡𝑡)(𝑗𝑗), and 𝜂𝜂(𝑡𝑡)(𝑗𝑗) we obtain the actual effect 401 

𝜙𝜙�(𝑛𝑛, 𝑡𝑡)(𝑗𝑗) of the temperature time series on growth in iteration step 𝑗𝑗. This growth rate, which is 402 

crucially influenced by the assumed function 𝑓𝑓(𝑡𝑡)(𝑗𝑗) and the associated investment response, is 403 

sought to converge towards the estimated temperature–dependant time series 𝜙𝜙(𝑡𝑡)(𝑗𝑗) given by eq. 404 

(4). Thus, the iteration algorithm is stopped once the time-average absolute deviation between the 405 

two rates 𝜙𝜙� and 𝜙𝜙 has become sufficiently small, here, less than 6 ⋅ 10−5. At the same time, all 406 

other time series, in particular the investment response, the temperature time series and the 407 

damage time series, converge. 408 

Second, updating the damage function for the next iteration step: To derive 𝑓𝑓(𝑡𝑡)(𝑗𝑗+1) to be used in 409 

the next iteration step, we again employ eq. (7). Unlike in iteration step 1), we now compute the 410 

function values of 𝑓𝑓(𝑡𝑡 + 1) that fulfil eq. (7) for the time series 𝑌𝑌gross(𝑡𝑡)(𝑗𝑗), 𝑌𝑌(𝑡𝑡)(𝑗𝑗), and 𝜂𝜂(𝑡𝑡)(𝑗𝑗) 411 

using the estimated temperature-induced growth rates 𝜙𝜙(𝑡𝑡)(𝑗𝑗) that evolve from eq. (4). We use the 412 

resulting time series, which we refer to as 𝑓𝑓(𝑡𝑡), to update the damage function for the next 413 

iteration step according to 414 
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𝑓𝑓(𝑡𝑡)(𝑗𝑗+1) = 𝑓𝑓(𝑡𝑡)(𝑗𝑗) +  

𝑓̃𝑓(𝑡𝑡)−𝑓𝑓(𝑡𝑡)(𝑗𝑗)

2
. (8) 

The time series 𝑓𝑓(𝑡𝑡)(𝑗𝑗last) of the last iteration defines the damage function that generates – 415 

together with the investment response – the growth impacts estimated. For the derivation of this 416 

function, it was postulated that the investment decision is made under ignorance of the 417 

temperature-productivity nexus. This assumption necessitates seeking a time series rather than a 418 

temperature dependent function. For the simulation runs, however, we return to the original 419 

narrative of the damage function in DICE. Accordingly, the notable difference between the damage 420 

calibration run and the simulation runs is that the optimal decisions now fully incorporate the 421 

information about the future climate damage costs. In particular, the investment decision accounts 422 

for the costs that this investment eventually causes, which requires having a temperature 423 

dependent function. The temperature dependence is crucial for choosing the optimal temperature 424 

path. We therefore tie together the information given by the time series 𝑓𝑓(𝑡𝑡)(𝑗𝑗last) with the 425 

temperature increase Δ𝑇𝑇(𝑡𝑡)ATM,(𝑗𝑗last) of the same iteration run. We do so by expressing that the 426 

damage 𝑓𝑓(𝑡𝑡)(𝑗𝑗last) observed in the iteration run is caused by the temperature increase 427 

Δ𝑇𝑇(𝑡𝑡)ATM,(𝑗𝑗last) at that time. If, for instance, in the year 2030 a damage of 10% is caused and in the 428 

same year the temperature increases by 1.5°C, then the temperature dependent function conveys 429 

the information that a temperature increase of 1.5°C implies damage costs of 10%, regardless of 430 

the timing. Accordingly, if the 1.5°C warming occurs at a different point in time in the simulation 431 

runs than in the damage calibration run, then it is still associated with a 10% loss. This means that 432 

the damage function does not reproduce BHM’s growth estimates for any other scenario than the 433 

calibration run that emulates the conditions for which extrapolation of the estimates is justifiable.  434 

