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Abstract

An approach to considering changes in flooding probability in the integrated
assessment of climate change is introduced. A reduced-form hydrological model
for flood prediction and a downscaling approach suitable for integrated assess-
ment modeling are presented. Based on these components, the fraction of world
population affected by changes in flooding probability in the course of climate
change is determined. This is then used as a climate impact response function in
order to derive emission corridors limiting the population affected. This approach
illustrates the consideration of probabilistic impacts within the framework of the
tolerable windows approach. The results suggest that up to 20% of the world popu-
lation might inevitably be affected by increased flood events in the course of global
warming.

1 Introduction

The integrated assessment of climate change needs to take into account both the costs
and the benefits of climate protection measures. Whereas the first mainly relates to
issues of energy production, the latter is associated with avoided damages from climate
change. Whereas many integrated assessment models consider the costs of mean cli-
mate change, the effects of extreme events are often neglected. This is despite the fact
that there is an increasing trend of economic losses due to “atmospheric” natural dis-
asters (Berz, 1999). The Mississippi flood of 1993, for example, has caused economic
losses of about US $ 12 bn., whereas the losses of the 2002 summer floods in Europe
are estimated to be about EUR 30 bn. (Munich Re, 2004). Both numbers are of the
same order of magnitude as the estimated damage costs in the water sector for both
regions for an increase in global mean temperature of about 1-2.5◦C (Tol, 2002). This
indicates that extreme floods, which appear in the “midfield” in the statistics of eco-
nomic losses (Berz, 1999), should be an essential component of integrated assessment.

For the recent global warming of the 20th century, no significant trends could be
observed with regard to increases in annual maximum flows (Kundzewicz et al., 2003).
For great events, i. e. 100-year floods, however, an increasing risk was detected in 29
basins larger than 20000km2 by Milly et al. (2002). In spite of major uncertainties,
there are some studies, including Working Group II of the IPCC TAR, which claim an
increase of major flooding probability for future warming (Kundzewicz and Schellnhu-
ber, 2004; Milly et al., 2002). Other studies show similar results with a rather heteroge-
neous geographical distribution of changes in flooding probabilities (Arora and Boer,
2001; Arnell, 1999a). Yet, in some highly vulnerable regions a significant increase
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of flooding probabilities has been found under global warming, e. g. for Bangladesh
(Mirza, 2002), central Asia and eastern China (Arnell, 1999a). All of these studies are
restricted to climate change induced shifts in flooding probabilities and do not take into
account other major factors relevant for changes in flooding intensities and frequencies.
These factors include land-use changes, modification of streamflows by various water-
management schemes like dams or dykes, or, when it comes to the actual damages, the
relocation of infrastructure or settlements. On the one hand, this makes assessments
easier, but on the other hand it might give unreliable or biased results.

For a flood component of an integrated assessment model (IAM), it is generally
not sufficient to model the shifts in flooding probabilities only. In addition, one needs
to map those probabilities to actual damages, where the specific measure of damage
depends on the overall framework of the IAM. In case of a cost-benefit approach, for
example, the flood model needs to give a monetary output. Within other frameworks,
e. g. the tolerable windows approach (TWA), damages need to be calculated in a deci-
sion relevant measure, which doesn’t need to be directly related to monetary costs.

Another difficulty in developing an integrated assessment module of flood changes
is due to computational requirements of those models, in particular if the overall model
includes the decision making with respect to climate mitigation endogenously in the
model. These computational costs ask for so-called reduced-form models, which mimic
the outcomes of more detailed models, yet are much faster to compute.

Within the first part of this paper (Sections 2-5), we develop such a reduced-form
model, based on simplified descriptions of regional patterns of climate change and
on a highly reduced scheme for runoff computation. As “output” variable, the model
computes the number of people affected by a pre-defined shift of flooding probabil-
ity, e. g. a once in 50 years event shifts to a once in 25 years event. These shifts are
computed for large river basins with an area of more than 2.5×104km2, and we also
neglect the “other major factors” affecting flooding probabilities. In the final section,
we present a first application of the model within the tolerable windows approach. In
the TWA, the integrated assessment process starts by assessing which impacts of cli-
mate change are undesirable. These impacts are then excluded by setting normative
constraints, “guardrails” in the language of the TWA. Using an inverse modeling ap-
proach, the TWA determines sets of emission reduction strategies that are compatible
with the predefined guardrails.

Seen somewhat more formally, the basic problem in IA is a control problem with
a basic differential equation ˙x = f (x, t;u) where the time evolution of the climate state
x is dependent on the statex itself, timet and a control strategyu. In so-called policy
evaluation modeling, e. g. the IMAGE family of models (Rotmans et al., 1989; Alcamo
et al., 1998), the control strategyu is predefined and the consequences of this strategy
are evaluated exogenously, i. e. by the model user. Contrary to this, the aim in cost-
benefit modeling is to determine an optimal policy ˜u. In the TWA, there are additional
constraintsh(x, t;u) ≤ 0, the “guardrails”, and the aim is to solve the differential in-
clusion ẋ ∈ F(x, t) with F := { f (x, t;u) | u∈ U} under the conditionh(x, t;u) ≤ 0 in
order to determine the set of emission reduction strategies that are compatible with the
predefined guardrails.

If probabilistic uncertainty (uncertainty that can be expressed as a probability dis-
tribution, in contrast to uncertainty where not even a probability distribution is known)
is considered, there are two elements that can potentially become probabilistic. First
of all, the climate evolutionf can be probabilistic, and secondly the constraints, the
guardrails in the language of the TWA, might be probabilistic. The current paper aims
at implementing the second of these possibilities.
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Within the TWA, impacts of climate change can be represented as a Climate Impact
Response Function (CIRF). CIRFs indicate the relationship between climate change
and the impacts of climate change. They can formally be represented asI = I (C,S)
with the impactI , the relevant climatic variablesC and the significant socio-economic
variablesS. In previous assessments (Füssel et al., 2003; Füssel, 2003), CIRFs were
defined within a deterministic framework. The present paper will extend the concept
of CIRFs to the probabilistic domain.

2 Model description

2.1 Aims and scope

We are aiming to develop a reduced-form model that is able to incorporate the prob-
abilities of large-scale flooding in an integrated assessment modeling framework. We
will use this model to determine CIRFs that can be used to estimate the effects of cli-
mate change on flooding probabilities and their consequences. While floods may have
a multitude of causes, ranging from blocking of river passages by ice or debris via land-
use changes and river regulation to large precipitation events, most of these causes are
not directly related to climate change. Due to climate change, the hydrological char-
acteristics of the atmosphere may change. Higher temperatures cause an increase in
evaporation, and the moisture capacity of the atmosphere increases as well. This may
lead to increases in precipitation. As the non-climatic causes for flooding mentioned
above can not easily be incorporated in the model we are developing, our analysis
will focus on the climate change related causes. In addition, we have to restrict the
type of floods we are attempting to model. Local, sudden floods (’flash floods’) occur
in small catchments and are mainly caused by localized intense precipitation events.
While changes in the characteristics of these events are to be expected in a changed
climate, we regard an integrated assessment of changes in probability of flash floods
as too ambitious on a global scale for the time being. Extensive, long-lasting floods
(’plain floods’), on the other hand, occur in larger catchments (Bronstert et al., 2002).
These floods may be caused by extreme short-term precipitation events, especially in
mountainous areas, but they may also be caused by large-scale rainfall lasting several
days or weeks. The latter is the type of flood we are attempting to model.