In short, for each time step 𝑡𝑡, 𝑡𝑡 = 1, … , 600, we specify 𝑓𝑓�Δ𝑇𝑇ATM� by 𝑓𝑓�Δ𝑇𝑇(𝑡𝑡)ATM� ≔ 𝑓𝑓(𝑡𝑡)(𝑗𝑗last), 435 

i.e. the function value of 𝑓𝑓(𝑡𝑡)(𝑗𝑗last) is now defined in Δ𝑇𝑇ATM and not in 𝑡𝑡. Just as 𝑓𝑓(𝑡𝑡)(𝑗𝑗last) , this 436 

function is discrete in 600 points. In the simulation runs, we interpolate this function linearly 437 

between these points. This procedure has the advantage that we do not have to make any 438 

assumptions, as opposed to approximation which would require prescribing a functional form of 439 

the approximated function, and do not lose the iteratively obtained precision. Furthermore, the 440 

function is interpolated between a sufficient number of points to maintain the non-linearity of the 441 
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function despite the linear interpolation. This new function then replaces the damage cost function 442 

in the policy runs. 443 

Robustness of results 444 

In the following, we subject our results to extensive robustness tests. First, we add to the climate 445 

sensitivity analysis from the main text by accounting for an entire probability density function for 446 

the equilibrium climate sensitivity values. Second, we examine the implications of uncertainty in 447 

BHM’s estimations. In this respect we account for alternative estimates of 𝛽𝛽1 and 𝛽𝛽2 on the one 448 

hand and different model specifications on the other hand. This analysis is followed by a 449 

comparison with the DJO estimates. Third, we investigate the influence of uncertainty about the 450 

socioeconomic future by recalibrating the DICE-model according to a selected set of Shared 451 

Socioeconomic Pathways (SSPs). As a by-product of this calibration, we obtain mitigation cost 452 

functions that emulate the costs from a detailed process model and thus represent another 453 

advancement of the DICE-model. The derivation of these functions allows us to test the sensitivity 454 

of our results with respect to these alternative costs of emission reduction. We complete this 455 

section by giving more information on the robustness test with respect to the preference 456 

parameters shown in the main text. 457 

Robustness with respect to Equilibrium Climate Sensitivity 458 

Here, we extend the uncertainty analysis with respect to the equilibrium climate sensitivity (ECS) 459 

values as shown in Figure 1. To this end, we employ a probability distribution of ECS values that was 460 

estimated from a suite of GCM simulations (cf. Figure 3 (A) in Roe and Baker26 and Supplementary 461 

Figure 9). 462 

The resulting distribution of economically optimal temperatures in 2100 inherits properties from 463 

the ECS probability distribution. As also shown in the main text, higher ECS values imply a higher 464 

temperature target due to the limited leeway to reach lower temperatures with climate policy. 465 

Furthermore, the more detailed sensitivity analysis confirms that the most likely temperature 466 

targets lie around 2°C. Yet, there is a certain, albeit very small, chance that the economically 467 

optimal temperature target might be significantly higher, maybe up to 4°C. The likelihood for these 468 

high targets however decreases considerably for all ECS values beyond 4°C. Accordingly, the tail 469 

probabilities of the high ECS values are passed on to the distribution of the optimal temperatures in 470 

2100. 471 

Robustness with respect to the estimated damage function 472 



20 

To quantify uncertainty in the estimates of 𝛽𝛽1 and 𝛽𝛽2 in eq. (2), Burke et al.8 implement 473 

bootstrapping strategies which are based on sampling by country, by year and by five-year blocks. 474 

They sample by country by drawing with replacement from their list of 165 countries a total of 165 475 

countries and re-estimate the response function with that set. This sampling method allows for 476 

correlation in residuals within countries over time. Likewise, they sample over the years and the 5-477 

year blocks, which allows for cross-sectional correlation in residuals in a given year and for both 478 

temporal and cross-sectional dependence in residuals, respectively. 479 

We use these three methods for our analysis of uncertainty in the estimated response function. For 480 

each bootstrapping strategy, we draw 1000 samples. For each sample we derive the estimates for 481 

𝛽𝛽1 and 𝛽𝛽2, apply the iteration over the damage functions for the new response function ℎ and use 482 

the resulting function in the policy runs. The results for the three different bootstrapping strategies 483 

are illustrated in Figure 3 and Supplementary Figures 1 and 2, respectively. 484 

Despite the substantial uncertainty in the impact estimates, 40% of the ensemble runs for ECS of 485 