The assessment we are conducting is global in scope. Therefore, a compromise has
to be made with regard to the temporal and spatial scales that can be resolved. While
high spatial resolutions allow assessments on the scale of small river basins, or even
sub-basins, they also lead to high requirements with respect to computing time, input
data and validation data. Similarly, high temporal resolution could allow the simula-
tion of flash-floods, and similarly fast events, and might generally improve the fidelity
of model results, but again the requirements with respect to data and computational
resources are very demanding.

For the assessment of changes in flooding probability on the scale of large river
basins, a spatial resolution of 0.5◦ seems to be a reasonable compromise, as well as a
temporal resolution of one month. Vörösmarty et al. (2000) estimate that river basins
with drainage areas≥ 2.5×104km2 can be modeled reasonably at a spatial resolution
of 0.5◦, and climate data are readily available at this resolution, e. g. the “CRU” data by
New et al. (2000), the data by Willmott and Matsuura (2001) or data by Leemans and
Cramer (1991). These data have a temporal resolution of one month, which allows the
resolution of the annual cycle, while fast events like flash-floods can not be investigated
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at this timescale. As gauge records from a large number of streamflow gauges with a
global coverage also use the monthly time scale, the model uses a timestep of one
month for calculation.

In addition to the choice of resolution, a few other simplifications are made. Our
model will neglect the temporal dynamics of river routing, as this seems hardly worth-
while at a temporal resolution of one month. At this temporal scale, water traveling at
0.5m/s moves approximately 1300km during one timestep (Vörösmarty et al., 2000).
The mean travel times therefore exceed one timestep for the very largest rivers only.
The consideration of river routing would therefore only influence results for these river
systems. In addition, river routing will not change significantly due to climate change,
neglecting possible changes in the timing of flows. We are also neglecting the soil stor-
age of moisture and evaporation from water bodies. While these factors may degrade
model results, especially with regard to the simulation of the annual cycle of runoff,
the sensitivity analysis (section 4.3) suggests that the simulation of floods would not be
improved by the reductions in runoff implied by these factors.

2.2 Downscaling of climate change

The climate components of many IA models, e. g. the models DICE (Nordhaus, 1994),
MERGE (Manne et al., 1995), MiniCAM (Edmonds et al., 1996) and SIAM (Hassel-
mann et al., 1997), are intended for the evaluation of large numbers of climate change
scenarios. In some cases, they are also coupled to economic models, which obtain so-
lutions by optimizing some value-function. Therefore, the climate models employed
in such a framework must be run a large number of times. This limits the computa-
tional resources such a model may consume. Therefore, a typical climate model for
integrated assessment applications only calculates the change in global mean temper-
ature∆TGM, while the spatial distribution of temperature change and changes in other
climatic variables have to be inferred from this.

The impact of climate change we want to assess here not only requires a more
explicit spatial resolution, but it also needs to take into account climate variability, and
not just the changes in mean climate. We therefore divide the modeling approach into
a “mean” and a “variability” part.

Geographically explicit changes in mean climate can be calculated by using the
pattern-scaling approach (Mitchell et al., 1999; Mitchell, 2003; Füssel, 2003). In this
approach, geographically explicit patterns of climate change obtained from GCM ex-
periments are scaled by∆TGM calculated by the simple climate model included in the
integrated assessment model. Despite the apparent simplicity of the approach, results
obtained in this way are surprisingly accurate (Mitchell, 2003).

We are using climate change patterns obtained by an EOF analysis of output from
a number of GCM experiments (Füssel, 2003). In order to reflect the pertaining uncer-
tainty about the spatial aspects of climate change, we are using patterns of temperature
and precipitation change from three different GCMs, i. e. HadCM 2 (Johns et al., 1997),
ECHAM 3 (Voss et al., 1998) and ECHAM 4 (Roeckner et al., 1996). These patterns
of monthly climate change are scaled by the change in global mean temperature∆TGM

and applied to the climatology.
While pattern scaling gives the geographically explicit changes in the mean climate,

a representation of the variability of precipitation and evaporation is also necessary for
the evaluation of changes in probabilities of flooding. An estimate of variability can
be obtained in a number of ways. Besides the vast uncertainties to be expected in each
method, most of the approaches, e. g. high resolution GCMs (Hennessy et al., 1997;
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Voss et al., 2002), statistical downscaling (e. g. Xu (1999); Wilby and Wigley (1997);
Wilby et al. (1998)) or stochastic weather generators (e. g. Cameron et al. (2000);
Hutchinson (1995); Wilks and Wilby (1999)) are computationally expensive.

Therefore we chose a resampling approach, similar to the one used by Alcamo
et al. (2001) for the GLASS model. This approach is based on data of observed cli-
matic variables on a 0.5◦ grid with monthly resolution. Both a climatology and the
deviations from the climatology are determined from the data, and the deviations from
the climatology are used as “templates” of spatio-temporal variability patterns.

As source of climate data, we are using the CRU-PIK dataset by Österle et al.
(2003) (see Section 3.2). From this dataset, we determined the monthly climatology
for the years 1961-1990, and then determined the deviations from the climatology with
T ′ (m, t) = T (m, t)−TC (m) andP′ (m, t) = P(m, t)/PC (m) the temperature and pre-
cipitation deviation patterns for yeart and monthm.

In more detail, the “complete” climate is calculated as follows. A climate model
is used to calculate the change in global mean temperature∆TGM (t) in year t. We
are currently using the “ICLIPS” climate model (Petschel-Held et al., 1999; Kriegler
and Bruckner, 2004) for this purpose, but in principle any other climate model giving
∆TGM (t) could be used as well.∆TGM (t) is then used to scale the patterns for tempera-
ture and precipitation, which are applied to the climatology in order to obtain the spatial
distribution of the mean climate for∆TGM (t). This mean climate is then perturbed by
a randomly drawn variability pattern in order to represent natural variability.

The global temperature and precipitation fields in a particular monthmwithin year
t are thus computed via

T (r,m, t) = TC (r,m)+k∆TGM (t)×TP (r,m)+T ′ (r,m, t ′
)

(1)

P(r,m, t) = (PC (r,m)× (1+k∆TGM (t)×PP (r,m)))×P′ (r,m, t ′
)

(2)

with TC (r,m) the climatological temperature in monthm in locationr, PC (r,m) the cli-
matological precipitation,TP (r,m) andPP (r,m) temperature and precipitation climate
change patterns obtained from GCM runs,∆TGM (t) the change in global mean temper-
ature in yeart andk the scaling factor relating the scaling of the patterns to∆TGM (t).
T ′ (r,m, t ′) and P′ (r,m, t ′) are the deviations from the climatology described above,
where the timet ′ refers to a year randomly drawn from the 20th century deviations
from climatology.

Advantages of this scheme are that spatial and temporal correlations of past vari-
ability are well represented by using this approach, even though the temporal corre-
lations are only maintained during the course of any particular year and interannual
correlations are destroyed, which mainly affects the temporal correlation between De-
cember and January. Since we will mainly be using the complete original sequence of
deviation patterns, this effect can be neglected in the current application.

The main drawback is that variability is assumed to stay the same in a changed
climate – exactly the same for temperature due to the additivity of the deviation pattern
and somewhat increased in the case of precipitation due to the multiplicity of the pre-
cipitation deviation patterns. While this drawback makes the application of the method
to a future changed climate somewhat questionable, we are assuming that this approach
can still give major insights into the effects of global warming on flooding probabilities.
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2.3 Runoff calculation

Runoff is calculated using a simplification of Thornthwaite’s formula (Thornthwaite,
1948) as the difference between precipitation and evaporation

R(r,m, t) = P(r,m, t)−E (r,m, t)−∆S(r,m, t) , (3)

with runoff R, precipitationP, evaporationE and the change in soil storage∆S, all in
locationr, monthmof yeart. We are assuming∆S= 0 as we are neglecting the storage
of moisture in the soil. This is based on the assumption that soil will be saturated during
the large precipitation events that lead to large-scale flooding.

At temperatures below 0◦C, we are assuming that precipitation falls as snow, which
is removed from the precipitation field and stored until temperatures rise above freezing
again. At temperatures above freezing, the accumulated snow melts and is added to the
precipitation field again.

Due to data constraints, the calculation of evaporation has to be done by a scheme
that does not depend on very detailed climatological data. We have therefore used the
Hamon scheme (Hamon, 1963) that is only dependent on temperature data. In inter-
comparisons of different evaporation schemes (Federer et al., 1996; Vörösmarty et al.,
1998) the Hamon scheme was found to have comparatively little bias and to be well
suited to a large range of surface types. On the other hand, the Hamon scheme is
a purely empirical formulation that has been derived for present climatic conditions,
which makes it questionable whether it is still applicable in a drastically changed cli-
mate (Vörösmarty et al., 1998). Nonetheless, we will use the Hamon scheme for our
model since most other evaporation schemes evaluated by Federer et al. had a larger
bias and requirements with regard to input data that can not be fulfilled by present
climate models suitable for integrated assessment.

In the Hamon scheme, potential evaporationEp (in mm) is calculated as

Ep (T,Λ) =
715.5×Λ×e(T)

T +273.2
(4)

with T the mean air temperature in◦C, Λ the day length as fraction of day ande(T)
the saturated vapor pressure (in kPa) at temperatureT. As the model uses monthly
timesteps and available input data have monthly resolution, we are also calculating
the monthly evaporation. This choice of temporal resolution suits the assessment by
Federer et al. (1996) that the scheme is not very sensitive to the use of data with low
time resolution.

In principle, evapotranspiration changes in a climate with elevated levels of CO2.
However, estimates of this effect vary and strongly depend on vegetation type (Lock-
wood, 1999). We therefore disregard this effect.

Finally, we calculate the actual evaporationEa from the potential evaporationEp

using

Ea =
{

Ep ∀Ep ≤ P
P ∀Ep > P.

(5)

Once again, this formulation assumes that soil and plants have no storage capacity for
moisture.

The procedure described above gives the amount of runoff per grid cell. Subse-
quently this is multiplied by grid cell area and summed up over all grid cells belonging
to a river basin in order to obtain the total monthly runoff for each river basin consid-
ered.

6



3 Data and Methods

3.1 River basin description

The evaluation of changes in the probability of large-scale flooding events only makes
sense on the scale of river basins. The river basin description in our model is based on
the STN-30p dataset, a dataset of major river basins (Fekete et al., 1999; Vörösmarty
et al., 2000). It is derived from a GIS-based analysis of global topographic fields, has
a resolution of 0.5◦ and lists the grid cells belonging to the drainage areas of 6152
individual river basins.

As Vörösmarty et al. (2000) estimate that the accuracy of the data is better for river
basins with drainage areas≥ 2.5× 104km2, we exclude river basins below that size
from our analysis.

Using a dataset of population density (CIESIN, 2000), interpolated to the projected
population in 2100 using the median population projection by IIASA (Lutz et al.,
2004), we obtain the total population living in a river basin. This guides us in the
choice of river basins for the assessment of future climates: Of those river basins large
enough, we chose the river basins with the largest populations, with the exception of a
few basins, like the Nile and Chang Jiang, where the assessment would not be mean-
ingful due to large dams that limit the danger of flooding. The assessment takes place
in 83 river basins, where about 50% of world population in 2100 live. These basins are
listed in the appendix.

3.2 Input and validation data

As source for climate data, we are using a dataset by Österle et al. (2003). This dataset
is derived from the CRU timeseries dataset (New et al., 2000), a dataset of observed
climatic variables (precipitation, daily mean temperature, diurnal temperature range,
vapor pressure and cloud cover) interpolated to a 0.5◦ grid and covering the time range
from 1901 to 1998 with monthly resolution. Österle et al. removed temporal inho-
mogeneities from the temperature and precipitation fields and extended the dataset to
2003. Henceforth, this dataset will be referred to as CRU-PIK.

For model validation, we make use of two datasets of streamflow gauge records.
The first dataset lists monthly discharge data for world rivers excluding the former
Soviet Union (Bodo, 2001a), based in large parts on the UNESCO (1974) dataset.
The other dataset contains information on monthly discharge data for rivers in the
former Soviet Union (Bodo, 2001b). These two datasets give us monthly discharge
data from 6883 streamflow gauge sites. Of these gauges, 1226 had drainage areas
≥ 2.5×104km2, and of those gauges, 640 had records longer than 25 years, with only
complete years considered.

The 640 gauge sites are located in 148 river basins. If there is more than one
gauge site in a river basin, we choose the site gauging the largest drainage area, unless
there is another site with insignificantly smaller drainage area, but longer record length.
About a third of the gauges (52) are at latitudes between 40◦N and 60◦N, all other 20◦

latitude bands north of 40◦S still contain between 10 and 28 gauge sites, and 26 stations
are located in the southern hemisphere. The latitudinal coverage of validation records
therefore appears to be adequate.
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3.3 Validation of annual and monthly runoff

The validation of simulated annual and monthly runoff may seem straightforward at
first glance. One would assume that it is sufficient to take precipitation and temperature
measurement data, determine the model output for the river basin area upstream of a
gauge site, and compare the result with gauge records.

Such a model validation would certainly be possible, if perfect measurements of
streamflow, precipitation and temperature were available. If this were the case, any
discrepancies between model output and streamflow measurements would have to be
regarded as model error. In reality, there may be quite large errors in the measured
values, especially in the precipitation measurements (Adam and Lettenmaier, 2003;
Fekete and Vörösmarty, 2004). In addition, those areas where higher quality mea-
surements can be expected, are just those areas where it is very likely that streamflow
characteristics have been changed by human intervention, since the highest measure-
ment quality, the longest timeseries, and the highest density of measurement networks
can be expected in the industrialized countries, where extensive fluvial management
has taken place.

Fekete et al. (2002) investigated this problem in some detail. They compared runoff
estimates from the “WBM” water balance model (Vörösmarty et al., 1996, 1998),
driven by precipitation data from the Willmott and Matsuura (2001) climate data set,
with streamflow measurements from selected streamflow gauging stations. They re-
port large differences between simulated and measured streamflow, including some
cases where measured streamflow actually exceeded the total measured precipitation.

Therefore we test the quality of our model by comparing its results with the output
of other models given similar input data. For this we determine thebiasof the mean
annual streamflow, defined as

bias=
S̄− Ō

Ō
×100%, (6)

with S̄ the mean modeled annual streamflow andŌ the corresponding observed annual
streamflow. Though thisbias is neglecting interannual variability of streamflows and
thus is of limited use for our purpose here, it allows a far reaching comparison to other
hydrological models.

In order to get better measures for model simulation quality, we also determined
Willmott’s index of agreement (Willmott, 1982) for the annual total runoff in the vali-
dation basins. The index of agreementd is defined as

d = 1−

[
∑N

i=1 (Si −Oi)
2

∑N
i=1

(∣∣Si − Ō
∣∣+ ∣∣Oi − Ō

∣∣)2

]
(7)

with Si the modeled value at timeti , Oi the observed value at timeti andŌ the mean
observed value. It describes model quality with respect to variations, withd = 0 in-
dicating complete disagreement, whiled = 1 indicates complete agreement. It was
proposed by Willmott because the correlation coefficient often used for such investiga-
tions is not consistently related to the quality of prediction (Willmott, 1982).