2.9°C show an optimal warming below 2°C (Supplementary Figure 10). This share increases steeply 486 

for slightly higher warming targets. None of the damage-cost curves implies 2°C as economically 487 

optimal for ECS of 4°C. For ECS of 2°C as many as 63% of the uncertainty ensemble results comply 488 

with the 2°C target. 489 

In addition, we investigate the sensitivity of our results to BHM’s model specification (Figure 4). The 490 

main BHM specification, which is also the main specification in our study, does neither account for 491 

the possibility of an economic response that is lagged in temperature, nor does it differentiate 492 

between responses with respect to income levels. BHM tested these alternative specifications with 493 

the following results: 494 

Pooled long-run specification: The test with lagged terms shows that the response on pooled, or 495 

global, GDP becomes substantially more negative, because cooler regions no longer unambiguously 496 

profit from warming. However, as accounting for more lags renders the estimation more uncertain, 497 

BHM reject neither the hypothesis of a short-run, or instantaneous, temperature effect nor the 498 

hypothesis of a long-run, or lagged, response. 499 

Differentiated short-run specification: As pioneering work by DJO indicates that the income level is 500 

the determining factor of the impact on GDP, BHM also re-estimate the response for rich and poor 501 

countries separately. The optimum of the poor-country response function is observed to occur for a 502 

higher temperature than for the pooled, global sample. Accordingly, the cumulative response is 503 
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smaller than in the main specification. While the rich countries’ response is found to be significantly 504 

different from zero, the parameter adjustment made for poor countries, however, is not significant. 505 

Accordingly, in contrast to DJO, BHM cannot reject the hypothesis that rich and poor countries have 506 

the same response function. 507 

Differentiated long-run specification: BHM also test a model that accounts for lagged effects and 508 

distinguishes between rich and poor countries. Just as in the differentiated short-run specification, 509 

differentiating with respect to income renders the cumulative response smaller than for the pooled 510 

long-run response function. However, splitting the sample in rich and poor countries as well as 511 

accounting for additional uncertain parameters to capture the long-run effects produces an overall 512 

large projection uncertainty. 513 

We expect that these outcomes will be largely reflected in our results. We use their bootstrapped 514 

estimation results to test the sensitivity of our results to these alternative models. 515 

For this purpose, we expand eq. (2) by the corresponding terms describing the lags and/or the GDP 516 

share of rich and poor countries. The GDP share is modelled as a linearly decreasing function as 517 

described in detail below. As also argued there, the differentiation with respect to the income level 518 

would preferably require a two region model. With a global integrated assessment model we 519 

instead try to generate a damage function that aggregates over the different impacts for rich and 520 

poor countries. We thus make assumptions about the poor’s share in the global GDP. While this 521 

modelling certainly is a makeshift solution, it serves to provide some impression of how the 522 

different vulnerabilities affect the optimal solution. Our tests with different specifications for the 523 

poor countries’ share in global GDP show only marginal changes in the results, as the poor 524 

countries’ GDP losses are small in absolute numbers for all specifications. The only exception to this 525 

is the case in which the poor countries’ GDP share increases significantly. As so far this share in 526 

global GDP has been observed to decrease over time, we believe that our assumption of a linearly 527 

decreasing share is feasible. 528 

As expected, the implied optimal end-of-century temperatures for the different model 529 

specifications reflect the findings by BHM (Figure 4 and Supplementary Figures 3-5). As shown by 530 

BHM the differentiated short-run specification implies less severe losses. Accordingly our results 531 

reflect that the economically optimal end-of-century temperatures turn out to be higher. By 532 

contrast, the other two specifications, which are associated with higher damage costs, imply that 533 
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mitigation efforts are to be strengthened further. For a 2.9°C climate sensitivity, limiting 534 

temperature increase to well below 2°C is optimal under these model specifications. 535 

Although based on the same data set, different model specifications can imply significant 536 

discrepancies in the estimates. As the damage cost estimates are of major importance for the 537 

optimal policy solution in integrated assessment models, it is not surprising that our results are 538 

sensitive to these model specifications. However, as three out of four model specifications imply an 539 

economically optimal temperature target of 2°C or even lower for a 2.9°C climate sensitivity, we 540 

consider our results relatively robust to the different BHM model specifications. 541 

Comparison with the DJO estimate 542 

As described above, the pioneering work by DJO describes the relation between temperature and 543 

growth to be linear and reveals that only poor countries suffer from temperature. However, the 544 

results for rich countries are not statically significant with point estimates ranging from slightly 545 

positive in the zero-lag specification to slightly negative in the 5-lag specification. 546 

While our study is based on the more recent BHM estimates, which exhibit a non-linear relation 547 

between temperature increase and economic growth, we test here whether our results concerning 548 

the end-of-century optimal temperature might also hold for the DJO estimation results.  549 

As indicated above, the different specifications of the DJO regressions might lead to very different 550 

results. So far, studies have used different specifications of the DJO regression and do not agree on 551 

the question of whether the estimates for the rich countries hold sufficient informative value to be 552 

used for analysis. For instance, Moore and Diaz47 employ the estimates for the 10-lag specification 553 

that gives a negative relation between temperature and growth for rich countries. Ricke et al.9 554 

include the 0-lag specification and ignore the positive impact relation for the rich countries. For a 555 

complete picture, we here show the results for all lag specifications given by DJO with and without 556 

rich countries’ impacts (Figure 4 and Supplementary Figure 6). 557 

This analysis, however, must be treated with caution. Our study’s aim is to generate a damage 558 

function for a global integrated assessment model as DICE. The implementation of DJO’s estimates, 559 

however, requires model with at least two regions, preferably with implemented welfare weighting 560 

in the optimization. Nevertheless, to get a rough impression of the implications of DJO estimates 561 

for our results with DICE, we impose assumptions about the share of the poor countries’ GDP in the 562 

global GDP.  563 
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To implement the DJO estimates, we change 𝜙𝜙(𝑡𝑡) in eq. (3) to 𝜙𝜙(𝑡𝑡) = 𝛿𝛿 𝛥𝛥𝛥𝛥(𝑡𝑡 + 1)ATM and let the 564 

coefficient 𝛿𝛿 differ for rich and poor countries. In addition, as DICE cannot track how many 565 

countries are poor or rich, we impose assumptions about the share 𝜍𝜍(𝑡𝑡) of the poor countries’ GDP 566 

in the global GDP. With this share, we can extend eq. (3) to 567 

 𝑌𝑌(𝑡𝑡 + 1)
𝐿𝐿(𝑡𝑡 + 1)

 𝐿𝐿(𝑡𝑡) = ς(𝑡𝑡)𝑌𝑌(𝑡𝑡) (1 + 𝜂𝜂(𝑡𝑡) +  𝜙𝜙(𝑡𝑡)poor)

+ �1 −  ς(𝑡𝑡)�𝑌𝑌(𝑡𝑡)�1 + 𝜂𝜂(𝑡𝑡) +  𝜙𝜙(𝑡𝑡)rich�  
(9) 

with the 𝜙𝜙(𝑡𝑡)poor and 𝜙𝜙(𝑡𝑡)rich describing the alternative specifications of 𝜙𝜙(𝑡𝑡) for poor and rich 568 

countries, respectively. This growth equation partitions global GDP into poor and rich countries’ 569 

GDP and thus acts as a makeshift to get a rough idea of the effects in a two-region model with 570 

sophisticated welfare weighting47. 571 

We assume that ς(𝑡𝑡) decreases linearly with global GDP per capita. For poverty defined as in DJO, 572 

that is having a below-median PPP-adjusted per capita GDP in the first year the country enters the 573 

data set, this development is observable in the data40 of the past decades. As ς(𝑡𝑡) only makes a 574 

statement about the poor countries’ relative contribution to global GDP, differing narratives about 575 

the future world are reconcilable with our modelling choice. For instance, rising global prosperity 576 

might be associated with increasingly many countries overcoming their poverty and assuming a rich 577 

countries’ vulnerability. Alternatively, rich countries could get even richer, while the poor countries 578 

do not prosper at all or get even poorer. 579 

We calibrate the linear function ς(𝑡𝑡) using data from 198040 and employing the assumption that 580 

the largest GDP per capita value in the absence of climate change as computed by DICE leads to ς =581 