3.4 Validation of runoff extremes

The intended purpose of our model is not the accurate reproduction of the mean stream-
flows, but rather the assessment of probabilities of major flooding due to extreme pre-
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cipitation. Therefore, model validation will focus on the validation of model simulated
runoff extremes, even though annual and monthly runoff will also be evaluated.

The magnitude of the so-called “T-year flood” at a site, which is the amount of
streamflow that has a probability 1/T of being exceeded in any one year, is commonly
estimated by using the annual maximum series (AMS) approach (Li et al., 1999). In
this method, a suitable probability distribution is fitted to the annual maxima of the
timeseries in order to estimate the return periodT of certain flood levels.

In principle, we regard the other possible approach for the estimation of the mag-
nitude of theT-year flood, the peak over threshold (POT) approach (Madsen et al.,
1997), as superior, but this approach requires well-defined flood peaks. As our model
works on a monthly timescale, it produces just a single flood-peak per year in most
river basins. Therefore, the advantage of the POT approach, the ability to use more
data than just the single annual maximum, does not come into play, and we thus make
use of the AMS approach.

According to a recent review of probability distributions for the AMS approach (Li
et al., 1999), various distribution functions are possible. Yet it is difficult to conclude
which one is the most appropriate, as the choice of distribution function in mainly
dependent on type of data and other factors. Of the distributions that were evaluated
favorably by Li et al., the probability distribution that gives the best fit to the streamflow
records we have available is the gamma distribution.

In order to obtain a measure of model performance, we normalize streamflow data
and model results and fit a gamma distribution to the annual maxima of streamflow
(validation data) or runoff (model results). We use all available data for fitting the dis-
tribution, the timeframe considered therefore is variable for the validation data, while
it is 100 years (1901-2000) for the model results.

From the gamma distribution, we determine the magnitude of the 50-year maxi-
mum streamflow / runoff event. The deviation

∆50yr =

(
S50yr −O50yr

)
O50yr

×100% (8)

of the 50-year maximum event, expressed as a percentage ofO50yr, shows how well
the model reproduces the streamflow extremes. In this equationS50yr is the magnitude
of the model-generated 50-year maximum runoff event, andO50yr is the magnitude of
the 50-year maximum streamflow event, as estimated from the gauge records.

As we will later be calculating the change in probability of the 20th century 50-year
maximum streamflow event, this measure gives the most direct indication of simulation
quality for the intended purpose of the model.

3.5 Sensitivity analysis

In order to assess the model sensitivity to certain parameterizations, we perform a
sensitivity analysis. Within the runoff balance (Eq. 3), five uncertain factors appear:

1. Some portion of precipitation may be converted to runoff instantly, without being
available for evaporation.

2. Some portion of precipitation may be stored as soil water or converted to ground-
water, removing it from the water balance equation.

3. Evaporation may be over- or underestimated by the simple parameterization
(Eq. 4) we are using.
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4. Precipitation may be over- or underestimated in the dataset.

5. The neglect of changes in soil moisture.

Experiment Equation Formula Reason

A Eq. 3 RA = 0.1×P+(0.9×P−E) direct conversion ofP to R
B Eq. 3 PB = 0.9×P groundwater recharge
C Eq. 3 PC = 1.1×P underestimation ofP
D Eq. 4 Ep,D = 0.9×Ep overestimation ofEp

E Eq. 4 Ep,E = 1.1×Ep underestimation ofEp

Table 1: Sensitivity experiments performed. Listed are experiment identifier, equation
modified, formula for the modification and the reason for performing the experiment.

In order to test the first four of these possibilities, we have performed a series of
five sensitivity experiments by changing the components of the runoff balance (Eq. 3).
These experiments are listed in Table 1.

The fifth uncertain factor in Eq. 3 is the neglect of changes in soil moisture. While
this factor may have a large influence on model error, especially with respect to the
monthly flows, it is not possible to test this without introducing soil dynamics into the
model. We therefore had to neglect this uncertain factor.

4 Model validation

4.1 Verification of annual and monthly runoff

In order to validate the model performance, we determine the mean annual runoff and
compare it to estimates from other models of similar scale.

Models of similar scale are the macro-scale hydrological models WBM (Vörös-
marty et al., 1996), WGHM (Döll et al., 2003), VIC (Nijssen et al., 2001; Liang et al.,
1994), and Macro-PDM (Arnell, 1999b; Meigh et al., 1999) on the one hand. On the
other hand, one could also consider the land surface model of atmospheric GCMs (Rus-
sell and Miller, 1990; Oki et al., 1999), and the Dynamic General Vegetation Model
LPJ (Gerten et al., 2004). Unfortunately, the publication of actual numbers for the error
in single river basins, as opposed to plots summarizing the error, is not very common.
We therefore restrict the detailed comparison of model error to the numbers published
by Russell and Miller (1990) and Nijssen et al. (2001).

The simulation quality of these models varies widely, but is much improved, if the
model parameters are tuned on a basin scale. For example, Döll et al. (2003) report a
great increase in simulation quality after model tuning, similar to Nijssen et al. (2001).
Since no tuning on the river basin scale takes place in our model, as there are no val-
idation records available for some important river basins, we limit the comparison to
the published errors before model tuning.

The simulation quality of the macro-scale models, where no such tuning on a basin
scale takes place, generally is worse than desirable. Nijssen et al. (2001), for example,
report biases ranging from -74.6% to 424.3%, with a median value of -18.1% for the
untuned model, with increasing simulation quality after tuning. Similarly, Russell and
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Miller (1990) report biases ranging from -62.98% to 1018% with a median value of
33.93%.

Arnell (1999b) and Meigh et al. (1999) do not publish numbers for specific river
basins, but judging from their plots, the biases range from about -50% to +20% for
Arnell (1999b), where some tuning takes place for the whole continent of Europe, and
from at least -50% to more than +50% for Meigh et al. (1999), but in both cases the
median bias seems to be quite small.

In Table 2 we are showing the simulation error for the annual runoff in those river
basins, where either Russell and Miller (1990) or Nijssen et al. (2001) publish values
for their models, and a direct comparison is therefore possible. While Nijssen et al.
(2001) publish values forbias, Russell and Miller (1990) only publish values for mean
annual runoff, both simulated and observed, and thebiashas to be inferred from these.
Overall, thebias of our model shows a similar spread of values as both Nijssen et
al. and Russell and Miller, with the exception of the very extreme values our model
produces in the Colorado and Murray basins.

Taking all validation basins into account, thebiasfor our model ranges from -68.8%
to 2120.4%, with a median value of 9.5%, while the index of agreementd ranges from
0.05 to 0.93 with a median of 0.54.

In general, the model overestimates runoff, 87 gauge sites (53%) show a positive
bias. Of the 148 gauge records, 98 show an absolutebias below 50% and 67 below
25%. 15 gauge records have abias above 250%. A histogram of the distribution of
bias is shown in Fig. 2, along with the results from the sensitivity analysis.

The Colorado and Murray basins, where modelbiasis particularly large, as well as
the Nile and some other validation basins, are located in very dry areas, and therefore
a number of processes that are not considered in our model become important. First
of all there may be seepage from the river channel, and in addition the evaporation
from open water may play a major role here, especially if the river runs through lakes
or wetlands. For the Nile, Niger, Senegal and Orange similar problems are reported
by Döll et al. (2003), while Oki et al. (1999) report such problems for the Colorado
and Niger. In addition to these processes, basins like the Colorado are heavily man-
aged by humans, and as these processes are not included in the model, they cannot be
represented adequately either.