0. Hence, although the GDP share of poor countries declines, we assume that poverty will never be 582 

fully eradicated over many decades. 583 

A linearly decreasing ς(𝑡𝑡) implies that if global prosperity increases, ceteris paribus, global GDP 584 

becomes less sensitive to temperature. We contrast this simulation with a scenario, in which the 585 

value for 1980 does not decline, i.e. we assume ς(t) =  ς1980 ≈ 0.1272. 586 

The alternative specifications of DJO we test here do not imply results that are virtually different 587 

with respect to the assumed ς(t) (Supplementary Figure 6). The reason for this is that the poor 588 

countries’ contribution is small for both specifications for ς(t). Yet, this means that the treatment 589 

of the rich countries estimated impacts matter more. In the 0-lag and the 1-lag specification, the 590 
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major share of GDP generated by rich countries is positively affected by warming. In this case, the 591 

business-as-usual end-of-century temperature is optimal. In contrast, excluding the non-significant 592 

estimation results from the damage calibration leads to optimal temperatures that are only slightly 593 

higher than for the BHM model. A different situation arises for the 5- and 10-lag specification. 594 

Including the negative impact relation for the rich countries indicates optimality of significantly 595 

lower temperatures than for the BHM estimates. The DJO estimates thus imply largely differing 596 

results, ranging from 1.7°C to 4°C optimal warming. Most results, however, lay in a range between 597 

1.7°C and 2.3°C (Figure 4). 598 

Uncertainty with respect to alternative socioeconomic futures 599 

In this section, we investigate the sensitivity of our results to alternative assumptions about the 600 

socioeconomic future. To facilitate the analysis of socioeconomically determined vulnerabilities, the 601 

Shared Socioeconomic Pathways (SSPs) were developed to describe possible future developments 602 

that together result in differing challenges for mitigation and adaptation55. 603 

In DICE, these narratives are reflected by the developments of the population size, the total factor 604 

productivity (TFP), carbon intensity, the mitigation costs and the capital elasticity describing the 605 

division of income between capital and labour. Here, we limit our sensitivity study to a selected set 606 

of SSPs, i.e. SSP1 (Sustainability – Taking the Green Road), SSP2 (Middle of the Road) and SSP5 607 

(Fossil Fuelled Development) to obtain a good impression of how alternative challenges for 608 

emission reduction affect the cost-benefit-optimal results. We ignore SSP3 (Regional Rivalry) and 609 

SSP4 (Inequality) as we believe that the problems induced by the depicted increasing regional 610 

fragmentation and the resulting obstacles for adaptation deserve a more explicit modelling than it 611 

is currently the case in DICE. 612 

To recalibrate DICE according to these SSPs, we use data (until 2100) of the integrated energy-land-613 

economy-climate scenarios generated by the REMIND-MAgPIE model56. REMIND-MAgPIE belongs 614 

to the IAMs with a detailed description of the energy sector that were chosen to translate the SSP 615 

narratives into quantitative projections25. As a result of the interpretation process of the narratives 616 

and the different model designs, each IAM model features alternative interpretations of the SSPs. 617 

For each SSP, a different IAM was selected to generate the so-called Marker Scenario. For our 618 

calibration exercise, we do not draw on the simulation output from the different marker models, 619 

but opt to rely on the data generated by only one model to avoid compatibility issues. So far, SSP1, 620 

SSP2, and SSP5 have been examined with REMIND. The scenarios computed consist of baselines in 621 
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which climate policy is absent and of runs in which mitigation efforts comply with the 622 

Representative Concentration Pathways (RCPs). For this, a new, intermediate RCP of 3.4 W m−2 623 

was developed due to its importance for exploring the attainability of the 2°C target25 . 624 

We adopt the given population time series and keep the population constant after 2100. While this 625 

assumption certainly is far from realistic, it serves to distinguish the different scenarios in terms of 626 

different population sizes. We follow Leimbach et al.57 by assuming a capital elasticity of 0.35 for 627 