Model simulation quality with respect to the annual total runoff and the annual
cycle of runoff therefore is comparable to other models of similar scope and scale,
where no tuning on a river basin scale takes place, and a better performance would
be desirable. We mainly attribute these performance problems to three causes. First
of all, the Hamon scheme for the parameterization of potential evaporation (Eq. 4)
basically rests on the assumption of uniform soil and vegetation characteristics. This
leads to the potential evaporation scheme being more suitable to some river basins than
to others. In addition, the neglect of soil storage of moisture and river routing may lead
to additional errors, especially with regard to the timing of the annual cycle. Similarly,
the simple parameterization of snow and snowmelt introduces additional errors into the
model results.

4.2 Validation of runoff extremes

As we report in the methods section (Section 3.4), the return period of extreme runoff
events is commonly evaluated by fitting a suitable probability distribution to the annual
maxima of runoff. In the case of the streamflow records we have available, a gamma
distribution turns out to be most suitable. By performing a Kolmogorov-Smirnov test,
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River ∆50yr[%] d bias[%] biasN[%] biasR[%]
Amazon 11.48 0.34 -30.79 -39.80 -62.98
Amur 11.11 0.86 -8.33 -45.90 -2.77

Chang Jiang 20.45 0.43 -32.98 -14.30 44.89
Colorado n. a. 0.10 2120.39 315.00
Columbia 4.00 0.65 -19.90 -74.30 20.72
Danube 27.14 0.80 6.21 12.30 44.66
Dvina 0.64 0.75 -4.78 31.30 10.38
Fraser 25.18 0.75 -11.19 33.93

Indigirka 24.00 0.39 -56.75 -54.70
Indus 3.49 0.60 40.06 26.05

Kolyma 1.12 0.50 -42.71 -32.00 376.06
Lena 9.77 0.36 -38.66 -68.20 5.84

Mackenzie 33.07 0.48 -20.28 -69.00 83.66
Magdalena 21.58 0.57 -24.58 32.49

Mekong 5.67 0.63 -12.12 -19.10 51.49
Mississippi 2.58 0.65 31.95 18.00 -10.86

Murray -18.05 0.08 1490.34 431.82
Niger 25.19 0.12 336.75 82.81
Nile 16.55 0.05 508.47 606.02
Ob 18.90 0.73 7.11 46.50 30.91

Olenek 20.99 0.52 -40.97 -36.70
Parana 10.22 0.28 93.26 6.20
Pechora 12.42 0.48 -29.26 16.30
Senegal 34.21 0.20 144.59 424.30

Shatt el Arab 4.92 0.80 3.53 71.74
St. Lawrence 27.87 0.25 47.24 3.36

Volga -13.33 0.53 26.90 83.60
Yana 32.08 0.42 -52.28 -74.60

Yenisei 12.69 0.28 -34.19 -44.40 -10.54
Yukon -5.63 0.34 -48.87 104.80 152.31

Zambezi -4.74 0.16 318.49 13.45

Table 2: Error in those river basins, where either Nijssen et al. (2001) or Russell and
Miller (1990) publish values. Shown are∆50yr, index of agreementd andbias for our
model,biasN for Nijssen et al. andbiasR for Russell and Miller.
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we determine whether the gauge records are compatible with this hypothesis. At 5%
significance level, only 2 out of the 148 gauge records are rejected. These are the Col-
orado and Rio Grande basins, where extensive human influence on streamflow charac-
teristics has to be assumed. These streamflow records are excluded from the subsequent
analysis, leaving us with 146 gauge records for the validation of model extremes.
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Figure 1: Probability distributions for extremes and histograms for measured extremes
at selected gauge sites. Continuous line: fit to normalized gauge record annual maxima,
dashed line: fit to normalized model annual maxima. Also shown:∆50yr.

As the mean flows the model simulates are biased (Section 4.1), the extremes can
only be compared after a suitable normalization of the data. After normalizing stream-
flow data and model results to a mean annual maximum streamflow / runoff of one,
the probability distributions fitted to these data are in comparatively good agreement
with another. In order to give the reader an impression of model simulation quality, we
show plots of the estimated probability distributions at nine gauge sites. Fig. 1 shows
the probability distributions for the selected verification basins, as well as histograms
of the number of annual maximum runoff events for the normalized event sizes as esti-
mated from streamflow measurements. While the probability distributions are similar
in every case, some differences are apparent. In all cases, the probability distributions
for the model generated extremes are wider than the ones for the measured extremes.
In addition, the peak of the probability distribution is higher in the case of the measured
extremes. Therefore the model overestimates the probability of events that are larger or
smaller than the mean event, while it underestimates the probability of the mean event
sizes.
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In order to quantify these errors, we determine the error∆50yr (Eq. 8) in the esti-
mated 50-year extreme streamflow / runoff event.

Table 2 lists these values for selected river basins. The deviation of the 50-year
extreme event ranges from an underestimation by -18.05% in the Murray to an over-
estimation by 34.21% in the Senegal. Taking all validation records considered into
account, the deviation of the 50-year event between model and data is ranges from
-36.11% to 47.02% with a median value of 3.53%. In 87 out of the 146 records consid-
ered, the 50-year event is overestimated. The absolute value of∆50yr stays below 10%
in 66 (45%) of the 146 gauge records, and it stays below 25% in 130 cases (89%). The
error was never larger than 50%. A histogram of the distribution of∆50yr is shown in
Fig. 2, lower panel, along with results from the sensitivity experiments.

All in all, the agreement of the model simulated extreme events with the extreme
events estimated from streamflow records is surprisingly good, considering the much
larger bias in the annual and monthly flows. The error is below 10% in more than 45%
of the gauge records evaluated, and no gauge displayed an error larger than 50%.

This good agreement of the probability distributions and of the 50-year max. runoff
event, after an appropriate normalization, leads us to the conclusion that the current
model appears to be suitable to the evaluation of future probabilities of high runoff
events, as long as the intercomparison of current and future probabilities takes place
within the model results. Even though the annual and monthly flows the model sim-
ulates may be biased, the agreement of probability distributions fitted to streamflow
data and model results suggests that the probability of high runoff events relative to the
(biased) mean flows is estimated more or less correctly.

4.3 Sensitivity analysis

The simple model formulation allows a thorough analysis, which of the factors in the
runoff balance (Eq. 3) has the largest influence on model performance. The sensitivity
experiments we undertook are listed in Table 1. The model results of the sensitivity
analysis runs are subjected to the same analysis as above, namely a validation of the
model extremes and of the mean flows.

Fig. 2, upper half, shows a histogram of thebiasrelative to the mean streamflows at
the gauge sites for all 148 gauge records considered. The mean absolutebiasis highest
(145%) in experiment A, while it is lowest (80%) in experiment B. Model performance
is improved in sensitivity experiments B and E, while it is worse than the original in
sensitivity experiments A, C and D. As the model generally overestimates runoff, this
was expected since precipitation is reduced in B and evaporation is enhanced in E.

Similarly, Fig. 2, lower half, shows a histogram of the deviations∆50yr of model
simulated 50-year extremes from gauge record derived 50-year extremes, relative to
the gauge record derived extremes, for the sensitivity experiments. The mean absolute
∆50yr is shown asm∆50yr in the legend. Overall, the spread of the different cases in the
sensitivity experiments is smaller for the extremes than for the means. The sensitivity
experiments B and E performed worse than the original setup, while experiments A, C
and D performed slightly better. The lowest mean absolute∆50yr (11.8%) is found in
experiment D, while it is largest (13.6%) in experiment B.

Taking these results together, it seems recommendable to keep the original model
setup. While sensitivity experiment D has the lowest mean absolute∆50yr, the result
for the original setup is only slightly worse than that of experiment D. When looking
at the mean flows, sensitivity experiments B and E perform best, while they perform
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Figure 2: Upper panel:bias relative to mean streamflow for sensitivity experiments.
148 gauge records considered, but between 7 and 22 (depending on experiment) not
shown due tobias> 250%. Lower panel: deviation∆50yr of model simulated 50-
year extremes from gauge record derived extremes, relative to gauge record derived
extremes, for original configuration and sensitivity experiments. 146 gauge records
considered. Legend also shows mean absolute∆50yr as m∆.

worst when comparing the extremes. Choosing setup D would slightly improve perfor-
mance with respect to the extremes, but it involves an arbitrary scaling of precipitation.
While precipitation is generally underestimated by measurements, this underestimation
is neither temporally nor geographically homogeneous, and reliable correction factors
are not available for all regions (Arnell, 1999b).

Therefore there is no clear-cut “best” model configuration, and it seems best not to
introduce arbitrary scaling factors. Hence we will keep the original, most simple model
configuration in the following assessment of changed climates.
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Figure 3: Consequences of climate change in two river basins. Top panel: Climate
change scenario, 20th century not shown because driven by CRU-PIK data. Lower
panels: Annual maximum runoff, model-generated, for the Mississippi (middle) and
Amazon (bottom) basins. Also shown: 50-year maximum runoff event (dashed line)
and 25-year max. runoff event (dash-dotted line).

5 Changed probabilities for extreme runoff events un-
der climate change

5.1 A single scenario experiment

As an example of the potential changes in probability of extreme runoff events, we are
showing a synthetic temperature change scenario and the corresponding timeseries of
annual maximum runoff in Fig. 3. The top panel shows the change in global mean
temperature, relative to the late 20th century, in the climate change scenario. As we are
using the CRU-PIK measurement data during the 20th century, climate change is not
shown during this timeframe. During the 21st century, global mean temperature rises
rapidly and peaks in 2080 at a global mean temperature change∆T = 4K. Afterwards
temperature decreases again, but global mean temperature in 2200 is still about 2K
higher than during the 20th century. For simplicity, climate variability is assumed
to be the same sequence of variability patterns as measured during the 20th century.
The lower panels show annual maximum runoff in the Mississippi (middle panel) and
Amazon (bottom) basins. Contrary to the runoff plots shown in Sec. 4.1, the runoff
shown in these plots is not the annual total summed up over sub-basins belonging to
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some streamflow gauge, but the runoff shown is the annual maximum monthly area-
weighted sum of all the grid cells belonging to a drainage basin. The runoff timeseries
is therefore comparable to the annual maximum streamflow timeseries given by a gauge
located at the river mouth. The plots also show the level of the 50-year maximum
runoff event during the 20th century (dashed line) and the level of the 25-year event
(dash-dotted line). These were derived by fitting a gamma distribution to the model-
generated annual maxima of runoff. Climate change patterns for this plot were derived
from ECHAM 3.

It is clearly visible in Fig. 3, that the annual maxima of runoff in the Mississippi
basin decrease in magnitude. Both the 25-year and the 50-year max. runoff events
during the 20th century are never exceeded during the next centuries. The probability
of flooding therefore decreases in the Mississippi basin. In the Amazon basin, on the
other hand, the picture is quite different. Here, the 25-year event is exceeded 65 times,
while the 50-year event is exceeded 55 times during the 21st and 22nd centuries. If
the system were in a stationary state (which it clearly isn’t), the 25-year event would
become a 3.1-year event, while the 50-year event would become a 3.6-year event. The
probability of major runoff events therefore clearly increases.

The model allows the determination of the change in flooding probability depend-
ing on the amount of global mean warming. We assess the changes in flooding prob-
ability for 83 of the largest river basins, where 50% of the projected world population
in 2100 live. These basins are listed in the appendix. In order to do this, we simulate
100 years of monthly runoff data for increased global mean temperatures, ranging from
0.1K to 5K in steps of 0.1K. The sampling sequence of the deviation patterns was as
in the 20th century. As described above, we fit a gamma distribution to the timeseries
of annual maximum runoff and are thus able to assess the change in probability of a
runoff event of equal magnitude to what was the 50-year maximum runoff event during
the 20th century.

Results of this assessment for nine large river basins are shown in Fig. 4 using
climate change patterns generated by three different GCMs. While the probability of
the 20th century 50-year event clearly increases in some river basins, there are other
river basins where the magnitude the 50-year event is never reached at all. Using
the patterns generated by ECHAM 3, shown as dashed lines, the probability increases
markedly with rising temperatures in the Amazon, Parana, Chang Jiang and Mekong
basins. Other river basins, namely the Mississippi, Amur, Mackenzie and Danube river
basins, experience a marked decrease in flooding probability, while flooding probabil-
ity in the Yenisei basin first increases and then decreases again. The climate change
patterns produced by ECHAM 4, shown as dash-dotted lines, give a similar overall
picture, with the exception of the Amur, Yenisei and Mackenzie basins. The most
interesting of these cases are the Yenisei and the Mackenzie. While ECHAM 3 sim-
ulates an increase in flooding probability at temperature changes up to about 2K for
the Yenisei basin, followed by a decrease, ECHAM 4 simulates a faster initial increase
followed by a short decrease, which is again followed by an increase in probability.
A similar behavior is apparent in the Mackenzie basin. Here, both models project an
initial decrease in flooding probability, but ECHAM 4 simulates an increase in proba-
bility at climate changes larger than 2.5K, while ECHAM 3 projects no further change
in flooding probability. This difference is due to changes in the annual cycle of runoff
in the ECHAM 4 model. While the patterns generated by ECHAM 3 project that the
annual maximum of runoff occurs in May, ECHAM 4 simulates a shift of the annual
maximum of runoff to April, due to earlier snowmelt, and as evaporation is smaller
in April due to both the shorter day length and lower temperatures, this generates in-

17



0

0.2

0.4

0.6

0.8
P

ro
ba

bi
lit

y
Amazon

ECHAM 3
ECHAM 4
HadCM 2

0

0.02

0.04

0.06

0.08
Mississippi

0

0.02

0.04

0.06

0.08
Amur

0

0.02

0.04

0.06

0.08

0.1

P
ro

ba
bi

lit
y

Parana

0.01

0.02

0.03

0.04

0.05

0.06
Yenisei

0

0.01

0.02

0.03

0.04

0.05
Chang Jiang

0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

P
ro

ba
bi

lit
y

∆ T [K]

Mackenzie

0 1 2 3 4 5
0

0.005

0.01

0.015

0.02

∆ T [K]

Danube

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

∆ T [K]

Mekong

Figure 4: Changed probabilities for the 20th century 50-year maximum runoff event
(P = 0.02) depending on change in global mean Temperature∆T. Determined using
climate change patterns from ECHAM 3 (dashed line), ECHAM 4 (dash-dotted line)
and HadCM 2 (dotted line).

creases in flooding probability. In the Amur basin, the different projection by the two
models is simply due to different precipitation projections, with ECHAM 4 simulating
increases, while ECHAM 3 produces decreases in precipitation.

Looking at the climate change generated by HadCM 2, the largest difference to the
ECHAM models occurs in the Mississippi basin, where HadCM 2 projects an increase
in flooding probability, while the ECHAM models simulate a decrease. This is once
again due to different precipitation patterns derived from the different models.

5.2 Climate Impact Response Function

Climate impact response functions (CIRF) (Füssel et al., 2003; Füssel, 2003) have been
developed as reduced form models in order to enable the representation of the impacts
of climate change in integrated assessment models. A CIRF is a representation of
the relation between climate change and CO2 concentration on the one hand, and the
impact(s) of climate change under consideration on the other hand. While CIRFs were
embedded within a deterministic framework previously, the approach presented here is
the first attempt at using CIRFs in a probabilistic setting.