SSP1 and SSP2 and a higher value of 0.45 for SSP5. We also adopt their assumed capital price level 628 

(return rate on gross capital Investments) of 0.12 for all SSPs to compute the initial capital level (cf. 629 

Leimbach et al.57). Together with the baseline GDP time series we use this new parametrization to 630 

derive a matching TFP time series in the Ramsey model without climate change. We then employ 631 

this time series to fit the parameters describing the TFP development in DICE (Figure 6b). We also 632 

recalibrate the DICE mitigation cost parameters using the mitigation costs from the SSP scenarios. 633 

The mitigation costs in REMIND-MAgPIE equal the reduction of GDP with respect to the baseline 634 

case58. The carbon intensity needed for this fit and for the scenario runs results from dividing the 635 

baseline emissions by the baseline GDP. In contrast to the original mitigation cost function in DICE, 636 

the resulting mitigation functions are thus calibrated against a detailed process model (Figure 6c). 637 

The socioeconomic conditions described by SSP1 and SSP2 leave sufficient leeway to aim for 638 

optimal end-of-century temperatures well below 2°C (Figure 6a). By contrast, the fossil-fuelled 639 

development portrayed by SSP5 renders successful climate policy much more difficult and implies 640 

optimal end-of-century temperatures around 2.5°C. 641 

As we have calibrated the mitigation cost functions to simulations in which negative emission 642 

technologies are employed, we also test the sensitivity of our results with respect to the availability 643 

of negative emission technologies in this century. To simplify matters, we assume that the potential 644 

availability does not increase over time. However, the full mitigation potential is not assumed 645 

instantaneously in our simulations, rather increases over time. These simulations show that it is 646 

optimal to harness the increased mitigation potential to further reduce temperatures at the end of 647 

the century (Supplementary Figure 6d). 648 

The socioeconomic conditions in the future certainly play an important role for optimal policy 649 

design, yet they do not alter the message that mitigation efforts should be very stringent to come 650 

close or even lower 2°C at the end of the century. The reason for this is the magnitude of the 651 

potential damage costs for higher temperatures. 652 
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Sensitivity to alternative mitigation costs 653 

The modelling of mitigation processes in DICE is often considered to be too simple47, because the 654 

cost function is not calibrated against a detailed process model, there is no expansion constraint for 655 

emission reduction59,60, and it does not affect factors of production or total factor productivity61. 656 

Here, it is not our intention to tackle these deficiencies. Rather, we aim to examine the sensitivity of 657 

our results to alternative mitigation cost functions. For this, we leave the original socioeconomic 658 

setting of our DICE model unchanged and implement the three mitigation cost functions that we 659 

recalibrated against a process model for the SSP sensitivity analysis (see above). Furthermore, we 660 

control for uncertainty in our calibration procedure. We do so by using the variance of the 661 

parameter estimate and the estimated optimal value to derive normal distributions for each 662 

parameter and each SSP. From each of these distributions we sample 1000 sets of parameters, i.e. 663 

1000 alternative mitigation cost functions. 664 

We find that the Paris Agreement is also cost-benefit optimal when assuming these three 665 

mitigation cost functions (Figure 7). The spread in the results for each SSP is rather small, showing 666 

that potential errors in the fit are negligible for the results. 667 

The reason for this high robustness with respect to the mitigation costs are the significant marginal 668 

damage increases for higher temperatures and the universal functional behaviour of the mitigation 669 

costs in the vicinity of present-day temperatures (cf. Figure 1). 670 

Background information on the social preferences 671 

The preferences as displayed in Figure 5 are represented by the initial rate of social time preference 672 

and the elasticity of the marginal utility of consumption. The initial rate of social time preference 𝜌𝜌 673 

is used to assign different weight to the utility 𝑈𝑈 of per capita consumption 𝑐𝑐𝑡𝑡 = 𝐶𝐶𝑡𝑡
𝐿𝐿𝑡𝑡

 at different time 674 

points 𝑡𝑡 ∈ [1,𝑇𝑇] in the overall welfare function. In DICE, this social welfare function 𝑊𝑊 is given by 675 