In order to determine a CIRF that is a suitable indicator for changes in flooding
probability on a global scale, the results on the scale of single river basins have to be
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HadCM 2 (bottom). The legend for all plots is shown in the bottom panel.
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aggregated to the global scale in some way. Aggregating these changes in probability to
a global level – after all we have performed this analysis in 83 of the largest river basins
– is nontrivial, as the aggregation of the change in probability over all river basins may
very well mask the severity of the problem, as decreasing probabilities in some river
basins may mask the strong increases in other river basins. Therefore we determine the
population affected by increasing probabilities of large runoff events. In order to do
this, we use the dataset of population density by CIESIN (2000), which we extrapolate
to the population in 2100 by using the regionalized IIASA median population scenario
(Lutz et al., 2004), to determine the population living in the river basins analyzed. This
may not quite represent the number of people that are actually affected by the change
in flooding probability, as not all the people living in a river basin will be affected by
the changed flooding probability, but it seems safe to assume that the majority of the
population living in a river basin lives close to the river and will therefore be affected
by the change in flooding probability. Furthermore, the overall damage by a flood does
affect an entire region, e. g. by demand for financing of the reconstruction of destroyed
infrastructure.

Results for this analysis, derived using the climate change patterns from the three
GCMs, are shown in Fig. 5. Using the climate change patterns obtained from ECHAM 3,
shown in Fig. 5, upper panel, one can see that the population affected by a change in
probability of the former 50-year event to a 25-year event (marked by plus signs) rises
steeply for a global warming∆T ≥ 0.3K. The rise in fraction of world population
affected then slows at a global warming∆T = 0.5K, where about 13% of world pop-
ulation are affected. The fraction of world population affected finally reaches about
28% at∆T = 5K. The non-smooth nature of these curves is due to to the fact that once
a basin crosses the threshold, it’s population is added to the total at once. The large
initial increase in the plots for ECHAM 3 and ECHAM 4 is mainly due to the Ganges
basin with it’s projected population of 762 million in 2100.

This series of figures also highlights the uncertainty in these estimates. If one
considers the fraction of population obtained using the climate change patterns from
ECHAM 4, shown in Fig. 5, middle, the overall shape of the curves is similar to the the
ones obtained using ECHAM 3, while the threshold temperatures may be somewhat
shifted. Using HadCM 2, shown in Fig. 5, bottom, the overall picture is quite different.
The fractions of world population affected are significantly lower, and the increases
are less steep than in the cases using the ECHAM models. This difference between the
projections by the different models is largely due to the different estimates of future
monsoon rainfall. While the ECHAM models project increases in monsoon precipi-
tation, HadCM 2 projects a decrease, and due to the large population in the Ganges
basin, this has a large effect on the projected population affected.

The dependence of the population affected by a change in flooding probability on
climate change shown in Fig. 5 can be interpreted as a CIRF within this context. This
model-derived function relates the fraction of world population affected by a change in
flooding probability to the amount of climate change causing this change in flooding
probability. In the final section, this CIRF is used within the TWA to calculate emis-
sion corridors, where the fraction of world population affected by changes in flooding
probability is limited.
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6 Emission corridors limiting the change in flooding
probability

In the tolerable windows approach (TWA) (Petschel-Held et al., 1999; Toth, 2003;
Bruckner et al., 2003), the aim is to determine emission corridors, i. e. the complete
set of emission reduction strategies that are compatible with predefined normative con-
straints. These constraints are called “guardrails” in the TWA.

In order to limit the population affected by a change in flooding probability, the
relation between change in flooding probability and temperature change, developed in
Section 5.2, can be used as a CIRF within the framework of the TWA.

In order to obtain the emission corridors, we are using the ICLIPS climate model
first presented in Petschel-Held et al. (1999) and described further by Kriegler and
Bruckner (2004). The model is kept as used by Kriegler and Bruckner (2004) with
the exception of two changes. First of all, the reference period of the climatology we
are using is 1961-1990. Therefore, this timeframe also defines the initial conditions
the model uses to calculate future climate states. Secondly, as the model contains
just a primitive carbon cycle and no other greenhouse gases, we are using a CO2-
equivalent formulation. In this formulation, the radiative forcing by all forcing agents
is converted to the CO2 concentration that would generate the same radiative forcing.
Climate sensitivity is set to 3K.

As a guardrail, a normative constraint that is not to be exceeded by climate change,
various settings are possible. Here, we are concentrating on the change in probability of
the 50-year maximum runoff event, as calculated by the model when forced with 20th
century observed climate, yet other events can easily be used. We are using the 50-year
event for two reasons. First of all, we believe that it would be misleading to estimate
the size of events that have an even smaller probability from a timeseries that is just 100
years long. Secondly, the amount of runoff that is reached or exceeded only once in 50
years is already so large, that it seems plausible that this level will already cause major
damage to infrastructure and endanger human lives. The 50-year event during the 20th
century therefore seems to be a suitable benchmark to compare future climate states
with. As guardrails, we are using limits to the percentage of world population that are
affected by a change in probability of the 20th century 50-year event to a specified new
probability.

Following Kriegler and Bruckner (2004), three further constraints are imposed on
the change in emissions. The change in emissions is parameterized asĖ = gE, and we
are limiting the maximal emission reduction to 4% p.a., as large emission reductions
may be very costly. Secondly, we are limiting the rate of change in emission reduction,
as a certain inertia in the socio-economic system has to be assumed. We are assuming
a transition timescalettrans of ttrans= 20yrs from the initial rate of change in emissions
g0 to the maximal emission reductiongmax = −0.04. We are also assuming that the
growth rate in emissions does not rise again, after emission reductions have started,
for plausibility reasons. The latter two constraints can be summarized as 0≤ ġ ≤
−(g0 +gmax)/ttrans.

The corridor boundaries are then calculated by performing a constrained optimiza-
tion, where the maximum (minimum) in emissions allowed by the constraints is deter-
mined for successive points in time in order to determine the upper (lower) boundary
of the emission corridor (Leimbach and Bruckner, 2001; Bruckner et al., 2003). The
initial growth in emissionsg0 is determined by the optimization as well, but limited to
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Figure 6: Emission corridor limiting the change in flooding probability. Maximal CO2

equivalent emissions allowable, if less than 20% of world population are to be affected
by a change in probability of the 50-year max. runoff event to the new probability
shown in the legend. Based on the climate model ECHAM 3.

be between 1% p.a. and 3% p.a., which is close to the range of the late 20th century
growth in emissions.

Fig. 6 shows such emission corridors. These corridors show the CO2-equivalent
emissions that are possible, if not more than 20% of the world population in 2100
are to be affected by a change in probability of the 50-year max. runoff event, based
on the climate change patterns generated by ECHAM 3. The plot shows the emission
corridors for a change of the 50-year event to the new probabilities shown in the legend.
The actual emission corridor is the total shaded area between the upper boundary of the
respective shaded area and the lower boundary of all the shaded areas. Please note that
the upper boundaries of the 40-year, shown as a dotted line with stars, and the 30-
year emission corridors, shown as a dotted line with circles, are actually locatedbelow
the lower boundary. The emission corridors therefore are empty sets: only emission
reduction strategies that involve emission reductions larger than 4%p.a. would produce
a valid solution, and as we limit emission reductions to 4% p.a. for socio-economic
reasons, this guardrail cannot be observed.

When interpreting these corridors, it is important to keep in mind that the corridors
derived this way arenecessarycorridors. This means that all emission strategies that
lie outside the corridor, or leave the corridor at some point in time, definitely violate
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Figure 7: Maximum of the emission corridors for the climate change patterns generated
by all three GCMs. Shown are the maximal CO2 equivalent emissions allowed, if the
population affected by the change in flooding probability is to be limited. In the left
hand corner of the three plots, no viable emission corridors exist.

the guardrail. For emission strategies that lie completely within the corridor, one has
to check, whether they violate the guardrails or not. Especially emission strategies
that stay close to the upper boundary of the emission corridor for most of the time are
not acceptable. For further information on the interpretation of emission corridors see
Kriegler and Bruckner (2004).

Fig. 7 presents a different perspective to the emission corridors. In Fig. 7, isolines
are presented that mark the maximum of the emission corridors for varying changes in
probability and population affected. This figure also highlights the considerable uncer-
tainty that is still inherent in this analysis, due to the different climate change patterns
generated by the different GCMs. Shown are isoline diagrams for the GCM patterns
considered, with ECHAM 3 shown on the upper left, ECHAM 4 on the upper right,
and HadCM 2 on the lower left. On the lower left-hand side of the figures, no emis-
sion corridor exists that could limit the population affected by the changed flooding
probability to these numbers. This is due to the fact that the maximum in emissions
of the allowable minimum emissions trajectory is 9.4 GtC, due to the transition time
scale and the maximum emission reductions imposed, which still implies a tempera-
ture change of about 1.3◦C relative to the 1961-1990 average global mean temperature.
Emissions above a maximum of 60 GtC were not evaluated, since these imply temper-
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ature changes larger than 5◦C – a temperature change, where the simple climate model
we are using is not applicable any more.

If the ECHAM models should prove to be correct, it will be impossible to pre-
vent 20% of the world population from being affected by the 50-year maximum runoff
event becoming a 25-year event, and more than 10% will be affected by even larger
changes in probability. This is mainly due to the large increases in precipitation that
the ECHAM models project for the Ganges basin. If, on the other hand, HadCM 2
should prove to be correct, the population affected will be less dramatic, but it will still
be impossible to prevent 10% of world population from being affected by a change of
the 50-year to a 40-year event.

7 Discussion and Conclusions

The modeling results presented in the previous sections suggest, that changes in the
probability of large scale flooding due to changes in precipitation in the course of fu-
ture climate change might have a severe impact on a significant portion of world’s
population. Not only does the simulation with a single climate change scenario sug-
gest an increase in probabilities for large scale floods, but even more significant are the
results obtained within the application of the tolerable windows approach (TWA).

Within this application of the TWA, the portion of the world population experi-
encing an increase of the probability of what is today a 50-year event has been im-
plemented as a constraint for future climate change. Within this first step, a climate
impact impact response function (CIRF) is implemented, which is based on the model
presented before. This CIRF gives the portion of world population which experiences
a specified shift in flooding probabilities as a function of the global mean temperature.
In a second step, the corridors of admissible emissions were calculated, which comply
with this constraint and which do exceed a reduction rate of more than 4% p.a.. Both,
the climate impact response function and the resulting corridors suggest that:

• There is a significant risk that even a small increase in global mean temperature
by less than 0.5◦C brings about a significant increase in flooding probabilities
which can affect up to 20% of the world population. Here, results differ with
different spatial patterns of climate change obtained from three GCMs. More
specific, the risk does depends on the fate of the Indian Monsoon, as the two
ECHAM GCMs implemented both show a strengthening. Therefore, the per-
taining uncertainties on the monsoon are not only of relevance for agriculture,
but also for floods.

• Within the “wet” worlds of the ECHAM models, there is no reasonable emission
scenario to restrict the number of people affected by increases in the probabilities
of major floods. If, for example, we want to avoid that more than 20% of the
world population are affected, we have to reckon with shifts in probabilities,
where what has been a 50 yr event in the 20th century becomes at least a 25 yr
event over the next 100 years.

• The danger of such “TINAs”’ (there is no alternative) imply, that adaptation
to increasing flooding probabilities are inevitable. Given the possibility that
these shifts might happen with rather small increases in global mean tempera-
ture, adaptation measures need to be taken soon, which calls for an increasing
effort to study and understand the processes of adaptation.
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Of course, the results are subject to a large range of uncertainties. Some of them
have been taken into account, e.g. by using climate change patterns from different
GCMs, or by assessing the model uncertainty through a sensitivity analysis. Never-
theless, some other uncertainties pertain. Here, particularly the question how climate
variability might change in the course of global warming or the limited reproducibility
of historical streamflows by models in general have to be mentioned. Nevertheless, we
consider the model as good enough to conclude that an increase in flooding probabil-
ities should be a major reason for concern about climate change. Increased modeling
efforts need to be undertaken to localize the critical regions for increased flooding, in
order to get improved information for adaptation priorities.
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A List of river basins considered

No. Name Pop. 2100 [106] Area [105km2] No. Name Pop. 2100 [106] Area [105km2]
1 Ganges 762 16.33 43 Sao Francisco 23 6.17
2 Indus 284 11.46 44 Ob 22 25.77
3 Niger 180 22.46 45 Chao Phraya 21 1.42
4 Zaire 157 37.09 46 Galana 21 1.18
5 Huang He 128 8.96 47 Elbe 20 1.49
6 Parana 128 26.69 48 Brahmani 19 0.58
7 Huai 125 2.45 49 Cross 19 0.52
8 Krishna 108 2.52 50 Rabarmati 19 0.28
9 Mississippi 104 32.12 51 Dnepr 19 5.10
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10 Godavari 100 3.12 52 Panuco 18 0.92
11 Hai Ho 93 2.46 53 Po 18 1.02
12 Shatt el Arab 87 9.70 54 Mahi 17 0.29
13 Zhujiang 80 4.10 55 Sacramento 17 1.93
14 Zambezi 79 19.94 56 Tana (Ken) 16 0.99
15 St. Lawrence 71 12.70 57 Kizil Irmak 15 1.10
16 Damodar 61 0.60 58 Penner 15 0.54
17 Amur 61 29.11 59 Wisla 15 1.81
18 Mekong 60 7.76 60 Seine 13 0.74
19 Danube 54 7.90 61 Dongjiang 13 0.34
20 Amazon 50 58.70 62 Senegal 13 8.50
21 Balsas 48 1.23 63 Paraiba do Sul 13 0.63
22 Brahmani 46 1.42 64 Don 12 4.24
23 Syr-Darya 44 10.73 65 Menjiang 12 0.66
24 Volta 44 3.99 66 Meuse 11 0.43
25 Amu-Darya 43 6.14 67 Jacui 11 0.81
26 Limpopo 43 4.21 68 Kura 11 2.20
27 Magdalena 42 2.52 69 Hudson 11 0.43
28 Rhine 41 1.66 70 Rufiji 11 1.87
29 Irrawaddy 40 4.07 71 Trinity 11 0.48
30 Volga 35 14.67 72 Urugay 10 3.56
31 Cauweri 35 0.79 73 Farah 10 3.86
32 Liao 34 2.75 74 Bandama 10 1.04
33 Jubba 34 8.18 75 Columbia 10 7.26
34 Narmada 32 1.14 76 Cuanza 10 1.64
35 Grande de Santiago 31 1.92 77 Cheliff 9 0.58
36 Tapti 28 0.67 78 Sebou 9 0.39
37 Chari 27 15.76 79 Motagua 9 0.27
38 Jordan 27 2.70 80 Asi 9 0.28
39 Orange 24 9.46 81 Comoe 9 0.83
40 Orinoco 24 10.42 82 Odra 9 1.20
41 Fuchun Jiang 23 0.67 83 Sassandra 9 0.77
42 Hong 23 1.71
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