 
𝑊𝑊 = ��

1
1 + 𝜌𝜌

�
𝑡𝑡−1

𝐿𝐿𝑡𝑡  𝑈𝑈(𝑐𝑐𝑡𝑡) 
𝑇𝑇

𝑡𝑡=1

. (9) 

In other words, 𝜌𝜌 relates to impatience in consumption; a higher initial rate of social time 676 

preference gives more emphasis to present rather than to future utility. In such a case, society is 677 

inclined to consume more today and to invest less for future consumption potential. 678 
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The elasticity of the marginal utility of consumption 𝜃𝜃, 𝜃𝜃 ≥ 0, determines the gain in utility due to 679 

additional consumption, irrespective of the timing of its appearance. It enters the utility function as 680 

 
𝑈𝑈(𝑐𝑐𝑡𝑡) = �

𝑐𝑐𝑡𝑡
1−𝜃𝜃

1−𝜃𝜃
  𝑓𝑓𝑓𝑓𝑓𝑓 𝜃𝜃 ≠ 1

ln 𝑐𝑐𝑡𝑡  𝑓𝑓𝑓𝑓𝑓𝑓 𝜃𝜃 = 1
 .  (10) 

The calibration of these parameters is controversially discussed in climate economics as they reflect 681 

either how decisions shall be formed on account of ethical concerns or how decisions are actually 682 

made. Ethical considerations are, for instance, reflected by an almost zero initial rate of social time 683 

preference, as it assigns future generations’ consumption similar relevance as the current 684 

generation’s consumption24,62. In contrast, the choice of a higher rate reflects that people usually 685 

prefer consuming today rather than postponing it. Likewise, the consumption elasticity parameter 686 

can be determined either based on empirical studies63 or by answering the normative question of 687 

how much importance additional consumption shall have for the society’s wellbeing64. 688 

Together, these two parameters describe the social-welfare-equivalent discount rate 𝑟𝑟, which 689 

converts a marginal change in future consumption at time 𝑡𝑡 into the welfare-equivalent marginal 690 

change in current consumption given by 691 

 𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕1

= (1 + 𝑟𝑟)𝑡𝑡 𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕𝑡𝑡

.                  (11) 

From this relation, one can derive the Ramsey equation that connects the two parameters with the 692 

discount rate 𝑟𝑟 as follows 693 

 𝑟𝑟 ≈ 𝜌𝜌 + 𝜃𝜃𝜃𝜃                   (12) 

with the consumption growth rate 𝑔𝑔 (cf. Goulder and Williams64). 694 

The equations (11) and (12) illustrate that the two parameters influence the weight of the future 695 

generations’ well-being for today’s policy. In particular, they influence the importance of protecting 696 

against future climate impacts for today’s policy, weighing up the benefits future societies would 697 

experience against the emission reduction costs that today’s generation would have to bear. The 698 

choice of their values thus is critical to assessments of climate change policy. Furthermore, eq. (12) 699 

shows that they also affect the balance between optimal consumption and thus indirectly optimal 700 

investment and can thus change the growth effects that are critical for our results. 701 



28 

The calibration of these parameters is subject to a longstanding debate. According to the 702 

descriptive viewpoint taken in DICE20, it is critical that the two preference parameters are chosen 703 

simultaneously so that the resulting discount rate reflects observed behaviour revealed by market 704 

interest rates. In contrast, the prescriptivists24 perceive the calibration of the two parameters as an 705 

ethical issue. Following now the prescriptive approach, we account for a wide range of possible 706 

values. The results of this sensitivity test are shown in Figure 5 and described in the main text. As 707 

explained above, the temperature targets for small discount rates might be estimated to be too 708 

high due to the deficient reproduction of the carbon cycle dynamics in DICE. As these targets are 709 

well below 2°C, this implied error does not contradict our general finding that the Paris Agreement 710 

could be cost-benefit optimal.  711 
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Figures 863 

 864 
Figure 1: Illustration of universality of the cost-benefit climate analysis. The black curves are 865 
associated with the original calibration of the climate sensitivity of 2.9°C; the blue curves with a 2°C 866 
climate sensitivity and the red curve with a 4°C climate sensitivity. The inset figures allow 867 
comparing the economically optimal temperature development and damage costs with their 868 
corresponding values in the BAU scenario. 869 
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 871 

Figure 2: Temperature increase, damage costs, and carbon emissions under cost-benefit optimal 872 
policy for three different climate sensitivities. Cumulative mitigation costs (green curve) and 873 
climate damages (black curve) as a function of Earth’s warming level give the total climate costs 874 
(red curve). Mitigation costs diverge for present-day warming and converge to zero for unmitigated 875 
warming. The damages are zero for zero warming and increase with temperature. The 876 
characteristic steepness of the mitigation curve implies that beyond a certain damage level the 877 
economically optimal temperature (which minimizes the total costs) becomes insensitive to a 878 
further increase in damages. For example, increasing (black dashed) or decreasing (black dotted) 879 
the damage level by half of the initial damage level does not change the economically optimal 880 
warming level significantly (grey area).  881 
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 882 

Figure 3: Relation between the cumulative GDP losses until 2100 (in 2005 $US) in the absence of 883 
climate policy and the economically optimal warming until the end of the century, given 884 
uncertainty in the estimates of the historical impact and uncertainty in the climate sensitivity 885 
value. Scattered points give the uncertainty ensemble in the historical relation between 886 
temperature increase and economic growth for three different climate sensitivities; red points for 887 
4°C climate sensitivity, black points for the original climate sensitivity calibration in the DICE-2013R 888 
model, and blue points for 2°C climate sensitivity. Each point depicts the DICE-2013 model output 889 
for a damage function calibrated according to one of the 1000 bootstraps of the historical 890 
regression. Curves in the main plot represent the best fit for the relation between cumulative 891 
damage costs and optimal warming. The histograms below and on the left give the frequency of the 892 
model results as well as the medians and likely ranges for each of the three climate sensitivities. 893 
The likely rage of optimal end-of-century warming is approximately located between 2.3°C and 894 
3.4°C with a median of 2.5°C for the climate sensitivity of 4°C, between 1.8°C and 3°C with a median 895 
of 2.1°C for a climate sensitivity of 2.9°C and between 1.3°C and 2.5°C with a median of 1.7°C for a 896 
climate sensitivity of 2°C. The results of the original DICE-versions are located outside the likely 897 
ranges as shown by the black brackets. 898 
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 900 

 901 

Figure 4: Ensembles including the uncertainty in the estimates of the historical impacts according 902 
to BHM (blue bars) and some samples according to Dell et al4 (DJO, red lines). Specification of the 903 
estimates without (short-run (a, b)) and with (long-run (c, d)) the assumption that the influence of 904 
warming on economic growth is lagged and/or without (pooled (a, c)) and with (differentiated (b, 905 
d)) differentiating between impacts on poor and on rich countries. Each specification for BHM 906 
samples from 1000 bootstraps of the historical regression; samples for DJO include specifications 907 
with no lag (b) as well as 1-lag, 5-lag, and 10-lag specifications (d). 908 
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 910 

 911 

Figure 5: Sensitivity of the economically optimal temperature in 2100 to alternative initial rates of 912 
social time preference and generational inequality aversion. These simulations are based on the 913 
benchmark impact estimate as in Figure 2 with an equilibrium climate sensitivity (ECS) of 2.9°C. The 914 
unhatched box indicates the range of values recommended by the IPCC-AR5 report29. The black star 915 
depicts the DICE-201316 calibration. The red line marks the 2°C isoquant. 916 
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 918 

Figure 6: Economically optimal warming for SSP1, SSP2, SSP5, and DICE. (a) The economically 919 
optimal temperature pathway for different socioeconomic conditions under the assumption that 920 
negative emission technologies are not used within this century; (b, c) recalibrated parameters in 921 
DICE to match the results of the REMIND model for the three SSPs; (b) shows the results for the 922 
total factor productivity (TFP) and (c) for the costs of mitigation; (d) economically optimal warming 923 
in 2100 if negative emission technologies are available in this century. 924 
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 926 

 927 
Figure 7: Economically optimal temperature increase for alternative mitigation cost functions. 928 
The mitigation functions, which are sampled from the SSP fit, reflect different technological 929 
possibilities in the future as reflected by the SSPs. Dotted lines show the value for the benchmark 930 
estimate (DICE-2013). 931 
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